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The envelope-function approach is used to theoretically study the effects of in-plane magnetic fields on the
cyclotron effective mass and Landé g�-factor associated to conduction electrons in single GaAs-�Ga,Al�As
quantum wells. Non-parabolic and anisotropy effects are included in the calculations within the Ogg-
McCombe effective Hamiltonian to describe the electron states in the semiconductor heterostructure. The
electronic structure and both the cyclotron effective mass and Landé g�-factor were obtained, by expanding the
corresponding envelope wave functions in terms of harmonic-oscillator wave functions, as functions of the
in-plane magnetic field, cyclotron orbit-center position, and quantum-well widths. This procedure allows us to
consider the different terms in the Hamiltonian on equal footing, avoiding therefore the use of approximate
methods to obtain the envelope wave functions and the corresponding energy spectrum. Results obtained for
the Landé g�-factor were found in quite good agreement with available experimental measurements.
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I. INTRODUCTION

The physical properties of low-dimensional semiconduc-
tor systems have been widely studied in the past few de-
cades. Quantum wells �QWs�, quantum-well wires �QWWs�,
quantum dots �QDs�, superlattices �SLs�, and so on, have
been the subject of considerable efforts in order to elucidate
their physical nature. It is important to point out that the
understanding of the electronic properties of semiconductor
heterostructures has made possible the fabrication of a num-
ber of electronic and opto-electronic devices. The electronic
structure of these semiconductor nanosystems may be modi-
fied by different factors, such as the presence of confining
potentials, externally applied electric and magnetic fields,
hydrostatic pressure, etc., leading to changes on their elec-
tronic and optical properties. The transport of spin-polarized
electrons by using ferromagnetic probe tips in a low-
temperature scanning tunnelling microscope opened up the
possibility of investigating magnetic systems at spatial reso-
lutions in the angstrom scale.1–3 The ability to manipulate
single spins4–7 is one of the important aspects in the devel-
opment of quantum information processing and spintronics.
Due to the increasing potential applications in a new variety
of semiconductor devices based on spin-electronic transport,
the study of both cyclotron-resonance properties8–11 as well
as the behavior of the Landé g-factor12–19 in nanostructured
systems has attracted the community attention, and a consid-
erable amount of work has been carried out in this area.
From the experimental point of view, the Landé factor is
measured by using a number of experimental techniques,
such as electron spin resonance,12,13 Hanle effect,14 spin
quantum beats,15–18 spin-flip Raman scattering,19

capacitance,20 and energy,21,22 spectroscopies. The measure-
ment of the Landé factor in semiconductor heterostructures
is of interest for several reasons. For instance, it plays a
relevant role in the integral and fractional quantum Hall

effects,13,23–25 or in phenomena involving efficient optical
pumping26 of electron and nuclear spin of individual GaAs
QDs. The dependence of the electron Landé factor on carrier
quantum confinement in QWs and QDs has recently gained
attention both experimentally18–26 as well as
theoretically.27–30 The g-factor of electrons in GaAs-
Ga1−xAlxAs QWs is of special interest, as it changes its sign
at certain values of the well width. Hannak et al.16 deter-
mined the electron Landé factor as a function of the GaAs-
Ga1−xAlxAs well width from 1 to 20 nm under in-plane mag-
netic fields by the technique of spin quantum beats. Le Jeune
et al.17 studied the anisotropy of the electron Landé factor in
GaAs QWs, whereas Malinowski and Harley18 investigated
the influence of quantum confinement and built-in strain on
conduction-electron g factors in GaAs/Al0.35Ga0.65As QWs
and strained-layer In0.11Ga0.89As/GaAs QWs, for QW widths
between 3 and 20 nm.

The aim of the present work is to investigate the effects of
in-plane magnetic fields on the cyclotron effective mass and
Landé g�-factor in GaAs-Ga1−xAlxAs semiconductor QWs,
within the effective-mass approximation. Non-parabolic and
anisotropy effects are taken into account within the Ogg-
McCombe effective Hamiltonian31,32 used to describe the
electron states in the semiconductor heterostructure. Both the
cyclotron effective mass and g�-factor are obtained as func-
tions of the in-plane magnetic field, cyclotron orbit-center
position,33–35 and QW width, and theoretical results compare
quite well with available experimental measurements for the
g�-factor by Hannak et al.,16 Le Jeune et al.,17 and Mali-
nowski et al.18 The work is organized as follows. The theo-
retical framework is outlined in Sec. II. Results and discus-
sion are performed in Sec. III, and final conclusions are in
Sec. IV.

II. THEORETICAL FRAMEWORK

We consider the problem of a conduction-band electron in
a GaAs-Ga1−xAlxAs QW, grown along the y axis, under an
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in-plane B=Bẑ magnetic field. Here we adopt the effective-
mass approximation, and take into account non-parabolicity
effects for the conduction electrons, as detailed in previous
theoretical work.31,32,36–39 Present calculations therefore use
an Ogg-McCombe effective Hamiltonian31,32 for the conduc-
tion electrons, which is given by

Ĥ =
�2

2
K̂

1

m�y�
K̂ +

1

2
g�y��B�̂zB + ��̂ · �̂ + a1K̂4 +

a2

lB
4

+ a3��K̂x
2,K̂y

2� + �K̂x
2,K̂z

2� + �K̂y
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2�� + a4BK̂2�̂z

+ a5��̂ · K̂,K̂zB� + a6B�̂zK̂z
2 + V�y� , �1�

where K̂= k̂+ �e /�c�Â, k̂=−i�; Â= �−yB ,0 ,0� is the mag-
netic vector potential, �̂= ��̂x , �̂y , �̂z�, where the �̂i are the
Pauli matrices, �̂ is a vector operator with components given

as �̂x= K̂yK̂xK̂y − K̂zK̂xK̂z and corresponding cyclic permuta-
tions, m�y� and g�y� are the growth-direction position-
dependent �with bulk values of GaAs or Ga1−xAlxAs�
conduction-electron effective mass40 and Landé g-factor,41

respectively, �B is the Bohr magneton, � is a constant asso-
ciated with the cubic Dresselhaus spin-orbit term,42 lB

=��c /eB is the Landau length, �â , b̂�= âb̂+ b̂â is the anti-

commutator between the â and b̂ operators, and V�y� is the
confining potential, taken as 60% of the Ga1−xAlxAs and
GaAs band-gap offset43–47 �Eg�eV�=1.247 x. Here we note
that non-parabolicity effects are taken into account via the
coupling between the lowest �6c conduction band, �7v and
�8v valence bands, and the �7c and �8c p-antibonding con-
duction bands in GaAs. This leads to a 14	14 matrix
Hamiltonian, which may be folded back into a 2	2
conduction-band effective Hamiltonian.36,37,48–50 One then
would expect an adequate theoretical description of the
conduction-band Landau levels in zinc-blende-type semicon-
ductors, semiconductor QWs, heterostructures, etc. The sec-
ond term in the Hamiltonian is the Zeeman contribution, the
third one, of third order in K, is the spin-orbit Dresselhaus
interaction42 �due to the fact that GaAs has no inversion sym-
metry� which, together with the second-order in K spin-
dependent terms �with the factors a4 ,a5, and a6�, contributes
to changes in the effective heterostructure g factor. The term
with the factor a2 gives the diamagnetic shift of the Landau
electronic levels, whereas terms in a1 and a3 govern the en-
ergy dependence of the cyclotron effective mass. In the
above Hamiltonian, a1 ,a2 ,a3 ,a4 ,a5, and a6 are constants ap-
propriate to bulk GaAs obtained via a fitting with magneto-
spectroscopic measurements.37

We choose the eigenfunction of �1� as

�
�r�
��r�

	 =
ei�xkx+zkz�

�S
��n,y0,↑�y − y0�

�n,y0,↓�y − y0� 	 , �2�

where n is the Landau magnetic-subband index, and the cy-
clotron orbit-center position y0=kxlB

2 is a good quantum num-

FIG. 1. Orbit-center position dependence of the 10 lowest Lan-
dau levels in GaAs-Ga0.65Al0.35As QWs, of width L, under a B
=4 T in-plane magnetic field, for L=50 Å �a�, L=300 Å �b�, and
L=500 Å �c�, respectively. Solid and dashed lines correspond to the
spin-up �↑� and spin-down �↓� cases, respectively, although they are
essentially undistinguishable for the scale used in the figure. The
potential profile is shown schematically.

FIG. 2. As in Fig. 1, for B=20 T.
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ber. In the absence of the confining potential, the eigenvalues
of �1� do not depend on the cyclotron orbit-center position
y0, and as a consequence, they are infinitely degenerated in
kx. The confining potential breaks off this degeneracy, and
the eigenvalues of �1� become dispersive. At low tempera-
tures, one may disregard the kz energy dependence, take kz
=0, and by neglecting the off-diagonal terms51–54 in the
Schrödinger equation, the ↑ spin-up and ↓ spin-down states
are uncoupled. The Schrödinger equation is then given by

�Ĥ↑ 0

0 Ĥ↓
	��n,y0,↑�y − y0�

�n,y0,↓�y − y0� 	 = E��n,y0,↑�y − y0�

�n,y0,↓�y − y0� 	 , �3�

where Ĥ↑ and Ĥ↓ are the diagonal components of �1� for kz
=0. For a given ms projection �↑ or ↓�, along the magnetic-
field direction, of the electron spin we expand the corre-
sponding wave functions in terms of the solutions of the
harmonic oscillator problem,

�n,y0,ms
�y − y0� = 


m

cnm�y0,ms��m,y0� , �4�

with

�m,y0� =� 1

2mm ! �lB

e−�1/2lB
2 ��y − y0�2

Hm� y − y0

lB
	 , �5�

where Hm are the Hermite polynomials. The wave functions
�4� satisfy the Schrödinger equation

Ĥms
�n,y0,ms

�y − y0� = En�y0,ms��n,y0,ms
�y − y0� , �6�

and one obtains



m

�Hms

�j,m� − En�y0,ms�� j,m�cn,m�y0,ms� = 0, �7�

leading to an eigenvalue and/or eigenvector problem and the

straightforward diagonalization of Ĥms
until convergence of

the eigenvalues En�y0 ,ms� is achieved. We would like to

stress that the terms of order superior than the parabolic �K̂2�
in �1� are quite often taken into account via perturbation
theory,48–50,55,56 and in the present work they are exactly con-
sidered within the diagonal approach.

III. RESULTS AND DISCUSSION

As the experimental data from Hannak et al.,16 Le Jeune
et al.,17 and Malinowski et al.18 on the electronic Landé g�

factor are for GaAs-Ga1−xAlxAs QWs with Al proportion
corresponding to x=0.35, results discussed in this section
refer to GaAs-Ga0.65Al0.35As QWs under in-plane magnetic
fields.

In Fig. 1 we display the 10 lowest Landau levels as func-
tions of the orbit-center position in GaAs-Ga0.65Al0.35As
QWs under an in-plane magnetic field of B=4 T. The orbit-
center position is in units of the well width L, and energies in
units of the cyclotron energy ��c=�eB /mwc, where mw is
the conduction electron effective mass in the well material,
i.e., in GaAs. Figures 1�a�–1�c� correspond to QW widths
L=50 Å, L=300 Å, and L=500 Å, respectively, whereas

FIG. 3. Electron wave functions for n=0 ��a� and �c�� and n
=1 ��b� and �d�� in GaAs-Ga0.65Al0.35As QWs under a B=4 T in-
plane magnetic field. Results displayed in �a� and �b�, and in �c� and
�d� were obtained for L=50 Å and L=500 Å, respectively. The
orbit-center position is at the center �solid curve� and at the right
edge �dashed line� of the QW. Results for spin-up and spin-down
are undistinguishable in the figure.

FIG. 4. Dependence of the 10 lowest Landau levels on the in-
plane magnetic fields for an orbit-center position at the center of the
GaAs-Ga0.65Al0.35As QW. Solid and dashed lines correspond to the
spin-up and spin-down cases, respectively; �a�, �b�, and �c� are for
L=50 Å, L=300 Å, and L=500 Å, respectively.
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solid and dashed lines are associated with the Landau elec-
tron subbands with spin projections in the parallel �↑� and
antiparallel �↓� directions of the in-plane applied magnetic
field along the +z axis, respectively. Note that the ↑ and ↓
electron subbands are essentially undistinguishable for the
scale used in Fig. 1. Also, as one may notice from Fig. 1�a�,
for an L=50 Å GaAs-Ga0.65Al0.35As QW, and in the range of
y0 orbit center considered, the lowest Landau energy sub-
bands are essentially flat as a function of the orbit-center
position. This behavior is to be expected for small values of
the applied magnetic field, as the QW width of 50 Å is small
compared with the �B=4 T� lB=128 Å Landau length.
Therefore, in this case �L� lB�, the effect of the magnetic
field is weak and the electronic Landau energy-level struc-
ture is essentially dominated by the barrier confining poten-
tial. As the GaAs-Ga0.65Al0.35As QW width is increased be-
yond the lB Landau length, the orbit-center position
dependence of the electron Landau subbands becomes dis-
persive �cf. Figs. 1�b� and 1�c��, with a minimum at the cen-
ter of the well, i.e., y0=0. At low temperatures, therefore,
electrons would tend to populate energy levels around y0
=0. The same calculation was performed for B=20 T �lB

=57 Å�, and shown in Fig. 2. Notice that the orbit-center
dependence of the electron Landau levels is more dramatic
as compared with results in Fig. 1. The behavior of the Lan-

dau levels as functions of the orbit-center position may be
understood in terms of the wave function localization: the
lowest electron states are essentially localized inside the
GaAs-Ga0.65Al0.35As QW due to the barrier or magnetic-field
effects on the electron confinement, and the localization re-
gion �and the electron energy� is sensitive with respect to the
orbit-center position. Notice that when the distance between
y0 and L /2 is �lB, the barrier-potential effects are quite ap-
preciable. Figure 3 shows the electron wave function for the
n=0 �Figs. 3�a� and 3�c�� and for the n=1 �Figs. 3�b� and
3�d�� Landau levels in GaAs-Ga0.65Al0.35As QWs of width
L=50 Å �Figs. 3�a� and 3�b�� and L=500 Å �Figs. 3�c� and
3�d�� under an in-plane magnetic field of B=4 T. Solid and
dashed lines correspond to the orbit-center position at the
center and at the right edge of the QW, respectively. Results
for ↑ and ↓ spin states are essentially the same in the scale
used for plotting the wave functions. Note that, for L
=50 Å QWs �Figs. 3�a� and 3�b��, the wave functions for
orbit-center positions at the well-center and well-edge are
indistinguishable, as L� lB, and the Landau subbands are flat
with the barrier-potential effects dominant.

In the present study, we are interested in comparing our
calculations with low-temperature experimental
measurements,16–18 in which only the lowest-energy states
are occupied. Therefore, one may consider only states with
the orbit-center position at the center of the well �y0=0 or
kx=0�. In Fig. 4 we display, for y0=0, the in-plane magnetic-
field dependence of the lowest 10 Landau levels in GaAs-
Ga0.65Al0.35As QWs of widths L=50 Å, L=300 Å, and L
=500 Å. It is apparent that, as the in-plane magnetic field is
increased, the electron wave functions become more local-
ized, and the corresponding energies increase. Also, one no-
tices that the difference between the energies corresponding

FIG. 5. Orbit-center position dependence of the cyclotron effec-
tive mass in GaAs-Ga0.65Al0.35As QWs under a B=4 T in-plane
magnetic field. The orbit-center position and the cyclotron effective
mass are expressed in units of the well width and of the free-
electron mass, respectively; �a�, �b�, and �c� were obtained for L
=50 Å, L=300 Å, and L=500 Å, respectively. Solid and dashed
lines correspond to the spin-up and spin-down, respectively, al-
though they are undistinguishable in the figure. The potential profile
is also shown.

FIG. 6. As in Fig. 5, for B=20 T.
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to the ↑ and ↓ spin states �although quite minor in the scale
of Fig. 4� is more noticeable for higher values of the applied
magnetic field.

As it is well known, the technique of cyclotron resonance
is a powerful tool in the study of the effective mass and
transport properties of electrons in semiconductor hetero-
structures. An in-plane magnetic field may modify the cyclo-
tron effective mass due to the distortion of the Fermi contour
by the applied field. In that respect, the inclusion of the band
non-parabolicity is crucial in order to obtain a proper quan-
titative agreement with experimental measurements. For a
given projection ms of the electron spin, the mc cyclotron
effective mass associated with the nth and �n+1�th Landau
magnetic subbands may be defined by

En+1�y0,ms� − En�y0,ms� = �
eB

mcc
. �8�

The cyclotron effective mass �for n=0 in the above equa-
tion� is shown in Fig. 5 as a function of the orbit-center
position in GaAs-Ga0.65Al0.35As QWs of width L=50 Å, L
=300 Å, and L=500 Å, under an in-plane magnetic field of
B=4 T. For L=50 Å �Fig. 5�a�� the orbit-center position de-
pendence of the cyclotron effective mass is flat, which is due
to the fact that the Landau energy levels are essentially in-
dependent of the orbit-center position �see Fig. 1�a��. More-
over, the cyclotron effective mass is 20 times smaller than
the bulk GaAs electron effective mass. One may argue that
this is due to the large difference, due to the barrier confine-

ment effects, between the energies corresponding to the
ground and first-excited Landau levels. For L� lB, the cyclo-
tron effective mass increases and tends to the bulk GaAs
electron effective mass for the orbit-center position at the
center of the well, as expected. This fact is clearly observed
in Fig. 6, for B=20 T. As the magnetic field increases, the
effect of the barrier confining potential becomes less impor-
tant than the magnetic-field confining effect, the cyclotron
effective mass increases, and for very large magnetic fields
�L� lB�, the difference between the n=1 and n=0 Landau
levels is essentially given by ��c=�eB /mwc, and mc→mw.
Figure 7 displays the magnetic-field dependence of the cy-
clotron effective mass in GaAs-Ga0.65Al0.35As QWs, for the
orbit-center position at the center of the QW, and for well
widths of L=50 Å, L=300 Å, and L=500 Å. For large val-
ues of the well width and in-plane magnetic fields, i.e., L
� lB, the electron wave functions are essentially localized
inside the GaAs layer, and the cyclotron-effective mass is
very close to the GaAs-bulk electron-effective mass �see Fig.
7�c��.

With respect to the g� factor, the expression

�En = En�y0,↑,B� − En�y0,↓,B� = g�
�n��BB , �9�

may be used to define the g
�

�n� effective Landé factor in the
in-plane direction �perpendicular to the y-growth axis� asso-
ciated to the En�y0 ,ms ,B� Landau levels. In Eq. �9� the ex-
plicit dependence of the Landau levels on the applied in-
plane magnetic field is displayed. Notice that Eq. �9� is an
adequate way of defining the g

�

�n� effective Landé factor due
to the fact that the ↑ and ↓ spin states, in the present calcu-
lations, are decoupled. Moreover, it is clear that the effective
g

�

�n� factor will, in principle, depend on the orbit-center posi-
tion, on the applied magnetic field, and on the QW width.
This dependence is illustrated in Figs. 8–10 for the g

�

�1� factor
corresponding to the Landau magnetic levels in GaAs-
Ga0.65Al0.35As QWs. The orbit-center position dependence of
the g� factor is shown in Fig. 8 for B=4 T and for various
values of the well width. As the electron-Landau levels are
essentially flat for B=4 T, L=50 Å and L=100 Å, for these
values of the QW width, the g� factor does not appreciably
depend on the orbit-center position. As the QW width in-
creases beyond lB, the orbit-center position dependence of
the g� factor becomes appreciable �note that the difference
between the Landé factors corresponding to y0=L /2 and y0
=0 are 5% for L=300 Å�. In Fig. 9 we display the

FIG. 7. The cyclotron effective mass as a function of the in-
plane magnetic field in GaAs-Ga0.65Al0.35As QWs, of width L, for
�a� L=50 Å, �b� L=300 Å, and �c� L=500 Å. The orbit-center po-
sition was taken at the center of the well. Solid and dashed lines
correspond to spin-up and spin-down, respectively.

FIG. 8. g� factor as a function of the orbit-center position in
GaAs-Ga0.65Al0.35As QWs. Results are shown for various values of
the width and for B=4 T.
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magnetic-field dependence of the g� factor for various val-
ues of the QW width, and for the orbit-center position at the
center of each QW. Results were obtained for magnetic fields
from 4 T to 20 T. In these range of magnetic-field values, it
is apparent that the g� factor weakly depends on the applied
in-plane magnetic field. The field dependence on the g� fac-
tor is due both by the modification of the energy band struc-
ture as well as by the redistribution of the wave function by
the magnetic field. Results in Fig. 9 may be understood as
follows. In the range of magnetic fields considered, the Lan-
dau length varies from lB=128 Å �for B=4 T� to lB=57 Å
�for B=20 T�, which implies that, for L=50 Å and L
=100 Å, lB�L /2 and the influence of the barriers on the
Landau levels are stronger than that of the magnetic field.
The resulting energies of electron Landau states and g� fac-
tor are then slowly varying functions of the magnetic field.
On the other hand, for y0=0 and lB�L /2, the influence of
the magnetic field is much stronger than that of the barriers,
and, therefore, the g� factor weakly depends on the QW
widths as shown in Fig. 9 for L=200 Å and L=300 Å. Fi-
nally, we show in Fig. 10 the g� factor as a function of the
QW width for B=4 T and for the orbit-center position at the
center of the well �solid line�. The sign of the electron-g
factors in the GaAs well and in the Ga0.65Al0.35As barrier are
opposite. For the orbit-center position at the center of the
QW and for small values of the QW width �L� lB�, the
ground-state electron wave function easily penetrates the
Ga0.65Al0.35As barriers, and the g� factor is positive. On the
other hand, for large values of the QW widths �L� lB�, the
g� factor is negative due essentially to the localization of the
ground-state electron wave function in the well material.
Therefore, there must be a well thickness where the g� factor
is zero. This is clearly observed in Fig. 10. The experimental
results �at B=4 T� from Hannak et al.16 �for B in the range
from 1 T to 14 T�, Le Jeune et al.17 �for B in the range from
1 T to 4 T�, and Malinowski et al.18 �for B=4 T� are also
represented by squares, circles, and triangles, respectively.
One may note that the present theoretical calculations �full
curve in Fig. 10� are in excellent agreement with the experi-
mental measurements. Also, it is interesting to stress that the
effects of the non-parabolic terms are quite important, as one
may see from the calculated results obtained by ignoring

non-parabolic effects �see dashed curve in Fig. 10�, i.e., by
setting ai=0, i=1,2 ,¼ ,6.

IV. CONCLUSIONS

In summary, we have theoretically evaluated the effects of
an in-plane magnetic field on the cyclotron effective mass
and Landé g� factor in single GaAs-�Ga,Al�As QWs.
Present calculations were performed within the effective-
mass approximation, and by taking into account the non-
parabolic-band effects via the Ogg-McCombe effective
Hamiltonian, which was used for the conduction electrons in
the GaAs-�Ga,Al�As heterostructure. The characteristic prob-
lem of this Hamiltonian, which is usually solved by pertur-
bation theory, in the present work is solved by expanding the
corresponding spin-up �↑� and spin-down �↓� envelope wave
functions in terms of the harmonic-oscillator wave functions,
considering all of its terms on equal footing. We have ob-
tained both the cyclotron effective mass and the g� factor as
a function of the in-plane magnetic field, of the orbit-center
position, and of the QW widths. For orbit-center positions at
the center of the QW, results for the Landé g� factor were
found weakly dependent on the applied magnetic field.
Moreover, the QW-width dependence g� factor reveals, as
expected, a change in its sign, a fact which may be under-
stood in terms of the electron wave function localization.
Present theoretical calculations for the Landé g� factor in
single GaAs-�Ga,Al�As quantum wells were found in excel-
lent agreement with the experimental measurements reported
by Hannak et al.,16 Le Jeune et al.,17 and Malinowski et al.18
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FIG. 9. g� factor as a function of the applied magnetic field in
GaAs-Ga0.65Al0.35As QWs. Results are shown for various values of
the width and for the orbit-center position at the center of the well.

FIG. 10. g� factor as a function of the QW width in GaAs-
Ga0.65Al0.35As QWs. Theoretical results �full curve� are shown for
B=4 T and for the orbit-center position at the center of the well �the
dashed curve corresponds to theoretical results obtained by using
a1=a2= ¯ =a6=0�. Squares, circles, and triangles are the experi-
mental data from Hannak et al. �Ref. 16�, Le Jeune et al. �Ref. 17�,
and Malinowski et al. �Ref. 18�, respectively.
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