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Quantum Zeno stabilization in weak continuous measurement of two qubits
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We have studied quantum coherent oscillations of two qubits under continuous measurement by a symmetri-
cally coupled mesoscopic detector. The analysis is based on a Bayesian formalism that is applicable to indi-
vidual quantum systems. Measurement continuously collapses the two-qubit system to one of the subspaces of
the Bell basis. For a detector with linear response this corresponds to measurement of the total spin of the
qubits. In the other extreme of purely quadratic response the operator 0'}1,0'}2, + 0'110'5 is measured. In both cases,
collapse naturally leads to spontaneous entanglement which can be identified by measurement of the power
spectrum and/or the average current of the detector. Asymmetry between the two qubits results in evolution
between the different measurement subspaces. However, when the qubits are even weakly coupled to the
detector, a kind of quantum Zeno effect cancels the gradual evolution and replaces it with rare, abrupt switch-
ing events. We obtain the asymptotic switching rates for these events and confirm them with numerical
simulations. We show how such switching affects the observable power spectrum on different time scales.
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I. INTRODUCTION

The quantum Zeno effect is an intriguing prediction that
arises in the context of quantum measurement theory.'= It
states that a sequence of strong orthodox measurements can
“freeze” a system in its quantum state, so that in the
Zeno limit of very frequent measurements, the system is
prevented from decay and/or subsequent evolution. Since its
original formulation,*> there has been continued theoretical
development®™ as well as experimental demonstration!®!!
in an ensemble of quantum microsystems—trapped ions
(or atoms) probed via fast (strong) quantum-optical measure-
ments.

With the recent experimental advances in the deliberate
fabrication of two-level quantum systems, such as supercon-
ducting qubits'? or double quantum dots'3 (DQDs), it has
become possible to perform experiments on individual quan-
tum systems (see, e.g., Refs. 14 and 15). However, it can be
very difficult to make repeated strong orthodox measure-
ments on such systems. Instead, a more practical measure-
ment scheme utilizes a detector such as a quantum point
contact'? (QPC) or a single-electron transistor'® (SET) that is
weakly coupled to the qubit(s). The measurement record in
such a situation is a fluctuating current /(¢) that accumulates
a distinguishable signal-to-noise ratio after some time.'®!”

On one hand, the weak coupling between detector and
qubit(s) permits the quantum system to remain relatively
well isolated from “outside” classical noise. On the other
hand, it means that instead of simple abrupt collapse,'® we
have to deal with a theory of continuous (weak) measure-
ments of a single quantum system. The development of such
theories started long ago'®~?! and has attracted most attention
in quantum optics.?>2* Despite the similarity of their under-
lying principles, the theories may differ significantly in for-
malism and area of application; for solid-state qubits a
“Bayesian” theory was developed relatively recently.'* This
formalism is reviewed in Ref. 25, and its equivalence to the
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quantum trajectory approach translated’®?’ from quantum
optics is shown in Ref. 26.

For single-qubit continuous measurement,”®? it was
shown that in a hypothetical situation of very strong continu-
ous qubit-detector coupling, it would be possible to approach
the quantum Zeno limit. For large (but finite) qubit-detector
coupling long periods of “freezing” of the single-qubit state
are interrupted by rare, abrupt jumps between qubit states.
Such jumps produce corresponding jumps in the average de-
tector current signal that closely follows the qubit evolution.
This is in agreement with the classical character of the strong
coupling measurement regime.?%30-31

In this paper we show that the Zeno-like regime can arise
even in a relatively practical weak continuous measurement
context. We initially consider two identical qubits coupled
symmetrically to a detector. Measurement continuously col-
lapses the two-qubit state into measurement subspaces, i.e.,
stable “points” or stable multidimensional subspaces of the
two-qubit Hilbert space. On a time scale greater than the
characteristic measurement time the collapse is like a projec-
tive measurement in the Bell basis. For a detector with linear
or nonlinear response’? this corresponds to measurement of
the total “spin” of the qubits (¢! +¢?)2 In the degenerate
case of purely quadratic detection’? the spin-1 subspace itself

splits and effectively the operator 0'(<1)0'£,2)+051)0'(2)

is mea-
sured. The Zeno-like regime manifests itself in a situation of
slightly asymmetric qubits, wherein the Hamiltonian at-
tempts to evolve a collapsed state out of its measurement
subspace. Our results show that measurement stabilizes the
state, stifling this evolution. Instead of gradual evolution, one
finds rare quantum switching events between different sub-
spaces.

Given the noisy experimental signal I(z), such switching
events can be identified by consideration of the power spec-
trum and/or average current. Using the stochastic Bayesian
approach we evaluate the power spectrum in several impor-
tant cases including the linear and purely quadratic detection
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FIG. 1. Schematic of two qubits measured by a linear and non-
linear detector. (a) Realization based on double quantum dots mea-
sured by a QPC. (b) Possible realization of a purely quadratic de-
tector based on double quantum dots measured by two QPCs.

regimes. We estimate the measurement time needed to accu-
mulate the spectrum and show that even for a nonideal de-
tector it is possible to observe switching events if the lifetime
of the subspaces is large enough. On a long time scale com-
pared to the subspace’s lifetime, the switching events lead to
an averaging of the power spectrum (effective decreasing of
the spectral peaks) and also may produce a telegraph noise
peak near zero frequency. The resulting long-time-average
power spectrum is in accordance with both numerical simu-
lation of the spectrum through Bayesian equations? and with
the ensemble averaged approach.3>3*

As expected in the quantum Zeno effect, the state “sur-
vival probability” evaluated from quantum master equations
decays quadratically in time*® for small times and exponen-
tially for times’ that are sufficiently large compared to the
measurement time. We have obtained analytically the corre-
sponding “lifetimes” of the subspaces for small deviations
from the symmetric situation. We have verified our results by
Monte Carlo simulations of the measurement process.

The presentation of our results is organized as follows. In
Sec. II, we review the Hamiltonian and the Bayesian equa-
tions of motion for weak continuous measurements of a two-
qubit system. Sec. III describes in detail the measurement
collapse scenarios that result from the Bayesian equations. In
Sec. IV, the quantum Zeno effect is demonstrated when the
two qubits are asymmetrical. Sec. V presents conclusions.

II. MODEL HAMILTONIAN AND BAYESIAN EQUATIONS
OF MOTION

A. Model Hamiltonian

Figure 1(a) shows possible realization of the setup that we
analyze. Each qubit is made of a double quantum dot,'? oc-
cupied by a single electron, while the detector is a quantum
point contact located in between DQDs. Another possible
realization (not shown) is based on single-Cooper-pair-box
qubits'? measured by a single-electron transistor.

In the Hamiltonian of the system,

H=Hop+Hper+ Hr (1)

the first term describes two qubits alone with direct interac-
tion between them,
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Hop= (sa/2)(a1al - a;aT) + Ha(a}rai + aIaT)
+ (2/2)(b]by = biby) + Hy(blb, + bby)
+Ulaia; —ajay)(biby = bb)). 2)

The amplitudes H, and H, describe tunneling within each
qubit while g, and g, are the energy biases of each qubit. In
the realization shown in Fig. 1(a), U gives the strength of the
Coulomb interaction. For other realizations, the interaction
may arise from a different physical source. In the absence of
interaction (U=0), each qubit becomes an independent two
level system. The free Rabi oscillation frequencies of qubits
a and b are then given by ,=(4H2+&)"?/h and
Q,=(4H>+¢2)"2 /1, respectively. In the following it will be
convenient to define the Rabi frequencies at zero energy bias
QO,=2H,/h and O, =2H,/#.

As an example of a detector we consider the case® of a
low-transparency QPC, with Hamiltonian

Hppr= >, Eclc;+ > E.clc,+ > (Tcic,+He). (3)
1 r Lr

An operator of the form ¢; () creates an electron in the left
(right) lead of the detector. The final term causes electrons to
make transitions between the leads. We sum over all states /
in the left lead and all states r in the right lead. The qubit-
detector interaction term can be written as

Hivr= 2 (G}LGT - aIal)(lﬂbT - bfbl)xczc, +H.c.
Lr
+2 (G;GT - ajal)ATacIc, +H.c.
Lr

+ 2 (bjb, = b]b)AT,cle; + He. (4)
Lr

The amplitudes T and AT,,AT,, xy are assumed independent
of the energy of the tunneling electrons. For simplicity, we
will consider a situation when there is no relative phase be-
tween these amplitudes. Such a relative phase would lead to
additional decoherence.’*-3¥ From the form of Eq. (4), one
sees that the detector’s measurement basis is | 1),| | ) for each
qubit. Equation (4) is the most general detector-system inter-
action in this basis in the case of two qubits.*3 Higher terms
in Eq. (4) will appear for larger number of qubits.

Purely quadratic detectors (x # 0 and AT, ,=0) may be of
use to perform simple quantum error correction protocols.39
To realize such a detector physically, one possibility is to
form two identical QPCs into two arms of an Aharonov-
Bohm-type loop (no magnetic field is applied). If two qubits
are placed exactly at the geometrically symmetric point of
the loop as in Fig. 1(b), we have a purely quadratic detector
which responds only on the relative state of the two qubits,
i.e., it does not distinguish between states |T,1,) and |||,
and also does not distinguish between |T,|,) and || ,T,). Ref-
erence 34 presented an explicit example of a nonlinear de-
tector constructed to measure flux qubits in the form of a
superconducting loop interrupted by two Josephson junc-
tions.
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The four basis states of two qubits, [1)=|[T,1,).]2)
=Talp).13y=1Lals).[4)=[l15). correspond to four values
of the average current through the detector:

L,=2m(T+ x+AT, = AT, pip,e*Vit,

Liy=2m(T+ x— AT, = AT,)?pip,e*Vih, (5)

where V is the QPC voltage and p; and p, are the densities of
states in the left and right leads.

Note that if a very large voltage were applied to the QPC
for a short time, the current variances would become much
smaller than the corresponding current differences. This is
probably experimentally impractical, but in principle it
would constitute a strong orthodox measurement.

B. Weak continuous measurements of qubits

In the course of a measurement, our knowledge about a
quantum system is updated according to the result of the
measurement. In the case of strong instantaneous measure-
ments the update (“collapse”) is also instantaneous.'® In a
weak continuous measurement, the change of the system’s
quantum state occurs gradually.'* The measured result is in-
trinsically noisy [it is a noisy quasicontinuous current /(z) or
voltage V() in the simplest solid-state realizations], so that
the information from the detector is also acquired only
gradually in time.

Quantitatively, such a random measurement process can
be described by Bayesian equations'# for the system density
matrix p;(¢) that take into account the actual measurement
result /(z). For a system of qubits measured by a common
detector they can be written*>* as stochastic equations (in
It6 form*')

piy =10 - 2 pkklk]<1i +1-22 Pkklk)&i
k k So
(I,-1)? i

- (lTSOL + %‘j)Pij - g[HQB,P]ij, (6)

where the summation is performed over all of the states of

the system, the 7, are the corresponding current levels, S

gives the background low-frequency noise in the detector,

and ;; is the decoherence rate. For a two-qubit system, there

are 2°=4 states in the sum over k and the I, are given by Eq.

(5). Equation (6) assumes that the detector is functioning in a

weakly responding regime: |Ii—1j| <1;,1}; this justifies the use

of a single low-frequency noise S, for all states |k) of the
system.

Equation (6) can be obtained by a general “informational”
Bayesian approach!#4%-3¢ (see also an analogous derivation
of the Bayesian equations for the measurement of a
nanoresonator’’). Since the QPC is an ideal detector with
100% quantum efficiency and no “phase asymmetry,” the
evolution due to measurement basically reduces to the
“quantum Bayes theorem.”? It says that at a sufficiently
short time scale in which the evolution by H 5 can be ne-
glected (1) evolution of the diagonal density matrix elements
in the measurement basis coincides with evolution of classi-
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cal probabilities described by usual Bayes formula and (2)
the purity measure p;;/\p;;p;; stays constant. Such a deriva-
tion does not assume linearity of the measurement device, so
it is also relevant for the general nonlinear coupling of Eq.
(4). Essentially, Eq. (6) describes the interplay between the
“Intrinsic” qubit evolution (Rabi oscillations) and the evolu-
tion due to measurement. It implicitly assumes that the inter-
nal detector dynamics of Egs. (3) and (4) is much faster than
the qubit dynamics due to Hyp and measurement. This is
seen explicitly in another approach!33 that leads to the same
Eq. (6). It uses generalized Bloch equations that couple the
qubit dynamics and the number n of electrons that have
passed through the detector (for the one-qubit case see Ref.
35). One assumes that the typical detector decoherence time
is much smaller than the characteristic electron tunneling
time, ii/eV<<ell, so that coherences between different pas-
sages of electrons can be neglected.'* In order for the current
to be considered continuous, the characteristic electron tun-
neling time must be much less than the time scale of the
qubit dynamics, e/I,<<27/(). Then, in the weakly respond-
ing regime, when individual tunneling events produce only a
small change of the qubit state it is convenient to condition
the evolution on the current /(7). These conditions are suffi-
cient for the stochastic process p;(f) to be Markovian and
make it possible to obtain Eq. (6).

To simulate individual realizations of the random mea-
surement process, the noisy detector current I(¢) can be ex-
pressed as

1(1) = &0 + 2 puds (7)
X

where &(r) represents white noise with spectral density S,
For a measurement with an ideal detector there are no indi-
vidual qubit decoherences (;;=0). As a result, Eq. (6) leads
to purification of the qubit state in the course of continuous
measurement even though the qubit undergoes random time
evolution.'*

Averaging over different realizations of the measurement
process I() in Eq. (6) means total ignorance of the particular
measurement result and is equivalent to ensemble averaging.
The ensemble average of the qubit state does exhibit deco-
herence even for an ideal detector. Averaging in Eq. (6) is
simply achieved by removing the noise term.*! The result is
the standard ensemble-averaged equations®’ with ensemble
dephasing rates I';;=(1,—1,)*/4Sy+ v,

. i
Pij =~ Fijpij - %[HQB,P]U- (®)

We see that even in the case y;,=0 the averaging has pro-
duced a decoherence rate (/;—1;)“/4S, which is the quantum
limited decoherence from an “ensemble-averaged” point of
View, 14154445

Individual qubit decoherence v,;# 0 will arise if the de-
tector is not ideal and may be understood as partial ignorance
of the measurement result.'* The contribution to ¥ is param-
etrized by the detector ideality or efficiency 7 (0< 7=<1),
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yy= - ©)
0

The partial ignorance may arise due to extra output noise*® or

when the QPC detector has a finite temperature T.'* For fi-
nite temperature, one takes into account the total current
through the QPC, I(r)=1_(r)—I_(z), but ignores information
contained in the partial currents “to the right” and “to the
left” in the detector. Correspondingly the quantum ideality
(efficiency) is reduced down to'** n=tanh?(eV/27).*” No-
tice that no mutual dephasing need be present between two
states i,j if I;=I;. Indeed, in this case the detector cannot
distinguish between the two states and therefore there is no
(relative) information to be received and subsequently ig-
nored. Then both v;; and Fij vanish. Of course, additional
qubit decoherence can arise due to individual coupling of
qubits to the environment. The equation for 7; will then
change as we will see in Sec. IV.

III. SYMMETRIC WEAK CONTINUOUS MEASUREMENTS
OF TWO IDENTICAL QUBITS

In the quantum Zeno effect, measurement suppresses
Hamiltonian evolution, repeatedly collapsing the system
back to a given state. To understand how this suppression
happens, it is essential to develop an understanding of the
process of collapse. In this section, we consider symmetric
weak continuous measurement of two identical qubits. In this
case the system collapses into measurement subspaces that
can be identified and characterized. We present a detailed
analysis of the possible collapse scenarios for coupling to a
linear, nonlinear, or purely quadratic detection device. This
sets the stage for the appearance of quantum Zeno physics in
Sec. IV.

A. Preliminary view of dynamics

To consider solutions of Eq. (6), it is illuminating to ana-
lyze first the dynamics of the Hamiltonian (2) alone. Intro-
ducing the Bell basis proves convenient:

1% = (Tals) = LT D2, (10)
12)% = (114150 = [Lal D2, (11)
138 = (1Tl + | LT oD, (12)
145 = (11,1) + | Ll D2 (13)

Using Eq. (2) it is straightforward to obtain the free evolu-
tion of the two qubits when the qubits are unbiased, €,=¢,
=0, and do not interact, U=0. In this case, the + and —
subspaces of the Bell basis do not mix:

[1)8 — cos(AQ#/2)|1)8 — i sin(AQ#/2)[2)5, (14)

13)8 — cos(Q1)[3)® — i sin(Qr)|4)E, (15)

where AQ=0Q,-Q,;, and Q= (Q,+€,)/2. This property per-
sists when the direct interaction is switched on
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FIG. 2. Current levels for symmetrically coupled qubits,
Al,=AI,=Al Linear, nonlinear, and purely quadratic response.

[1)8 — [cos(ﬂ_t) + iﬁ—g_sin(ﬂ_t)} |1)8 (16)

AQ s
—ZZQ_sm(Q 1]2)58, (17)

U Q
|38 — |:COS(Q+I) +i sin(Q+f)} 13)F - iESin(Q+t)|4>B’

rQ
(18)
[
O = V(AQR2)? + (Uh)?, (19)
=%+ (U/h)>. (20)

Notice that [1)® and [2)® are ecigenstates of Hpp if
AQ=0,-0,=0. When the energy biases ¢,, &, are nonzero,
there is no simple solution to the free equations of motion.

Turning to the coupling Hamiltonian (4), we note that our
assumption of symmetric qubit couplings implies AT,=AT),,.
In this case, two currents in Eq. (5) coincide, I,=I3=1,3, as
seen in Fig. 2, so the measurement cannot distinguish be-
tween the states [2)=|1,|,) and |3)=|],1,). Qualitatively, the
measurement alone tends to continuously collapse the system
towards one of the subspaces with definite current. For a
linear detector [xy=0 in Eq. (4)], there are three possible val-
ues of current I;,l4,1,;. Therefore, measurement collapses
the system toward |1) or |4) or the subspace {|2),|3)}. The
current values are evenly spaced I;—1,;3=1,3—1,. For a non-
linear detector [y # 0 in Eq. (4)], there are again three pos-
sible currents, so that measurement again collapses the sys-
tem toward the same three subspaces. However, the currents
are not evenly spaced. For a purely quadratic detector
[AT,,=0 in Eq. (4) while x#0], I;=I, and I,=1;, so the
measurement itself collapses the system toward the subspace
{[1),]4)} or toward the subspace {|2),|3)}.

To describe the measurement process in more detail, it is
convenient to introduce dimensionless qubit-detector cou-
plings C,=h(AI,)*/SyH, and C,=h(AI,)*/SyH, where the
current differences are defined as Al,=1,—1,, Al,=13-1,,
and AI=(AI,+Al,)/2; weak coupling corresponds to
C,,C,=1. To characterize the nonlinearity of the detector, it
is useful to define

8 _[h=19) - (= 1,)] on

5 —_
AL~ [+ 1)2-1,]

where 8I=(I,—15)—(I,—1,). These definitions apply in gen-
eral to the non-symmetric coupling case; for identical sym-
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metrically coupled qubits, Al,=Al,=Al and C,=C,=C, and
4l is indicated on Fig. 2. For linear coupling (xy=0) one has
6=0 while for the purely quadratic case d=-2.

B. Bayesian equations in the Bell basis

It is instructive to rewrite the Bayesian equations (6) in
the Bell basis (10)—(13),

PHYSICAL REVIEW B 73, 085317 (2006)

B B B
dpy _ dpy dp; (22)
dt dt meas dt H evol’

where we distinguish a nonunitary part due to measurement
from a unitary part due to free Hamiltonian evolution. For
qubits with identical couplings, these contributions (in Itd
form) are

dp} AI)?
Py = (§; term) — )
di meas SO -
B B
0 P12 0 P1a
B _ B 0 B+ 8 0 B, B
P2 P44(2 + ) p§3 i Im p§4(2+ 5 P27t Pig . ., P12t Pia
1o 0 P23t Pa3 0
X B +| 0+ =6 5 B
0 P34 2 0 P32t P3g
B B
- 0
Pyy P22(2+ 5)2
2
) T (@3
The entries indicated with a dot are determined by the Hermiticity of the matrices.
The noise term itself reads
2A1
(&; term) = — ——&(1)
So
pr P
14 12
P Lt s Wi =
2 2
B, B B, B
Z(pB _ l) b - P_fs b - M 0 pia+piy 0 P2t Pis
» 22 22 . 2 9 Pr =P P+ Pl 205+ (ph+ ply)
B, B ’
20" 2" P_gi«s 4 0 P32t Py
33 34~
2 - (Plzgz - P4B4)
1
B _
Z<P44 2)
(24)

where it proves convenient to introduce the quantity

5\ 8
z=pi(1+8) -pu=2Re p§4<1 + 5) + 5 (o5 + pll)
(25)

given in the measurement basis and in the Bell basis. Since
the detector signal (7) can be expressed, using Egs. (21) and
(25) as

1(r) = I3+ Alz(1) + &), (26)

we see that z(r) gives the two-qubit signal. In addition, for
linear coupling z(¢) is equal to the average z component of
the total spin.

The unitary part has one contribution proportional to the
Rabi frequency (), one proportional to the energy bias &, and
one proportional to the interqubit coupling U/#:

B B B B

doy| o _ dey| o depldey) o0
dt |y eor dt | g dr |, dt |y
where
00 ipf, ity
dpj| 0 iph ipds (28)
dr | g -21Im P§4 i(P§3 - P4B4) ,
2 Im pf,
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0 ipiy 0 ipiy
dpi| &| - -2Im P2y —iphy i(p3y— pl)
dt |, h| - : 0 ip) ’
21m p5,
(29)
and
0 ipl, O ipf
dp? ul - 0 -ip¥ 0
Pi| _,2 G s (30)
dt U ﬁ . . 0 lp34
0

The state (10) which we have denoted |1)® has spin 0,
while the other three Bell states (11)—(13) comprise the
spin-1 subspace. By inspecting Eqgs. (23) and (24), one sees
that measurement does not mix the spin-0 and spin-1 sub-
spaces. Indeed, when the system is in the spin-0 subspace,
p¥ =1, then dp? /dt vanishes (since z=0). It also vanishes
when the system is in the spin-1 subspace (pf,=0). Since
Tr p2=1, it follows that if the system is initially in the spin-1
subspace it will remain there. In the purely quadratic
measurement case (6=-2) we have from Eq. (25)
z=—(p5,+p5,), and calculation shows that the spin-0 state
[1)B, the state |2)®, and the + subspace {|3)Z,|4)5}, similarly
do not mix. For unbiased qubits, £=0, Hamiltonian evolution
via Egs. (28) and (30) also neither mixes the spin-0 and
spin-1 subspaces nor the three subspaces of the purely qua-
dratic regime. Gradual collapse to one of these subspaces
occurs during the qubit evolution as numerical simulation
shows. In the linear and nonlinear cases there are two col-
lapse scenarios: collapse to the spin-0 or to the spin-1 sub-
72)? is being effectively

space, so that the operator (') +¢"
measured. In the purely quadratic case, there are three col-
lapse scenarios; we can say that we are effectively measuring
the operator Ui,l)U;2)+0'£1)0'§2), whose eigenspaces are
[1)2, |2)8, and the + subspace {|3)Z,[4)8} with eigenvalues
—1, 1, and 0, respectively. One can confirm using Eq. (22)
that the measurement subspaces associated with these col-
lapse scenarios are attractive. In other words, small devia-
tions from a collapsed state tend toward zero under the evo-
lution (22). Similar attraction was obtained previously in an
analysis of a sequence of strong measurements.>

We characterize below the collapse scenarios by calculat-
ing the probability of collapse, typical collapse time, and
power spectrum of the detector current.

C. Collapse scenarios when £=0 and U=0

1. Linear and nonlinear detection

Examination of ensemble-averaged equations (master
equations) provides insight into the collapse scenarios. These
equations can be obtained from (22) by simply eliminating
the noise term (24). For both linear and nonlinear detection,
the master equations have the following stationary solution:
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FIG. 3. Two numerical realizations of two-qubit evolution start-
ing from the fully mixed state for a nonlinear measurement,
8=—1, by an ideal (7=1) detector. (a) Evolution of p? . The upper
(solid) line illustrates the scenario of collapse into the entangled
Bell state |1)B, while the lower (dotted) line shows a collapse into
the orthogonal subspace. The two insets show the corresponding
spectral densities S;(w) of the detector current. (b) The detector
current I averaged over the whole time starting from =0 is shown
for the same collapse scenarios as in (a). Dashed horizontal lines

correspond to the normalized averaged currents /), ./, .
spo>tspy

ply=0 fori#j,

plBl,Sl = pfl (O) 5
B B B 1 B
P22 = P33, = Past = 5[1 -p1(0)]. (31)

The solution (plf1 (1)) of the ensemble-averaged equations is a
constant in time, (pfl(t)>=plfl(0). Taking into account that
after some measurement time*® > 7, all members of the
ensemble eventually collapse to p¥,(¢)=1 or p? (£)=0 it must
be that the fraction of members that collapse to pf,(£)=1 is
equal to {p%,(#)). Thus, one expects that the probability of
collapse to the spin-0 subspace is pf 1(0), while the probabil-
ity of collapse to the spin-1 subspace is 1-p”,(0).
Extensive Monte Carlo simulations of Eq. (22) were per-
formed for weak coupling (C between 1/4 and 1). As illus-
trated in Fig. 3, they show that any initial state either col-
lapses eventually into the spin-O state or collapses to the
orthogonal, spin-1 subspace within which it performs oscil-
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FIG. 4. The two-qubit power spectrum in the oscillating sce-
nario in the linear (a) and purely quadratic (b) detection regimes.
Analytical calculation (dashed line) given by Egs. (47) and (49)
practically coincides with numerics.

lations. Within a level of accuracy consistent with the num-
ber of trials, the probability of evolving into the Bell state
|1)2 coincides with the initial value pf,(0). In particular,
starting from a completely mixed state the probability is
ph(0)=1/4.

We can monitor the process of collapse of p;(#) through
the Bayesian equation (6) for a given measurement result
I(1). Collapse is also revealed in the appearance of different
power spectra for I(¢) depending upon the final state [insets
in Fig. 3(a)]. In the case of collapse to the entangled state
[1)B, the spectrum is flat and coincides with the shot noise
spectral density S,. In the case of collapse to the spin-1 sub-
space, the qubit performs oscillations within the subspace. In
the linear case the oscillations lead to a single peak in the
power spectrum [Fig. 4(a)] at the Rabi frequency Q) with
peak height (32/3)S, and width I'=(AI)?/4S, that is con-
firmed analytically below. In the general nonlinear case, one
sees peaks in the power spectrum at the Rabi frequency ()
and also at zero and double the Rabi frequency [Fig. 3(a),
lower inset].

The average detector current using Eq. (7) is
(1)) =2 L p(2)),. After collapse, the time average (py(2)),
can be calculated using the stationary ensemble averaged
solution (31)—the initial transient period of the order of the
measurement time can be neglected. In the spin-0 scenario
one finds (py(1),=(ps3(1)=1/2, implying (I(1))=I,,
=(I,+15)/2=1I,;. In the spin-1 scenario {p;;(2)),={psu(?)),
=1/3 and (pp(1);=(pss(1),=1/6, so that (I(t))=I,,
=(I,+I3+1,)/3. In the linear case (Fig. 2), the average
current in the detector is the same in both scenarios
(I()=1y, =1, =Ir3) since I3=(I;+1,)/2. Therefore the
spin-0 and spin-1 subspaces are indistinguishable by average
currents and we have to measure the power spectrum in order
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FIG. 5. Linear weak ideal measurement. State purification in
case of oscillating spin-1 collapse scenario (p?1—>0, thick dashed
line) starting from a fully mixed state. The qubits’ signal
z=2Re p§4, given by Eq. (25), establishes quantum oscillations at
Rabi frequency (thick solid line) with slowly fluctuating amplitude
and phase. Also shown are fluctuations of p§2 (thin dotted line).

to distinguish them. In Appendix B we have evaluated the
typical time needed to accumulate the spectral peak; it is on
the order of 1/T" 7.

In the nonlinear case, the final state can be identified by
the average current in the detector: Ly =1 in the spin-0
scenario and IX,,I:(11+123+I4)/3 in the oscillating spin-1
case [Fig. 3(b)]. Thus one expects the current signal

averaged over sufficiently long times Ar=1/Q, 71
=(1/AD[5'I(t')dt’, to be Gaussian distributed with average
either I,; or (I,+1,3+1,)/3 and with variance S,/2At. We
have confirmed this conjecture by numerical simulations of
the detector current. As a result, the typical time necessary to
distinguish between the two scenarios with a signal-to-noise
ratio of 1 is on the order'* of Tmeas=250/(151,0—131,1)2
=18S,/(21,3—1,-1,)>. This estimate is self-consistent since
we are working in the weak-coupling regime (I' <(}), so that
the measurement time 7,,,,,3 1/Q. Hence, for At~ 7,,,,,, the

meas
current / in the oscillating scenario is effectively averaged to
the value Iy, over many periods of oscillation.

Both in linear and nonlinear cases when collapse to |1)?
occurs, purification of the state is clearly inevitable even for
a nonideal detector with 7<<1. Simulation (see Fig. 5) shows
that for an ideal detector, the qubit state purifies also in the
case of collapse to the spin-1 subspace. (Such purification
during oscillation in the weak measurement regime is similar
to the purification in the one-qubit case;'* for analogous pu-
rification in the case of measurement of an oscillator; see
Ref. 37). After initial relaxation, the surviving nondiagonal
matrix elements in the Bell basis are found numerically to
satisfy

(Re p5,)* = phplly  (Im p5y) = p5,p%s.
(Im p5)? = psplly (32)

Im p5, = Re p5;=Re p5,=0, (33)

which imply that the pure-state condition p*=p is satisfied by
the matrix p.
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In the weak-coupling case C=1 for a linear ideal detector
(m=1) it is possible to characterize further the evolution of
the density matrix. Since purification of the state leads to
Eqgs. (32) and (33), of the eight real degrees of freedom in the
density matrix of the collapsed system, only two remain in-
dependent. The system oscillates with slowly fluctuating am-
plitude and phase (see Fig. 5). Taking into account the free
Hamiltonian evolution Eq. (28), we can write

z=2Re p; = A(t)cos[ Q1 + ¢(1)], (34)
y = 21Im p3; = A(0)sin[ Q1 + ¢(1)], (35)
21 = ps = plly == B(t)cos[ 20 + 2¢(1)], (36)
i =21Tm p3, = - B(1)sin[2Q + 2¢(1)]. (37)

Here, A()=2+/p5,(1-p5,) and B(r)=1-p5,, so it is natural to
regard p5,(f) and ¢(7) as the two independent variables. The
quantities A(7), B(r), and ¢(r) are constants in the absence of
measurement while in the presence of measurement they
slowly fluctuate in time. (The stationary distribution of p5, is
calculated in Appendix A.) Equations (34)—(37) complete the
description of the collapse subspaces in the case of weak
linear ideal measurements.

2. Purely quadratic detection

In the case of purely quadratic measurement
(I,=1,=1I,4,5==-2), the stationary solution of the master
equation is

pry=0 fori#j,

B B B B
Pr1,st= P (0), P2t = p2(0),

1
P30 = Piasy= 51 = P11(0) = p2(0)]. (38)
This suggests that with probability p7 (0) the system
collapses under measurement to |1)%, with probability p5,(0)
the system collapses to [2)%, and with probability
1-p%,(0)=p5,(0) the system collapses to the remaining sub-
space.

Numerical simulations verify these three collapse sce-
narios. The average currents are I3, I4, and (I3+1,4)/2 for
the three scenarios so that the current spacing is Al/2. In the
case of collapse to the two-dimensional {|3)%,]4)5} subspace,
the two-qubit system performs quantum oscillations as seen
in Eq. (15). At times larger than the oscillation period (that
are relevant in the weak-measurement regime) we can esti-
mate a typical time necessary to distinguish between the
three scenarios that is on the order of 7,,,,,~ 8S,/(Al)>.

We checked numerically that the probabilities of the three
collapse scenarios are given by the initial values pfl (0),
p5,(0), and 1-p¥ (0)—p3,(0), respectively. In the case of col-
lapse to the two-dimensional subspace, the qubits oscillate,
producing one peak in the power spectrum at double the
Rabi frequency [Fig. 4(b)], with peak height 45, and width
'=(A1)?/4S,,.
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It is interesting to note the difference between the weak
measurement results presented here and the hypothetical (ex-
perimentally difficult) strong measurement case. A strong,
purely quadratic measurement was suggested in Ref. 39 as a
means of measuring the relative state of two qubits for use in
error correction procedures. In the strong-measurement case
the qubit Hamiltonian dynamics is much slower than the
measurement dynamics—the measurement occurs within a
time much shorter than the qubit oscillation period
Toneas~ So/ (AI)?<<27/€). As a result, the two-qubit system
collapses to subspaces with average current /14 or I,3, corre-
sponding to “parallel” or “antiparallel” qubits (Fig. 2), given
in the Bell basis by {|2)%,[4)8} and {|1)5,|3)8}. Therefore,
effectively, the operator cril)crf) is measured. In the weak-
measurement situation considered in this paper, the measure-
ment time is much longer than the qubit oscillation period
Tyeas = 277/ ). During the measurement, a well-defined aver-
aged current (I,3+1,4)/2 appears. Therefore, one can distin-
guish three subspaces leading to effective measurement of
the operator o-il)o{,z )+ 0'21)0'22). Contrary to naive expectation,
weak measurements taken for a long period of time are not
equivalent to a strong measurement because of nontrivial
interplay between the qubit Hamiltonian dynamics and dy-
namics due to the measurement process.

D. Correlator of measurement current and power spectrum
when £=0 and U=0

In this subsection we derive the current correlation func-
tion and power spectrum of the detector signal for weak mea-
surement of two identical qubits symmetrically coupled to
the detector. It follows from Egs. (25) and (26) that after
collapse to a one-dimensional subspace (to |1) in the linear
and nonlinear detector cases and to |1)® or [2)? in the purely
quadratic case) the value of z is constant, the qubits do not
oscillate, and the correlation function K,(7)={I(t)I(t+ 7))
—(I)* contains only the noise. The corresponding power
spectrum is flat. Collapse to a higher-dimensional subspace
(the three-dimensional spin-1 subspace in the linear detector
case and the two-dimensional {|3),]4)8} subspace in the
purely quadratic case) leads to oscillations and a richer
power spectrum that we derive below.

1. Linear detection

In the case of collapse to the spin-1 subspace in the linear
case, we have (I)=I,; and from Eq. (25), z=p;;—pu
=2 Re p5,. Using expression (26), we have

K)(7>0) = (AD*K (7) + AIK (7). (39)

First, we calculate the “back-action correlator” K. &(T)
=(&(r)z(t+ 7)), for 7>0. In an individual realization, the
quantum back action on the qubit state p;; is taken into ac-
count explicitly through the Bayesian equations (6). In par-
ticular, p;;(t+7) is correlated with noise fluctuations of the
current at some previous moment 7 (compare with Ref. 49).
Indeed, a noise fluctuation £(7) leads to a perturbation of the
density matrix p;;(r) in the immediate vicinity of the time
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instant ¢, i.e., p;(1+0)=p,;i(1)+dp;(t). The leading perturba-
tion is given by Eq. (24),

A
dz(f) = - 25—'{z2<r> 50 + oL DED . (40)
0

A
dy() =~ 2 DY) + v (2D, (@1)
0

where y=2 Im p5; and y, =2 Im p5,.

We proceed further by implicitly assuming that the long-
time average (--), is represented as three subsequent aver-
ages. First, averaging over different realizations of the sto-
chastic process p;(¢') in the interval r<t'<t+7 is
equivalent, assuming stationarity and ergodicity, to using the
master equations for z(¢) and y(7),

y=Q0z-Ty. (42)

The ensemble dephasing rate is I'=%7'(A7)%/4S,. Note that
the solution to the master equations is linear with respect to
initial conditions. Explicitly, for z(¢) we have

Zz_st

z(2) = z(0)exp(- I'772)[ cos Q7+ (I72Q)sin Q7]
—y(0)exp(= T 72)[QV/Q]sin Q7
=2(0)G,(7) +y(0)G,(7), (43)

where Q=(Q2*-12/4)"2, and G(7),G,(7) are the corre-
sponding Green’s functions. Therefore, the initial perturba-
tion that appears due to &(7), propagates to the later moment
t+ 7 according to Eq. (43) with “initial” conditions dz(r) and
dy(1): &z(t+7)=dz(t)G(7)+dy(1)G,(7). The second averag-
ing is the standard averaging over noise (at instant f) accord-
ing to (&(r)&(r)dry=Sy/2. The quantum correlation is ex-
pressed then as

(&(D)z(t + 7)) = (&(1) &z (1 + 7))
= AI[(p5(1) + ply(t) = ()G (7)
+(y(0)z() + y,()/2)G(7)]. (44)

A third averaging over the “initial” condition pg(t) remains
to be done.

The calculation for the correlation K.(7)=(z(r)z(t+ 7)),
also proceeds in stages, first averaging over different realiza-
tions for p;(¢') in the interval t<t <t+7. Then

(202t + 1) = (OGP = GOz(DG (7). (45)

In Eq. (39) the unknown averages (z*(7)) and {y(¢)z()) can-
cel out, and (y,)=0, so we obtain

2
Ki(7) = (ADXp%, + piG.(7) = (AD*3G(),  (46)

where we have used stationary values from Eq. (31). This is
valid for arbitrary coupling C and detector ideality 7.

The corresponding current spectral density S;(w)
=2[" K,(7exp(in7)dr is readily computed by Fourier
transform>? to be
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8 Q*(ADT
S[(w) = SO + 5 (wz _ 92)2 + szz . (47)

In the case of weak coupling, I'<<(), the spectral peak is at
Q; it has the same width as in the one-qubit case®® and peak
height (32/3)%S,, which we have confirmed in numerical
simulations [Fig. 4(a)]. It is important to emphasize that in
an ensemble averaged approach starting from a totally mixed
state this power spectrum would be weighted by 3/4, the
probability of collapse into the spin-1 subspace. The aver-
aged peak height would therefore be 87S,. To derive the
higher value of (32/3) 7S, one must analyze a two-qubit sys-
tem already collapsed into the spin-1 subspace.

2. Purely quadratic detection

For purely quadratic detection, the system can collapse to
[1)2 or to [2)B, or it can collapse to the subspace {|3)%,[4)5}
and perform oscillations. In this last scenario, p% ()= p5, ()
=0 and (I)=I,;—AI/2. To study the oscillating signal,
it is convenient to rewrite Eq. (26) in the form I(z)
=(I)+(AI/2)z,(t)+ £&(t) where z,(f)=p35(t)—p},(t). The Ito
equations for the relevant density matrix components z;(z)
and y(¢) again decouple from all other components appear-
ing in Egs. (23)-(30). The corresponding master equations
read

Z1==2Qy;, y,=2Q0z-Ty,. (48)

Significantly, motion in this two-dimensional Hilbert space is
precisely analogous to one-qubit motion,”® but with the os-
cillation frequency 2() rather than (). This is natural because
quadratic measurement is sensitive only to the relative state
of the two qubits distinguishing only between states with
parallel and antiparallel spins.

Applying the same steps as in Egs. (40)—(45), we obtain
the power spectrum

4Q0%(ADT
(0* - 407+ T?w?’

which exhibits a peak at 2() with height 4%S, and width
I'=(AI)?/47S, just as in the linear case.?$4%305! In an
ensemble-averaged approach, starting from a totally mixed
state the peak height of Eq. (49) would be weighted by 1/2,
the probability that a totally mixed system will collapse into
the subspace {|3)2,|4)8}. Thus the peak height would be
27S; it is necessary to analyze a two-qubit system known to
have collapsed to the oscillating subspace to predict the
larger height of 4 7S,

S (w) =Sy + (49)

E. Influence of bias £ and two-qubit coupling U

We now discuss the influence of nonzero energy bias
g,=¢&,=¢ and two-qubit coupling U for identical qubits. Nu-
merical simulations and analytical calculations both show
that the system still collapses and purifies. However, differ-
ences arise in the collapse scenarios.

In the case of a linear detector, the system will still col-
lapse to the spin-0 subspace |1)? or to the spin-1 subspace
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{12)8,13)2,]4)8}. In fact, the corresponding stationary solu-
tion Eq. (31) remains unchanged. This is because the addi-
tional evolution due to & and U terms, Egs. (29) and (30),
does not mix the two subspaces.

The characteristics of the spin-0 collapse scenario are not
affected by the parameters € and U. In particular, the result-
ing power spectrum is still flat with S;(w) equal to the detec-
tor shot noise §.

In the oscillating, spin-1 scenario the additional dynamics
do influence the form of the spectral density S,(w). For
U=0 the relevant master equations are

z==Qy, y=Qz-Ty-(e/h)x,

x=-Tx+(e/h)y (50)

with x=2 Re p5, and y,z as in Eq. (42). This is exactly the
same system of equations as in the one-qubit case with a
nonzero bias. Thus, the corresponding spectral density in the
two-qubit case is related to the one-qubit spectral density

peak, §}qh(w,ﬂ,r,s) ES,l"b—So, considered in Refs. 28 and
46,

. 8~
Spab linear(y Q,T,€) = Sy + gs}qb(w,Q,I‘,s). (51)

As in the one-qubit case, finite & leads to a decrease of the
spectral peak around the Rabi frequency () and to the emer-
gence of an extra peak around zero frequency. Note that the
8/3 enhancement factor is just as in the zero-bias case, Eq.
(47). Numerical simulations of equations (23)—(29) confirm
this result.

For £=0 and U # 0, the form of the spectral peak(s) in the
oscillating scenario can be calculated either by numerical
simulations using Bayesian equations (23)-(30) or through
an ensemble average method developed in Refs. 33 and 34.
Increasing U from zero first suppresses and then splits the
spectral peak at the Rabi frequency ().

In the case of purely quadratic detection, qubit biasing so
that £ # 0 while U=0 will lead to mixing between the |2)%
and {|3),]4)8} subspaces as seen from Eq. (29). For small
bias ¢ this will take the form of rare switching events whose
rate and influence on the spectrum will be discussed in the
next section.

If U#0 while £=0, one notices that the density matrix
components z,(f)= p§3(t) —pf4(t), yi(£)=21Im p§4, and
x=2 Re p5, obey equations analogous to Eq. (50) in which
Q) is replaced by 2(), z by z;, y by y;, and & by 2U. Thus,
the form of the spectrum is described with the same func-
tional form as in Eq. (51),

§Hab uadr( ) = S + §19(,2Q,T,20). (52)

The result is a decrease of the spectral peak at 2() seen in Eq.
(49) and the appearance of a peak at zero frequency. This
finding is confirmed by numerical simulations.3

IV. QUANTUM ZENO-LIKE STABILIZATION

The quantum Zeno effect is usually understood to arise in
the case of projective measurements taken more and more
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FIG. 6. Linear detection. Switching between spin-0 and
spin-1 subspaces as seen in the time evolution of p (), in case of
different Rabi frequencies. The parameters are C=1/4 and
AQ/Q=22x1073. The inset shows numerical histograms (in
logarithmic scale) of switching time distributions in agreement with
the asymptotic switching rates Egs. (58) and (63).

frequently. In our case of continuous measurement the detec-
tor is always coupled to the system, so the approach to the
quantum Zeno regime corresponds instead to the limit of
stronger and stronger coupling. Since it is impractical to re-
alize strong coupling detectors in many systems (the dimen-
sionless coupling to each qubit, C~1I'/(), is typically small),
one might not expect quantum Zeno physics to arise.
However, in our system of two identical qubits, a small per-
turbative asymmetry between the qubits, such as when
AQ=0Q,-Q,#0, can generate slow transitions between
states that were uncoupled. The effective coupling for this
dynamical process, C,~I'/AQ), can be very large, leading
to a Zeno effect.

From this perspective, the symmetric-qubit situation,
AQ=0, constitutes the Zeno limit of infinitely large coupling
Cefs the transition becomes completely inactive, and the
quantum state becomes “frozen.” The asymmetric situation
with nonzero A() implies finite effective coupling C,;. The
nonzero A{) makes the quantum state decay from one sub-
space to another. But, since the coupling is large, the decay
of the quantum state looks like an abrupt switching event,
with duration on the order of the measurement time
Teas ~ 1/1, rather than gradual evolution of frequency A().
The switching event can be identified experimentally by
measuring the power spectrum, for instance. From an en-
semble averaged point of view, at long times the decay be-
comes exponential with a rate that is much smaller than T'.

Numerical simulations using Bayesian equations (6) con-
firm that the two-qubit density matrix p experiences rare,
abrupt switching between different subspaces when the qu-
bits have a slight asymmetry like a nonzero AQ. These
switchings are apparent in Figs. 6 and 7. Switching also hap-
pens for identical qubits when there is small difference of
couplings C,,C, to the detector (due to different values for
Al, and Al,) or different coupling to an environment.

For linear detection the switching occurs between the
spin-0 and spin-1 subspaces while for quadratic measure-
ment we will have three-terminal switching among the three
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FIG. 7. Quadratic detection. Switching between Bell subspaces
[2)8 and {|3)%,|4)8} of Egs. (10)—(13) as seen in the time evolution
of p5,(1), due to a small qubit bias. |1)? is unaffected as seen from
Eq. (29). The parameters are C=1, and £/Q=2.5X 1072,

collapse subspaces described above. The switching events
can be directly observed through measurement of the inter-
mediate time scale power spectrum and/or average detector
currents. (Such intermediate time observables are meaningful
if the measurement time needed to accumulate the spectrum
is much smaller than the “lifetime” of the subspaces.) If mea-
surement is performed for a sufficiently long time, it will
lead to averaging of the spectrum and may also lead to the
appearance of an additional telegraph noise peak at zero fre-
quency analogous to the regime of strong coupling in the
one-qubit case.?8?

A. Perturbation to the qubits

To find the switching rates analytically, we have used the
master equation, which reads from Egs. (23)-(29),

ah,_aply| , anh| | ach| | aol
dt dt | peas dt | g dt |, dt |y

with the noise term (24) omitted from dpf}/ dt|peas- It NOW

acquires additional terms. When the frequencies of the two
qubits are slightly different while coupling to the detector is
symmetric, I,=1I3, we have in addition to Eq. (28)

dp;;
dt |y ewol i #H,
—21Impy, i(pf—p5) —ipyy —iph
_AQ 2Impf, —ipys —iply
2 . . 0 0
0

(53)

and in addition to Eq. (29)
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dp;;
dt | i ewole #e,
(Ae/h)
T2
2Impis ips, —ipi = p3s) ip3;
y 0 - ip5) ~i(p5 = pliy)
—-21m pf} iply

0
(54)

1. Linear detection

For linear detection (6=0), assuming weak coupling AQ)
<I'< ) and unbiased, noninteracting qubits e,=¢,=U=0, a
system of equations for the quantities p% —p5,, 2TIm p%,,
05 =05, p§3— pY, and 2Im p§4 can be extracted from
Egs. (23)-(29) and (53). To change them into a system of
master equations for ensemble averages, we simply set
the noise term to zero £=0 in (23). Starting from the
entangled initial condition pf(0)=1 we find p%(z)
=1-(AQ/2)[{dt'2 Im plfz(t’). Formal integration of the
equation for 2 Im p?, [see Egs. (23) and (53)] leads to the
exact relation

(AQ)Z ! 1 =Tt l, " u " "
P =1-——| are™ | are"[pf (") - ph(r)].

2 Jy 0
(55)

Solving our system of master equations to zeroth order in
AQ) and substituting into Eq. (55), we obtain an approximate
solution for the “survival probability” p (z):
bors B2 (A02 (a0
Y N T T

exp(=T7). (56)

For times t<<1/I", one can expand the exponential and find
that there is no linear term in the ¢ expansion of Eq. (56).
This fact makes quantum Zeno effect physics possible.*~¢
The first few terms in the small ¢ expansion of Eq. (56)
actually coincide with the exact small ¢ expansion of pf,(t)
derived directly from the master equations by differentiation,
using the initial conditions

(AQ)?, (AT,

B
H=1-
P11() 4 12

(57)
The #* coefficient turns out to be —(AQ)%*/4
:—Tr(ﬁzHZQB)+Tr(f)HQBﬁHQB), i.e., it is determined by co-
herent (Hamiltonian) evolution alone consistent with the dis-
cussions in Refs. 4—6. One might speculate that the system
has some memory at the time scale t<<1/I", “forgetting” its
history once t=I""! when the exponential term in Eq. (56)
drops out. At still longer times, the decay from the Bell state
to the oscillating subspace eventually becomes exponential
with rate
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FHa?ﬁHb — (AQ)Q
B—0O or

(58)

as demonstrated by switching time distributions shown at the
inset of Fig. 6. Note, that the switching rate in Eq. (58) is
similar to the one-qubit case”® with the replacement
O —AQ.

An analogous derivation for the case of different qubit
biases &,# &, can be performed. We set e=(g,+¢,)/2=0
since effects of having £ #0 (while g,=¢;) have been con-
sidered above, in Sec. III E. We stipulate that |Ag|/7 < () but
permit |Ag|/% and T to be of the same order. From Egs. (28)
and (54) we find

o0 = = (Ae/h)Im pfy = x15(1)/12, (59)

where x,5(¢) = p¥,(£) - p5;(t). The second equality in Eq. (59)
was obtained by solving a system of nine equations extracted
from Egs. (23), (28), and (54), using the initial condition
p?1(0)= 1. These nine equations quickly reduce to a system
of three equations for 2 Im p%, 2 Re pﬁ, and x 3= pfl —p§3,
which can be solved perturbatively in Ae/7. Integrating Eq.
(59), we obtain p?l(t)=[1+x13(t)]/2. An approximate solu-
tion for p¥,(¢) is

I
ph(=1-b,~r+

b, b
&8 & -T2
St 2GXP( )

~ I ~
X (cacos Ot - —[2 -c,.]sin Qt) , (60)
20

where b,=(Ae/h)?/[Q*+(Aelh)?], c.=T2/[Q*+(Ae/h)?]
~1, and Q= 0%+(Ae/%)2-T?/4. As in Eq. (57), there is
no linear term; the evolution is quadratic in ¢ at small times
permitting quantum Zeno effect physics.® The decay is expo-
nential on a coarse time scale r=2I""! with switching rate

pege, _ (Belh)T
B—O — 292

(61)

Numerical solution of the master equations for the density
matrix confirms these results.

We have computed the rate of switching from the spin-0
Bell state |1)® to the spin-1 subspace. To compute the rate of
reverse switching, we notice that the stationary solution of
the master equations [Egs. (23)—(30), (53), and (54) with the
noise £ set to zero] has the form

PE = Pij = Oyl4. (62)

This form is completely mixed because Egs. (53) and (54)
cause transitions between the spin-0 and spin-1 subspaces.
One infers that the system should spend on average 1/4 of
the time in the state |1)5, suggesting the stationary state con-
dition (1/4)['y_,o—(3/4)I'_ =0 or

1-‘0~>B = l-‘B~>0/3 . (63)

The numerical histograms of switching time distributions
(see inset of Fig. 6), which were accumulated in a Monte
Carlo computation, confirm the long-time exponential decay
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of the survival probability p? () as well as the asymptotic
rates (58), (61), and (63).

If a state’s lifetime in the oscillatory subspace,
To=1/To_p, is sufficiently long, it is possible to measure
the spectrum described by Eq. (47). The necessary condition
for this is 79 = 7,4, Where 7,,,,,~ 1/I" is a typical measure-
ment time needed to achieve signal-to-noise ratio close to
unity.'* For small efficiency 7 we estimate (see Appendix B)

9
T ~—
meas 32F 772

while for 7 close to unity the measurement time may become
an order of magnitude larger than Eq. (64). Physically, the
lifetime will satisfy 7,=7,,,, if one can tune close to the
symmetric point of identical qubits (small AQ) and if the
efficiency 7 is not too small.

The spectrum accumulated for times much greater than
the lifetime 7, gets averaged by switching events. Since the
system resides in the spin-0 subspace 1/4 of the time and in
the spin-1 subspace the remaining 3/4, the spectrum will
take the form (47) with a factor of 2 instead of 8/3 (i.e., the
peak-to-pedestal ratio will be 87). There will be no addi-
tional peak at zero frequency because the averaged currents
in the two scenarios coincide.

(64)

2. Purely quadratic detection

For a purely quadratic detector (6=-2) in the case of
I's>AQ+#0, Eq. (53) produces switching transitions between
states |1)® and [2)® while the oscillating state inside
{I3)2,]4)2} does not switch. The stationary solution to the
master equation is similar to Eq. (38), but now pf, ,=p5,
= %[pf1(0)+p§2(0)]. The new measurement subspaces are the
minus subspace “—"={|1)%,[2)#} and the plus subspace
“+7={|3)8,|4)8}, where the names are based upon Egs.
(10)—(13). The switching rates are given by

(AQ)°
or

F“)Bﬂms = F‘2>Bﬂ‘1>3 = (65)
derived by solving master equations to lowest order in A() as
in the derivation of Eq. (58). Switching between |1)® and
|2)B, and therefore between currents I,; and I;4 in Fig. 2,
produces telegraph noise.’>”3 As a result, if we measure long
enough (1> 1/T;)?—[2)P), the power spectrum will exhibit
a peak at zero frequency

(AT 1
(AQ)? 1 + [0l /(AQ)T

Sfw) =S+ (66)

in full analogy with the one-qubit case.
Actually, it is possible to derive the power spectrum for
arbitrarily large AQ):

(AQ)*(ADT
[w® = (AQ)* P+ T%0?
which reduces to Eq. (66) for small AQ). Indeed, after col-

lapse to the — or + subspaces, Egs. (14), (15), (23), and (24)
produce weakly perturbed quantum oscillations within the

SI((.U) =So+ (67)
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subspace and no switching to the other subspace. The quan-
tum oscillations in the minus and plus subspaces correspond
directly to one-qubit dynamics with oscillation frequency
AQ and frequency 2Q = (Q,+(),), respectively. After a col-
lapse in the — subspace the spectrum will be given by Eq.
(67). If collapse has happened in the + subspace the spec-
trum will be given by Eq. (49) with a peak at 2€). In both
cases the maximum peak-to-pedestal ratio at a nonzero fre-
quency is 47.

Measuring the spectrum on a sufficiently long time scale
will constitute an (effective) measurement of the operator
(r)(cl)aiz) whose eigenspaces are the — and + subspaces.

As we mentioned in Sec. IIIE, if instead of an
asymmetry in frequency, the qubits are identical and biased
g,=e,=e<<I"<k(), under quadratic measurement switching
will occur between the |2)® state and the {|3)Z, |4)%} subspace
[see Eq. (29)]. The spin-0 subspace |1)? will be unaffected as
shown in Fig. 7.

The asymptotic switching rates (relevant at times
t=1/T") are derived by study of master equations. The sta-
tionary solutions are given by Eq. (31) and the switching rate
by

282
F|2>Bﬁ{|3>87|4>3} = EF (68)
Since pfz’s,=p§3’”=pf4’sl= 1/3, Pﬁ,sF pf;jx,:O is a stationary
solution of the master equation within the spin-1 subspace,
the stationary condition must be (1/3)[ 538 48

—(2/3)F{|3>B’|4>B}*}|2>B=0, 1mply1ng

1
Lise - = ST 08)- (69)

When the system collapses to |1)5, the power spectrum
remains flat S;(w)=S,. In the case of switching between |2)2
and {|3)%,]4)8}, we can average the spectra as in the linear

0 P§4 0 sz

do® Al? -0 P8 o0
ap;; =( ) 26, P .
dt meas,mix 7]4SO ! ! 0 P12
0

If the system starts in the entangled initial condition, plflz 1,
the exact solution to the master equation for small times is

PPt =126+ 48+ -+ (72)

The solution contains a linear term setting a time scale
(I'8})~'>T"". For p%,(z) close to unity, the asymptotic rate of
switching from the spin-0 Bell state |1)? to the spin-1 sub-
space is found to be

-2(6)°
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case above and add a telegraph noise peak caused by switch-
ing between current levels 1,4, and (I,3+14)/2. The result is

S(w) = 5y + 2 40%AD°T
3 (w?-40%)%+ M0
2(AD*Q? 1

27T 1 +[wQ?/3T

(70)

Note that the peak-to-pedestal ratio at 2} is multiplied by a
factor 2/3 as a result of the averaging. This result can be
reproduced also in the ensemble averaged approach.33

To conclude this section we mention that a nonzero qubit
interaction U does not mix the measurement subspaces in
either the linear or the quadratic case. Correspondingly, cal-
culations show that neither the stationary solutions of the
master equations nor the switching rates derived above will
be affected. Finite U will only affect the form of the spec-
trum in the oscillating scenario as described in Sec. III E.

B. Slightly different couplings

For identical qubits with slightly different coupling to the
detector, I, # I5 as indicated in Fig. 8. This asymmetry intro-
duces evolution between collapse subspaces. The presence of
the detector provides quantum Zeno stabilization, and so in-
stead of gradual evolution, there is rare, abrupt switching
between the subspaces. It is convenient to introduce the cur-
rent asymmetry 6,/=(l,—13)/2=(Al,—Al,)/2 and to define
the  current  difference as  AI=Al,— 5 1=Al,+ 6,1
=(AI,+AI,)/2. The current asymmetry parameter is
6,=0,I/Al. Defining the difference in coupling by
AC=C,-C, and the average coupling by C=(C,+C,)/2, we
note that in cases of small coupling asymmetry, &, =AC/4C.

1. Linear detection

If 6, #0, the following additional terms arise in the mas-
ter equation in the case of linear detection:

(P —Pgs) pro/2  2ilm P?3 Pril2
0 P2 0

(71)
(PP Ph2
0
|
L-1L)? 1[AC)\?
IS =orsl = (o=l —(—) r, (73

where the qubit detector couplings are slightly different,
Al,# Al,. The reverse switching rate is given by Eq. (63).
To understand Eq. (73), we note that measurement for a
short interval &t cannot distinguish between the current
levels I, and I; when (I,—1)><D, where D,=S,/25t
is the variance of the measured noisy current. For a system
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Linear response Quadratic response

= Q)]
29,0 o, ITVAHAY T KTH#AT
Al
1) - 1LH)=1(tT)

FIG. 8. Current levels for asymmetrically coupled qubits,
Al,# Al,. Linear and quadratic response.

initially in the spin-0 state |1)®~|2)-|3) weak measurement
tends to collapse the system toward either [2) or |3),
thereby diminishing the amount of entangled state |1)5.
Standard decoherence’ in the measurement basis
pr3— prexpl—(I,—15)*/8D,] leads in the Bell basis to
pf () =1-[(I,~15)*/85,]8t in agreement with Eq. (73).
Note that the rate (73) is one-half of the average classical
information acquisition rate*** [T',=(I,—15)*/ 74S,] for a
weakly measured fictitious two-level system, as expected.

2. Quadratic detection

In the case of quadratic detection, if I, and I5 are slightly
different while /; remains equal to I, then the two qubits
have slightly different couplings and also the detector devi-
ates slightly from being purely quadratic. The additional
terms in the master equations take the form (71) but with the
index “2” interchanged with the index “4” everywhere in the
first matrix. As a result, the state |2)? is unaffected, while
rare switching develops between the state |1)2 and oscilla-
tions in the subspace {|3)%,|4)}. The small time expansion
of pf (1) takes the same form (72) and thus the rate
['j1y8_.3y8 48y is the same as in the linear case, Eq. (73):

r 12—13>2
| NTIVIR =— . 74
[1B—{3)5.4)8) 2( Al (74)
Since P1131,st= p§3’3,= pﬁm: 1/3, p?, ;=0 is a stationary solu-
tion to the master equation within the subspace
{[1)8,]3)8,14)8}), the reverse switching rate is
F{‘3>B!‘4>B}H“>B=%F‘1>B*}{‘3>B!‘4>B}. In the case of collapse to
[2)B, the spectrum remains flat, S,(w)=S,. Otherwise, for
measurements over a time interval too short for switching,
the system will reside in |1)# leading to S,(w)=S, or in the
subspace {|3)2,]4)}, leading to Eq. (49). For longer times,
the spectrum will be the average of S;(w)=S, and the spec-
trum given by Eq. (49) together with a telegraph noise peak:
S(w) =S 2 40%ADT
= + —
ne 0" 3 (0® =40+ M’
8(AD* 1
+ .
270(I, — I)* 1 + [4w(AD*3T (I, - I;)*T?
(75)

The peak-to-pedestal ratio at 2Q) will be (8/3)# rather than
41 as a result of the averaging.

If the detector has I, # I, while I,=1I3, switching occurs
between the state [2)® and the oscillating subspace
{|3)2,]4)}, while state |1)® is unaffected (as in Fig. 7). This

PHYSICAL REVIEW B 73, 085317 (2006)

slightly nonquadratic mode of detection is “orthogonal” to
the I, # I; mode in the sense that the switching rate would
not depend on a small additional I, # I;-asymmetry. The
rates are

1“(11—14>2

Ty == : 76

R385 = 5\ T A7 (76)
1

L im—pe = 5T g3m00)- (77)

The power spectrum for large times will be given by Eq. (75)
with the substitution (I,—13) — (I, - 1).

When I,#1; and I,#1,;, we combine the two cases
I, #13,1,=1, and I,=15,1, # I,. Based on the analysis above,
there should be switching |1)Z«{|3)2,[4)8} < [2)® but no di-
rect switching between |1)? and [2)2. The stationary solution
of the master equation is pg’st=1/4,p?9£ ;5=0, so only one-
half of the time is spent in the oscillatory state, and therefore
the peak-to-pedestal ratio at 2() is 2# rather than 4. The
current spectral density in this case, including a low-
frequency peak due to telegraph noise in a three-terminal
system, is

S(w) =S 1 40%ADT
= + —
AOI=20T 5 (0 - 4022 +T26?
(AI)Z(Fl + rz)(4F1F2 + (1)2)
+ 272 2 2N 2 4
1605 + OI'T + 21N 'y + 915 0 + 4w

(78)

where I'y =T y5_ 308 195 and T, =155 (38 48 are given
by Egs. (74) and (76).

C. Environmental dephasing

We have studied the effect of environmental dephasing,
modeling it with two small dephasing rates vy, and 7, acting
separately on the qubits. This adds an extra dephasing con-
tribution %, to 7,; in Bayesian equation (6) where

0 Yo Yo o YatVs
. Yo 0 Yot Vo Y.
Yii= ¢ ¢ (79)
Yo YotV O Yo
Yat Vs Ya Yo 0

We assume that the coupling to the environment is much
smaller than the coupling to the detector, vy,, v, <<I". Numeri-
cal simulation again shows that abrupt switching events take
place. However, now the density matrix p remains slightly
mixed even for an ideal detector.

In the linear case we have switching between spin-0 and
spin-1 subspaces. Analyzing the resulting master equations,
we derive in the case of a linear detector the switching rates

PR =308 = (va+ m)/2. (80)
In the quadratic case the switching involves transitions
[1)8{|3)8,|4)B} < |2)B, with again no direct switching be-
tween |[1)® and [2)8. The rates
=D ys_q3)8,48=(Ya+¥5)/2, and the reverse switching rates
follow from the stationary state.

are  Ljyga )4}
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V. CONCLUSION

In this paper we have investigated in detail the nontrivial
interplay between the internal two-qubit Hamiltonian evolu-
tion and two-qubit dynamics under weak continuous mea-
surement described by a Bayesian formalism. The gradual
collapse of the system’s quantum state takes a finite measure-
ment time 7,,,,,~ 1/I". On a time scale greater than 1/T", the
measurement effectively looks like orthodox projective mea-
surement in the Bell basis. A linear or non-linear detector
measures the operator of total “spin,” (" +¢?)2. The sys-
tem’s possible collapse subspaces are the spin-O Bell state
[1)8 and the spin-1 subspace within which the system ex-
ecutes oscﬂlatlons For purely quadratic measurement, the
operator 0'} 0'(2 +0 1) ) is measured so that the collapse
subspaces are the Spll’l O state, the other Bell state |2)® and
the oscillation subspace {|3)Z, |4)B}

Measurement leads to spontaneous entanglement which
can be identified by a distinct power spectrum and/or distinct
value of the average current of the detector. We obtained
analytically the power spectrum of the current, S,(w), in dif-
ferent situations. In particular, in the case of a linear (purely
quadratic) detector response for noninteracting identical qu-
bits the spectrum exhibits a Lorentzian single peak at fre-
quency Q(2Q) with peak-to-pedestal ratio of (32/3)7(47)
respectively. We also obtained analytic expressions in the
case of qubit biasing and in the presence of qubit-qubit in-
teraction. For a general nonlinear measurement the spectrum
can be calculated using numerical simulations of the mea-
surement process.

Various small imperfections of the two-qubit system such
as asymmetry of the Hamiltonian and/or asymmetry in the
coupling to detector cause transitions between collapsed
states. Because the coupling to the detector, although weak
compared to most of the energy scales in the Hamiltonian,
can be strong compared to the small imperfection, a regime
of quantum Zeno-like stabilization arises. The system does
not drift gradually from one collapse subspace to another;
instead it remains stabilized in one subspace and experiences
rare, abrupt switching events to other subspaces. For very
long observational times, because of the switching, one ob-
serves only averaged dynamics in the power spectrum.
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APPENDIX A: CALCULATION OF THE STATIONARY
DISTRIBUTION FOR p%,

In this appendix, we use a Fokker-Plank equation to cal-
culate the stationary distribution for p5, and its moments in
the case of linear detection in the oscillating scenario of Fig.
5 and Eqgs. (34)-(37).

An Ito stochastic equation for p5, can be derived from
Egs. (23)—(28), and the parametrizations (34)—(37), that de-
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pends only on the two independent variables, x(t)=p5,(t)
and ¢(2):
d Al ——
A =21 = 20)c0s[r + o(1)]EQ)
dt S
—2T{x = (1 = x)cos?[Qr + ¢(1)]}.

In the weak-coupling regime one can average over the oscil-
lations with frequency (2. Then {cos*[Q¢+¢(f)])— 1/2 and

(A1)

B A (I =1~ 206~ TGx- 1),

A2
dat S, (42)

where &,(1) is an effective white noise with the same spectral
density.

A Fokker-Plank equation for the distribution P(x,r)
follows>>>2 from Eq. (A2),

WD s+ 2L p]

(A3)

with B(x)=-I'(3x—1) and C(x)=(AI/Sy)y2x(1-x). A sta-
tionary solution of Eq. (A3) can be derived®® taking into
account that x=p5, is a restricted variable and therefore the
“probability current flow” is zero,

-5a)
P\ T o0 20

(A4)

with normalization constant Ny=617/e. Equation (A4) im-
plies that p5, actually fluctuates between 0 and 1/2, which is
confirmed by Monte Carlo simulations, Fig. 5. For the mo-
ments (x")= [, 1251 P(x)dx one obtains

(=13, PH=14,..., (AS)
5= 1 301
X"y = (NO)_] |:3\”27T 1F1<5 -n,— 5;_ E)
8V (n
1\57TF§ +221 1(3 n, % —%)]21/2_" (A6)

where |F,(a,b;z) is the confluent hypergeometric function.

APPENDIX B: NOISE OF THE NOISE AND THE
MEASUREMENT TIME TO ACCUMULATE
THE SPECTRUM

Here we calculate the measurement time to distinguish
between a flat spectrum (shot noise) and a spectrum that
possesses a peak on the top of the shot noise pedestal. To
make an estimation we first consider a situation with a nar-
row band (Af<f,f=w/27) frequency filter. The average
power for a finite time Az (=1/Af)is a fluctuating quantity,
P=(1/A0) 22 di[I(r)-1,]%, that depends on Az and on real-
izations of the process. Denoting the fluctuating part of the

current as T(t)EI(t)—IO we perform averaging over realiza-
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tions using the well known relation to the noise power spec-
trum (see, e.g., Ref. 52: (72(t)),2S,(w)Af. Therefore, aver-
aging of P gives

1 At/2
(P),= —J di{I(t) -1, ) =S w)Af. (B1)
At)_pp

r

The second moment (P?), can be evaluated for a Gaussian
random process I(z), using stationarity:

| (A2 2
(P?), = (A_tJ df[l(f)—lo]2>

—At/2

1 o]
= th d7Kp(7) +[S{(w)AfT, (B2)

where Kp(7) is the correlation function of the “power signal”
P(0)~(P(1),
Kp(n) = ([P() - (P)JP(t+7) - (P),),. (B3

The variance of the fluctuating power Eq. (B2) is
expressed through the “second” spectral density Sp(w)
=2[" drKp(7)e'”, which for a Gaussian process I(t)
is related to the ordinary one’? In particular, S;2(0)
=2[S/(w)]*Af and we obtain

AP = (P2, — (P} = i[s,m)]%f. (B4)

For a more general frequency filter «(f) the power is dis-
tributed with average and variance respectively given as
(P),=Ja(f)S(w)df and A772=(I/At)fffaz(f)[S,(w)]zdf that
generalize Egs. (B1) and (B4).

We are interested in measuring I(z) to distinguish between
two hypotheses: (1) a flat power spectrum S/ (w)=S, and (2)
a power spectrum with a peak S/(w)=Sy+S,,4(f). Assuming
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Gaussian distribution of the power signal we can estimate the
measurement time 7,,,, at which the variances
AP a(f)], AP a(f)], become small enough to distinguish
between the corresponding averages (P)),,(P,), For a
signal-to-noise ratio of 1, 7,,, is expressed as (see also

Ref. 14)

(AP (D] + VAP a(f)]P
Tmeas = o0 2
\‘J\ a(f)Speak(f)de

0

(B5)

Optimization over the filter requires 67,,,,,/ Sa(f)=0, which
leads to the filter form

— Speak(f)
1+a[1+S,,,(NIS,I

a(f) (B6)
which is close to the peak form itself while further optimi-
zation on the parameter a is needed. However, for a small
peak height, h~S,,,({2)/Sy<1, the result is independent of
a and reads

32
r

meas — ﬁ . (B7)

Note that small height translates to small detector ideality
(for one qubit & <47 while for two qubits 2 <32%/3). To get
an exact result for large or small height, one employs inte-
gration by residues and finds a cumbersome expression that
can only be managed numerically. Numerically, the calcula-
tion suggests that a,,, is of the order of 1. An approximation
with accuracy better than 30% even at large 7 is given by

32( 3h 7h2)
T —| 1l +—+—

meas = th (BS)

which means that 7, may become an order of magnitude
larger than the simple estimate Eq. (B7).
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