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We investigate the effect that the Rashba spin-orbit �SO� coupling has on the quenching of the acoustoelec-
tric current in a narrow channel. For an electrostatic potential V�r , t�, the SO Hamiltonian is given by HSO

= �� / �2m*c�2��V · ���p�. Here, p is the particle momentum and � is the vector of Pauli matrices. The
confining potential V�r , t� arises from the electrostatic potential within the channel due to a powerful surface
acoustic wave �SAW� launched in a piezoelectric material, plus the two-dimensional confinement at the het-
erojunction as well as the potential defining the narrow channel between split metal gates. Working in the
adiabatic approximation, we demonstrate that the SO interaction increases the confinement of a captured
electron in a moving SAW quantum dot and may consequently improve the quenching of the quantized
acoustoelectric current.
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I. INTRODUCTION

Nanofabrication technology has made it possible to con-
fine a small number of electrons electrostatically within
quantum dots using a variety of techniques.1–3 Interest in
these structures has been largely stimulated by their potential
use as devices in electronics. Attention is now turning to the
control of the trapped electron spin which may be used as a
qubit.4,5 More recently, a new proposal was put forward by
Barnes, Shilton, and Robinson6 for spin control and possible
practical applications involving quantum information pro-
cessing and quantum computers following recent
experiments7–13 in which small numbers of electrons were
transported using powerful surface acoustic waves �SAWs�
of frequency �3 GHz and acoustoelectric current �0.5 nA,
even in the gate voltage domain below the pinch-off voltage
for conductance. �See the article by Ono et al.14 for a review
and list of references.� Cunningham et al.15 have been able to
independently control the acoustoelectric current in two ad-
jacent quasi-one-dimensional wires in AlxGa1−xAs-GaAs
heterostructures. The achievement of this control of charge
has resulted in the proposed use of the acoustoelectric cur-
rent in nanocircuits. This new field of quantum spintronics
may also find applications in single photon detectors16 and
high-frequency acoustoelectric single-photon sources in
which an electron is transported by a SAW into a p-type
region of a lateral n-p junction.17,18 The success of these
proposals depends crucially on the confinement of the elec-
trons within the moving quantum dots. The rise of the cur-
rent from zero to its first quantized value is due to a decrease
in the rate of the backward tunneling of the captured elec-
trons in the moving quantum dot.19 As a matter of fact, an
aim of the original experiments was to use the quantization
of the acoustoelectric current to define the unit of charge.8–13

However, the accuracy achieved was only 50 parts per mil-
lion which is not acceptable as a current standard where the
current in the nanoampere range must be accurate to better
than one part in 107. In Ref. 20, a study of the shot noise in

the current of SAW-based pumps was presented. This noise
arises from fluctuations in the number of electrons trans-
ported by the dots or variations in the time intervals between
successive pulses.21 The low-frequency shot noise measured
in Ref. 20 was attributed to switching of impurity states
which arises from the exchange of electrons between single-
electron traps in the heterostructure.

In Ref. 22, results of experiments were reported on how a
magnetic field applied perpendicular to the plane of the two-
dimensional electron gas �2DEG� affects the quantization of
an acoustoelectric current in a narrow channel. The acousto-
electric current displays oscillations at low magnetic fields
and have been identified as commensurability oscillations,
i.e., geometric resonances between the SAW wavelength and
cyclotron diameter.23 Experiment shows that these oscilla-
tions grow weaker as the gate voltage approaches the value
corresponding to the plateau in current. One of the important
consequences is that the acoustoelectric current gets flatter at
this value of magnetic field. Thus the effect of magnetic field
serves to reduce the backward tunneling of an electron
trapped in the moving SAW quantum dot. This has motivated
us to investigate how the accuracy of the acoustoelectric cur-
rent can be improved by the spin-orbit �SO� mechanism
which was introduced by Bychkov and Rashba24 and which
is usually referred to as the Rashba or quantum well
coupling. Recent experiments suggest the possibility of
spontaneous spin polarization in GaAs/AlxGa1−xAs
heterostructures.25,26 The SO Hamiltonian can be obtained
from the Dirac equation in an external electromagnetic field,
described by a vector potential A and a scalar potential �, by
taking the nonrelativistic limit up to terms quadratic in v /c
inclusive. The Rashba SO coupling is a unique feature of the
reduced dimensionality. The potential profile for the moving
quantum dots has electrostatic origin and gives rise to a finite
local electric field within the quantum well. Electrons in the
quantum well experience a finite electric field which varies
over time.27

The purpose of this paper is to investigate how the Rashba
SO mechanism can affect the electron confinement within
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the quantum dot formed by the electrostatic field in a piezo-
electric material when a SAW is launched. When an electron
is captured by the SAW, it may tunnel back to the two-
dimensional electron gas through the adjacent potential bar-
rier as shown in Fig. 1. The lower the energy level within the
quantum dot, the wider is the potential barrier for the elec-
tron to tunnel through and return to the source. We demon-
strate the suppression of the energy levels by the Rashba SO
interaction, meaning that the electrons are more likely to be
transported through the channel.

We organize the rest of this paper as follows. In Sec. II,
we present our model and the formalism for calculating the
energy levels of a captured electron in a moving SAW quan-
tum dot. In Sec. III, we discuss our numerical results. Sec-
tion IV is devoted to a summary.

II. SPIN-ORBIT HAMILTONIAN FOR FLYING QUANTUM
DOT

A. The model

In the presence of SO interaction, the Hamiltonian for an
electron with momentum p in the xy plane takes the follow-
ing form for the geometry shown in Fig. 2:

H�t� =
p2

2m* + HLC + HB + HSAW�x,t� + HSO, �1�

where m* is the electron effective mass. In this time-
dependent Hamiltonian, we consider a parabolic lateral con-
finement along the y axis given by

HLC =
1

2
m*�2y2, �2�

where � is a constant. This potential originates from an elec-
tric field per unit charge equal to −m*�2y. The split gate and
the SAW are described by

HB + HSAW�x,t� =
V0

cosh2�x/��
+ VSAWcos�kx − �t� , �3�

where k is the wave number and � the frequency of the SAW
of amplitude VSAW. Also, � is the length of the channel and
V0, the potential barrier within the channel, is assumed much
larger than the Fermi energy when the quasi-one-dimensional
channel is pinched off. Finally, the SO interaction term given
in terms of the vector of Pauli spin matrices, i.e., ��
= ��x ,�y ,�z�, is

HSO =
�

�2m*c�2 � V�r� · �� � p� , �4�

where V�r� may be the electrostatic potential energy due to
an electric field. In a bulk semiconductor, V�r� arises from
the periodic crystal potential. Most multicomponent III-V
semiconductors lack inversion symmetry. Dresselhaus28 has
shown that this leads to a SO-induced splitting of the con-
duction band into two subbands and that the magnitude of
this splitting is proportional to the cube of the wave number
k. For a heterostructure, the crystal symmetry is broken at the
interface where 2D electrons or holes are confined in a quan-
tum well. Consequently, the host 3D crystal cannot be con-
sidered as ideal. In fact, the symmetry of the underlying crys-
tal is lowered by the reduction of the dimensionality and
gives rise to an additional term in the energy which is linear
in k for the Dresselhaus splitting. The linear term is dominant
for a sufficiently narrow quantum well.29–31 Thus, the form
given in Eq. �4� is not restricted to a particular model of the
potential V�r�. In general, Eq. �4� consists of three terms
arising from the spatial confinement. The z component gives
rise to the Rashba term for an asymmetric quantum well.
Furthermore, there is lateral confinement which gives addi-
tional contributions to the Hamiltonian. Taking account of
the electric field within the quantum well in the direction
perpendicular to the interface of the heterojunction, as an

FIG. 1. �Color online� Schematic of the confining potential and
probable tunneling of a captured electron from a SAW quantum dot
�QD� back to the 2DEG source. The two lowest states an electron
may occupy are denoted by + and − and are eigenstates of the
model Hamiltonian with Rashba SO coupling.

FIG. 2. �Color online� The geometry of the heterostructure de-
vice showing the two-dimensional electron gas with split metal
gates on the surface of a piezoelectric heterostructure. A SAW is
launched by an interdigital transducer to transport electrons through
a quasi-one-dimensional channel �Q1DC�.
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average, the SO Hamiltonian �4� can be rewritten for the
Rashba coupling as follows:

HSO
� = i���y

�

�x
− �x

�

�y
� , �5�

HSO
	 = i	

y


0
�z

�

�x
, �6�

HSO
� = i��x,t��z

�

�y
. �7�

Here, 
0=�� /m*� is a characteristic length of the lateral
harmonic potential. Confinement in the z direction leads to
the Rashba � term and the lateral parabolic confinement re-
sults in the 	 term. Finally, the split-gate and SAW potentials
give rise to the � term. The coefficient � is time dependent
due to the confining potential formed by the SAW and the
potential barrier in the pinched-off channel. Its spatial varia-
tion is determined by the potential in Eq. �3�. We now turn to
a discussion of the single-particle states of our Hamiltonian
in the adiabatic approximation. Adiabatic pumping of elec-
trons by means of a time-dependent electrostatic potential
and time-varying Rashba effects have been discussed in
Refs. 32 and 33, respectively. In addition, nonadiabatic
pumping in a ballistic narrow constriction has been discussed
in Ref. 10. The SAWs used in the experiments of Ref. 34
have a frequency of �3 GHz and a wavelength 
	1.0 �m.
The adiabatic approximation is valid when the change in the
external parameters of the Hamiltonian is slow compared to
the intrinsic time of the quantum system. In this case, the
external time is characterized by frequency of the SAW
which is �3 GHz. The internal time is described by 
En
−Em
 /� where in our case En−Em�3 meV. This leads to a
frequency of �1000 GHz which validates the adiabatic ap-
proximation temporally. Regarding the amplitude condition,
we are considering the regimes of the first few plateaus in the
acoustoelectric current where the SAW amplitude is small so
that the adiabatic condition is also valid.

We note that the combined effect of the confining poten-
tial perpendicular to the 2D plane �the � term� and the split
gates gives rise to lateral confinement forming the quasi-1D
channel. When a SAW is launched in the channel, an electron
can be captured in a minimum of the SAW �see Fig. 2� ef-
fectively giving rise to a moving quantum dot.

B. Eigenvalues and eigenfunctions

The single-particle Hamiltonian is time dependent and we
assume the adiabatic approximation is valid for obtaining the
eigenvalues and eigenfunctions, as we did in our previous
work.27 Since we are dealing with SO interaction we need to
express the states as spinors. Let 
u�t�� be an instantaneous
eigenspinor of H�t� with


u�t�� = �u
�+��t�

u
�−��t�

�, H�t�
u�t�� = E�t�
u�t�� , �8�

so that a general spinor can be expanded in terms of the
instantaneous eigenspinors as basis, i.e.,


��t�� = � c�t�
u�t�� , �9�

with coefficients c�t�.
Our objective is to calculate the instantaneous eigenvalues

and eigenspinors. Following the procedure presented in Ref.
27, the coefficients c�t� are determined by

�c�t�
�t

= �
��

c��t�
E�t� − E��t�

u�t�

�H�t�

�t

u��t�� . �10�

Also, the components of the instantaneous eigenspinors sat-
isfy the following set of coupled equations:

�H0�t� + i
	y


0

�

�x
+ i��x,t�

�

�y
�u

�+� + i��− i
�

�x
−

�

�y
�u

�−�

= Eu
�+�, �11�

�H0�t� − i
	y


0

�

�x
− i��x,t�

�

�y
�u

�−� + i��i
�

�x
−

�

�y
�u

�+�

= Eu
�−�, �12�

where we introduced

H0�t� =
− �2

2m* � �2

�x2 +
�2

�y2� +
��

2
� y


0
�2

+ HB�x� + HSAW�x,t� .

�13�

The reason we cannot use separation of variables to reduce
the problem as in the paper by Moroz and Barnes35 is as
follows. In Ref. 35, the SAW �HSAW�x , t�� and split-gate po-
tential �HB�x�� are absent and consequently there is transla-
tional invariance along the channel for which there is a
plane-wave solution. This allowed one to reduce the equa-
tions to two coupled ordinary linear differential equations for
the spinor components. However, in our model calculation,
due to the presence of the SAW and split gates, there is no
such translational invariance and we have coupled partial
differential equations which require a different approach.
This is described in Sec. III below. Therefore, we cannot
separate the x component with the substitution


u�t�� = eikxx
��t�� �14�

to obtain coupled ordinary differential equations as in the
paper by Moroz and Barnes.35

In addition, due to the SO terms the x and y components
of the wave function do not separate. Consequently, we can-
not use separation of variables to reduce the problem to a
one-dimensional Schrödinger equation. As a result, we have
to solve a set of coupled partial differential equations nu-
merically. We note the Rashba � term is responsible for mix-
ing the �±� spin states. In the next section, we introduce a
simplification regarding the coupling parameters in order to
solve the coupled equations without the use of perturbation
theory.

III. NONPERTURBATION APPROACH

We first consider the role played by the 	 and �-terms of
the SO interactions by neglecting the Rashba � coupling. We
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do so merely to examine the role these two terms play in
modifying the energy eigenvalues although the � term is
much stronger than either one of these two terms. In addi-

tion, we simplify the calculation by replacing 	�y /
0�→ 	̄
and ��x , t�→ �̄ which are constants. This is reasonable be-
cause even though the lateral parabolic potential is symmet-
ric, it still gives rise to an effect on the energy eigenvalues as
shown by Moroz and Barnes.35 For example, the y coordi-
nate in Eq. �6� is replaced by 
	=�2 /2m*	 which is the
characteristic spatial scale associated with the 	 coupling.
The reason we adopt this approximation is that it simplifies
the numerical calculations. In addition, it still allows us to
include the SO effects as desired.

The equations we wish to solve are then given by

�− �2

2m* � �2

�x2 +
�2

�y2� ± i	̄
�

�x
± i�̄

�

�y
+ V�x,t� +

��

2

y2


0
2�u

�±�

= Eu
�±�. �15�

We rewrite the equations in �15� by changing to dimension-
less variables defined by x= l0� and y=
0� to obtain

�V0�−
�2

��2 ± i	̃
�

��
+ V̄��,t��

+
��

2
�−

�2

��2 ± i�̃
�

��
+ �2��u

�±� = Eu
�±�. �16�

Here, 	̃ and �̃ are dimensionless parameters and V̄ is a di-
mensionless potential. They are given by

V0 =
�2

2m*l0
2 , 	̃ =

	̄

l0V0
, �̃ =

2�̄


0��
�17�

V̄��,t� =
1

cosh2��l0/l�
+ �̄ cos�kl0� − �t� . �18�

Here, �̄=VSAW /V0 is the ratio of the piezoelectric potential
amplitude to the height of the electrostatic barrier induced by
the split gates. These are related to the SAW power and the

gate voltage, respectively. When �̄ increases, the current un-
dergoes a rapid increase from zero to its quantized value I
=ef , where f is the SAW frequency. We can eliminate the
first-order derivatives in Eq. �16� by applying the following
transformation

u�±���,�,t� = ũ�±���,�,t�exp�±i/2�	̃� + �̃��� . �19�

This leads to a Schrödinger-like equation with shifted ener-
gies as follows:

�V0�−
�2

��2 + V̄��,t� − 	̃2/4�
+

��

2
�−

�2

��2�2 + �2 − �̃2/4��ũ
�±� = Eũ

�±�. �20�

The differential equations in �20� are separable and are ex-
actly the same as those obtained in the absence of the SO
interaction, except for a shift in the energy eigenvalues.

These energy eigenvalues are shifted downward by an

amount �V0	̃2+���̃2 /2� /4 and the wave functions in �19�
acquire an additional phase factor. We note that the compo-
nents of the spinor have the same energy eigenvalues, i.e.,
the 	 coupling is not capable of lifting the energy degen-
eracy of the spinor components. This latter result is consis-
tent with that obtained by Moroz and Barnes35 for a quantum
wire with SO coupling.

A. The effect of finite-� coupling

In this section, we shall explore the effect that finite-�
coupling has on the energy eigenvalues for confined elec-
trons in the quantum dot. This may be achieved in a nonper-
turbative approach for the total Hamiltonian Htot=H�t�
+HSO

� , where

HSO
� = i�� 0 − i

�

�x
−

�

�y

i
�

�x
−

�

�y
0 � ,

since we have solutions for the Hamiltonian H0�t� when this
term is neglected. We expand the eigenspinors in terms of the
solutions we obtained in the preceding subsection, i.e.,

H��t��
u
±�x,y,t�� = E

0�t�
u
±�x,y,t��,


u
±�x,y,t�� = 
�i

±�x,t��m
± �y��,

E
0 = �xi

0 �t� + �ym
0 . �21�

Here, �m
± �y� are harmonic oscillator eigenfunctions and the

�i
±�x , t� are evaluated numerically. We start by writing the

eigenspinor components as follows:

��±� = �
=0

�

c
�±�u

�+�,

��±� = �
=0

�

d
�±�u

�−�. �22�

Substituting these equations into the original equation we get

�
=0

�

c
�+�u

�+�E
0 +

�

�
�
=0

�

c
�−��ipx + py�u

�+� = E�
=0

�

c
�+�u

�+�,

�23�

�
=0

�

d
�−�u

�−�E
0 +

�

�
�
=0

�

d
�+��− ipx + py�u

�−� = E�
=0

�

d
�−�u

�−�.

�24�

Taking the inner products u�+��
 and u�
�−�
, respectively, we

obtain

c�
�+��E�

0 − E� +
�

�
�
=0

�

c
�−�u�

�+�
�ipx + py�
u
�+�� = 0, �25�
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d�
�−��E�

0 − E� +
�

�
�
=0

�

d
�+�u�

�−�
�− ipx + py�
u
�−�� = 0. �26�

We evaluate the matrix elements using the following rela-
tionships:

px =
m*

i�
�x,H�� ±

m*	̄

�
, py =

m*

i�
�y,H�� ±

m*�̄

�
. �27�

Exploiting these results, we obtain the following:

c�
�+��E�

0 − E� + �
=0

�

c
�−����,

x�+� + ��,
y�+� + ��,

�+� � = 0, �28�

d�
�−��E�

0 − E� + �
=0

�

d
�+����,

x�−� + ��,
y�−� + ��,

�−� � = 0. �29�

Here we have defined

��,
�±� =

m*�

�2 ��̄ ± i	̄���,� = ��±�, �30�

��
�x±� = ±

m*�

�2 �E
0 − E�

0 �x�,
�±� , �31�

��
y�±� =

m*�

i�2 �E
0 − E�

0 �y�,
�±� . �32�

Here, x�,
± = u�

�±�
x
u
�±�� and y�,

± = u�
�±�
y
u

�±�� are the unper-
turbed matrix elements which are evaluated numerically. We
solve these equations for the lowest states in the SAW
minima ��i=0�x , t��. Numerical calculation of the x matrix
elements including the energy difference prefactor in Eq.
�31� shows that these terms are small in comparison to the
other matrix elements and can be neglected. The y matrix
elements can be evaluated analytically as follows:

u�
�±�
y
u

�±�� = ũ�
�
ũ� �33�

=���,t� j
�i��,t������n
�
�m���� �34�

=

0

�2
��m�n,m−1 + �m + 1�n,m+1� . �35�

The equations are then reduced to a set of infinite algebraic
equations,

cn,0
�+��En,0

0 − E� + cn+1,0
�−� �n,n+1

y�+� + cn−1,0
�−� �n,n−1

y�+� + cn,0
�−���+� = 0,

�36�

dn,0
�−��En,0

0 − E� + dn+1,0
�+� �n,n+1

y�−� + dn−1,0
�+� �n,n−1

y�−� + dn,0
�+���−� = 0.

�37�

We can solve these equations using the method employed in
Ref. 35:

c+ = Û+c−, �38�

d− = Û−d+. �39�

Here, c± and d± are vector coefficients and the elements of

the matrices Û± are given by

Un,n
�±� =

��±�

�E − En,0
0 �

, �40�

Un,n+1
�±� = ��n + 1

2

1

E − En,0
0 , �41�

Un+1,n
�±� = − ��n + 1

2

1

E − En+1,0
0 . �42�

Here ��±�=���̄± i	̄� /
0
2�� and �=� / i
0. By taking inner

products of Eqs. �22� we obtain a relationship between the
c’s and d’s,

c± = Ŵ+d±, �43�

d± = Ŵ−c±. �44�

Combining the above we obtain the following:

c+ = Û+c− �45�

=Û+Ŵ+d− �46�

=Û+Ŵ+U−d+ �47�

=Û+Ŵ+Û−Ŵ−c+. �48�

The eigenvalues of this equation yield the energies,

det�1 − Û+Ŵ+Û−Ŵ−� = 0. �49�

The resulting matrix is truncated to obtain an n�n matrix
followed by a numerical root finder to obtain the energy
eigenvalues. However, we can see the effect by considering
the leading term �letting �±=0� which yields the following:

�1 − ��+���−�/�E − E0,0
0 �2 0 …

0 1 − ��−���+�/�E − E1,0
0 �2

� 0 �

� = 0

�50�

giving

1 − �m*�

�2 �2

��̄ + i	̄���̄ − i	̄�/�E − En
0�2 = 0, �51�

�En,0
± = ±

m*�

�2
�	̄2 + �̄2. �52�
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Unlike the model for a quantum wire used by Moroz and
Barnes,35 the eigenfunctions along the channel have discrete
spectra due to the confinement by the SAW potential and
split gate. We note that due to the � coupling, the spinor

states are decoupled. The result of neglecting the off-
diagonal terms is identical to the result of first-order pertur-
bation corrections to the energy eigenvalues. First-order per-
turbation yields

� �E ���u
+� �u

−

�x
� − i���u

+� �u
−

�y
�

− ���u
−� �u

+

�x
� − i���u

−� �u
+

�y
� �E

� = 0, �53�

which yields

�E
± = ± �����u

+� �u
−

�x
� − i��u

+� �u
−

�y
���− ��u

−� �u
+

�x
� − i��u

−� �u
+

�y
���1/2

. �54�

Equation �54� requires that we evaluate the matrix elements
involving the solutions ��x , t� and ��y� obtained in Sec.
III A and can readily be employed to evaluate the above
matrix elements. The result is

�E
± = ±

�m*

�2 �	̄2 + �̄2�1/2, �55�

which is identical to the leading term Eq. �52� obtained from
Eq. �49� by setting the off-diagonal terms zero. In Figs. 3 and
4, we present the eigenvalues obtained from Eq. �49� at t
=0. We note from Eq. �55� that for �̄=0 we have a linear

increase of the split energy as a function of 	̄. We obtain a

similar linear law for �̄ when 	̄=0.

IV. DISCUSSION OF NUMERICAL RESULTS

The results presented in Figs. 3 and 4 clearly show the
effect of SO interaction on the energy eigenvalues of a cap-
tured electron in a SAW quantum dot. In Fig. 3, we see

twofold spin degeneracy of all quantum levels at 	̃=0. As

the value of 	̃ is increased from 	̃=0, the SO interaction lifts
the degeneracy and produces an energy splitting �E

+−�E
−

which increases linearly with 	̃, consistent with Eq. �55�.
Figure 4 is a plot of the energy eigenvalues as a function of
� for the states within the quantum dot. We emphasize that
the results in Figs. 3 and 4 are only valid for small � but
nevertheless present results showing that the energies cross

for large 	̃ and �. In this regime, the perturbation approach is
not valid and an exact calculation which we described above

FIG. 3. The lowest energy eigenvalues En,0 �in meV�, obtained
from Eq. �49�, at t=0 for finite �=10 meV nm as a function of the

dimensionless parameter 	̃. Here, the energy eigenvalues are la-
beled by n, the quantum number for the harmonic oscillator levels,
and 0 which denotes the lowest SAW level. We chose �̃=0.

FIG. 4. The lowest-energy eigenvalues En,0 �in meV� obtained

from Eq. �49� at t=0 for finite 	̃=0.1 as a function of the parameter
�. Here, the energy eigenvalues are labeled by n, the quantum num-
ber for the harmonic oscillator levels, and 0 which denotes the
lowest SAW level. We chose �̃=0.
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must be used. As a matter of fact, the eigenvalues must bend
and lead to anticrossing of branches corresponding to neigh-
boring energy levels. Since we are not interested in this de-
tailed behavior, we do not solve the eigenvalue problem ex-
actly because our main goal is to demonstrate the lifting of
the degeneracy and a decrease of the energy eigenvalues by
the Rashba SO interaction. We have presented results at t
=0 only but the acoustoelectric current is determined over an
entire SAW cycle. We have verified that our conclusions do
not depend on time.

V. CONCLUDING REMARKS

The recent development in experimental realization of
Q1D systems driven by SAWs exhibit many interesting fea-
tures such as current quantization and have potential appli-
cations as a current standard and quantum information and
security schemes. In this paper, we investigated the effect of
SO interaction on the electron energy levels which play a
crucial role in determining the acoustoelectric current. The
SO interaction may arise from the electrostatic confining po-
tential of the SAW as well as the split gates and the hetero-
structure. The simplified calculation we used was able to
show that the SO interaction splits the energy levels. By
treating the � parameter as a continuous variable, we carried
out calculations only for small �. To obtain the full effect of

the � term, one has to employ a nonperturbative approach.
However, we are principally interested in demonstrating its
effect in lowest order.

Also, as the 	 and � parameters are increased, the energy
eigenvalues are slightly increased when � is set equal to
zero. However, finite � lifts the degeneracy of the levels and
one of the split energy levels is decreased as shown in Figs.
3 and 4. This implies that the SO interaction can produce
spin currents and that the electron tunneling probability for
the lower of the two split levels is decreased �see Fig. 1�. A
decrease in probability of being transported through the
channel may lead to a finite slope in the acoustoelectric cur-
rent plateau. Furthermore, additional theoretical and experi-
mental studies to examine related problems that would affect
the performance of these devices, such as spin coherence,
should be carried out. Finally, the calculations we reported
on the SO Hamiltonian were not calculated self-consistently
to determine the confining potential and the eigenstates. Such
a self-consistent calculation should not yield results that are
qualitatively different from those presented above.
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