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We display an interesting sum rule for the dynamical thermal conductivity for many standard models of
condensed matter in terms of the expectation of a thermal operator. We present the thermal operator for several
model systems of current interest, which enable an evaluation of the sum rule and the Lorentz number, the
thermoelectric figure of merit as well as the thermopower at high frequencies. As a by-product, we present
exact formulas for the T=0 chemical potential ��0� for charged many-body systems, including the Hubbard
model, in terms of expectation values of extensive operators. Simple estimates are provided for the ther-
mopower of an infinitely correlated band model on the triangular lattice, modeling the physics of the sodium
cobalt oxide system. The present result goes beyond the Heikes-Mott formula for the thermopower, and
contains an additional transport correction that is sensitive to the lattice topology as well as the sign of
hopping.
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I. INTRODUCTION

A problem of considerable current interest is the evalua-
tion of the thermal response functions: � the thermal conduc-
tivity and S the thermoelectric response function �Seebeck
coefficient� for complex systems. These include strongly cor-
related matter, where the role of interactions is profound and
impossible to capture within perturbative formulations, and
also materials with complex unit cells, such as the
skutterudites,1 and negative thermal expansion systems
where geometrical frustration plays a major role.2 One major
motivation for these efforts is from the requirements of the
thermoelectric industry, where a large thermoelectric figure
of merit �defined in Eq. �39�� is desirable, and it is important
to understand the material characteristics that promote a
large figure of merit. The standard tool, namely the Boltz-
mann equation approach, is overly restrictive in that it is tied
down to the concept of long-lived and weakly interacting
quasiparticles, which are less useful in these contexts.

In this paper, we present a new formalism for computation
of the thermal response functions, by considering the re-
sponse to dynamical temperature gradients, i.e., a frequency
dependent problem. This yields the frequency dependent
thermal conductivity ���� as well as the thermopower S���.
The frequency dependence of ���� is of relevance theoreti-
cally and also practically: a silicon chip operating at several
gigahertz clock speed in a computing processor needs to
transport the ac Joule dissipation. The relevant transport pa-
rameter in this context is the dynamical ����, which can be
much smaller than the static � for ��100 GHz.3

Although studying the dynamical conductivity looks at
first sight like further complicating an already intractable
problem, in fact it turns out that several simplifications arise
in the limit of high frequencies. These have a close counter-
part in our fairly successful theory of the Hall constant of
strongly correlated matter.4 In brief, the problem of transport
may be decomposed into the following conceptually distinct
but technically intertwined aspects: �a� transport proper, �b�
single particle description, and �c� interactions. The single

particle aspect determines such variables as the density of
states and its derivatives, the transport aspect involves the
elastic and inelastic scattering rates usually modeled by a
relaxation time, and the interaction aspect involves the influ-
ence of correlations. While none of these are trivial, the last
one, namely interactions, is conceptually as well as compu-
tationally most difficult. For example, in Mott-Hubbard sys-
tems, the very notion of the hole is nontrivial in the context
of, say, the Hall constant, where one knows that near half
filling, the momentum space definition can give opposite re-
sults in certain cases to the real space picture for the sign of
the Hall constant.4

In this context, going to high frequencies is a great advan-
tage if one can isolate combinations of thermal response
functions that are relatively less frequency dependent. In the
Hall constant problem, the Hall resistivity �xy is quite benign,
being � independent at least in the Drude theory, as opposed
to the Hall conductivities �xy and �xx, which are serious
functions of � individually but not in the combination lead-
ing to �xy. Moreover the high frequency limit is the starting
point of the Mori-type treatment of transport quantities, as
seen in the example for the Hall constant.5 In a similar spirit,
we identify several variables in this work, and write down
the operators that need to be evaluated. We stress that the
expectation values of the objects computed here are equilib-
rium values, and while quite nontrivial in detail, are concep-
tually much easier than the transport objects; this is the ad-
vantage of disentangling dynamics from interactions as in
other contexts. While our approach is not exact either, as it
depends on the assumption of weak frequency dependence of
such combinations, it is quite distinct from the Boltzmann
approach and provides a useful counterpoint to the latter,
treating the effect of interactions more respectfully. In simple
examples, we show that the weak � dependence is an excel-
lent assumption, and further our results should provide a
stimulus for experimental investigation of the frequency de-
pendence of thermal transport constants.

We present an interesting sum rule for the real part of the
dynamical thermal conductivity. The sum rule is in terms of
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the expectation of an operator �the thermal operator� that is
presented for several models of condensed matter physics,
and while the task of evaluating it is nontrivial in detail, it is
quite feasible to estimate it from other considerations that we
present. The situation is akin to the well-known plasma or
the f-sum rule; the Thomas-Ritchie-Kuhn sum rule gives the
integral of the real conductivity in terms of easily measurable
variables in the continuum 4�nqe

2 /m, whereas on a lattice, it
is �see Eq. �A11�� the expectation of essentially the kinetic
energy.6 Such an expectation is nontrivial, but several nu-
merical techniques lend themselves to this task quite effec-
tively, such as exact diagonalization and quantum Monte
Carlo methods. This new sum rule should be of considerable
interest in many situations, including the case of nonlinear
lattices, where the classical counterpart is already interesting,
since it is the expectation of a single extensive operator, and
apparently equally unknown.

Our paper has a twofold purpose. We present the formal-
ism for the thermal transport variables in some detail with
the hope of returning to calculate some of them in a later
work, and the other is somewhat pedagogical in nature. Ex-
isting literature is quite focused on specific issues, and many
subtleties receive less mention than their due. It is my im-
pression that a detailed description of the formalism might be
useful to some workers. The results of computations based
on the formalism presented here should shed light on cur-
rently interesting issues, such as the departure from
Wiedemann-Franz ratio for the case of strongly correlated
systems as seen in experiments, where the Lorentz number
departs from the free electron value at low T.7

An interesting by-product of our work is the exact for-
mula for the chemical potential ��T� at T=0 for charged
many-body systems in terms of the expectation of an exten-
sive operator. In general the only way of computing ��T�,
including in the ground state, is from the thermodynamic
formula ��T�= ��F�T ,N�� /�N. However at T=0, our result
shows an alternate and potentially widely useful method.
This arises from the physical requirement of the vanishing of
thermopower at all frequencies in the ground state, being
related to entropy transport, and since the high frequency
formulas explicitly involve the chemical potential, these
yield the alternate formulas for the zero temperature chemi-
cal potential of all charged many body systems. We comment
on this further in the discussion section �Sec. X�. The plan of
the paper is as follows.

�a� In Secs. II and III, we derive the complete expressions
for the finite frequency thermal conductivity and ther-
mopower, using standard linear response theory, and obtain a
sum rule for the dynamical thermal conductivity. It is ex-
pressed in terms of a new extensive object �xx that we term
the “thermal operator.”

�b� Section IV makes a connection with the “standard”
Kubo formulas. Our results contain corrections to the Kubo
formulas for the case of nondissipative systems such as su-
perconductors, and it might be of interest to see the origin of
these in the fine tuning of the standard derivations, as pro-
vided in Sec. IV.

�c� In Sec. V, we identify the high frequency observables
that are suitable for study being less sensitive to �. The high
frequency Seebeck coefficient is among these, and is ex-

pressed in terms of another new extensive object 	xx that we
denote the “thermoelectric operator.”

�d� The thermal and thermoelectric operators have a de-
pendence on the interactions as well as the details of the
specific model systems. Hence it is important to compute
these operators for standard models, which is accomplished
in the latter sections. In Sec. VI, we present the thermal
operator �xx for the anharmonic disordered lattice vibration
problem, and make a connection with the classical limit. Il-
lustrative examples from harmonic lattice are given to pro-
vide a feel for the nature of the operators encountered.

�e� In Sec. VII, we study the intermediate coupling mod-
els of current interest, namely the Hubbard model, the homo-
geneous electron gas, and the periodic Anderson lattice, for
which we present the thermal and thermoelectric operators,
and also indicate the role of disorder in modifying these
variables. We establish the essential correctness of this ap-
proach for the case of zero coupling, where the standard
Boltzmann-Drude results for the Lorentz number and the
thermopower are reproduced.

�f� In Sec. VIII, we study the thermal and thermoelectric
operators for the strong coupling models: the Heisenberg
model and the infinite U Hubbard model.

�g� In Sec. IX we apply the results of Sec. VIII to the
currently interesting case of the triangular lattice NaxCoO2, a
metallic thermoelectric material. Our theory yields a formula
for the high T limit of the Seebeck coefficient for this sys-
tem, which contains the Heikes-Mott formula and provides a
transport correction to the same. The large transport correc-
tion highlights the role of the lattice topology.

�h� In Sec. X, we discuss the special nature of the
thermal-type operators, namely the vanishing of its expecta-
tion in the ground state. We also comment on the exact for-
mulae for the chemical potential at T=0 for charged Fermi
systems that our approach yields.

�i� The appendix contains the already well-known results
for the electrical conductivity for completeness.

II. THERMAL CONDUCTIVITY AT FINITE FREQUENCIES

For models involving particle flow, we recall that the heat
current is defined as the energy current minus � times the
particle current. Therefore to generate the linear response
equations, we write the grand canonical ensemble Hamil-
tonian in the presence of a temperature variation as ��c=�
+ i0+�

K = K0 + K1e−i�ct, �1�

with adiabatic switching from the infinitely remote past t=
−
 as usual, and K0=�r�K�r��=�r��H�r��−�n�r���. Here H�r�� is
the energy density, and since we are mainly dealing with
lattice models, we sum over r. The operator

K1 = �
r�

��r��K�r�� , �2�

where ��r�� is a small �pseudo� gravitational field with some
spatial variation such that its average is zero. This expression
follows the conceptually important work of Luttinger.8 Alter-
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nate schemes such as the Kadanoff-Martin method9 lead to
the same results. Here ��r� is not quite a gravitational field
since it couples to K�r� rather than to H�r�, but serves the
same purpose, it is a mechanical field as opposed to the true
spatially dependent temperature, which is a thermodynamic
field. The latter is more subtle, and ensuring that such a vary-
ing field is established in a given system is in general a very
hard thing to achieve rigorously, requiring as it does a de-
tailed understanding of the equilibration processes that oper-
ate on a microscopic and inhomogeneous level. Luttinger’s
idea reorganizes and subdivides this complication into logi-
cally separate parts, and allows us to deal with a mechanical
field with an arbitrary spatial variation. The connection with
true temperature variation is the next logical step, where Lut-
tinger showed that we may essentially regard ���r��
= ��T�r��� /T. Here we denote the local temperature by T�r��,
and ��r��=1/ �kBT�r���. A formal discussion is provided by
Luttinger,8 who drew an analogy with the Einstein relation.
The latter relates the response to the �mechanical� electrical
field to the observed concentration gradient, which in turn is
related to its conjugate, namely the �thermodynamic� chemi-
cal potential gradient. The resulting frequency dependent lin-
ear response functions are understood as responses to this
mechanical force. Relating these to the thermodynamic re-
sponse functions is the other part of the issue, and may be
proved only under certain standard assumptions;8 we are
content to assume the same in this work. A simple qualitative
argument to help motivate the identification ���r��
= ��T�r��� /T, is that the temperature profile varies in such a
way as to annul the variation of the added energy fluctuation;
therefore, if locally ��r�� increases, so does T�r�� so as to
maintain the local constancy of the action �r���r��K�r��.

Let L be the number of sites, or equivalently the volume
of the system �by setting the lattice constant as unity�. We
next Fourier transform Eq. �2� by introducing

��r�� = �
k

�̂�k��exp�− ik� · r�� , �3�

K�r�� =
1

L�
k

K̂�k��exp�− ik� · r�� , �4�

so that

K1 = �
k

K̂�− k���̂�k�� . �5�

The heat current operator is Fourier decomposed as J�Q�r��

=1/L� exp�−ik� ·r��Ĵ�Q�k�. The induced heat current in re-
sponse to the kth mode with can be computed from linear
response theory. We will assume a “temperature” gradient
along the unit vector x̂, so that �T�r��=T���r��=T�
�−ikxx̂��̂�kx�exp�−ikxx�. Then

���c� = lim
kx→0

��kx,�c� ,

with

��kx,�c� =
ei�ct

L � �Ĵx
Q�kx�	

iTkx�̂�kx�

 . �6�

The expectation �Ĵx
Q�kx�	 is given by standard linear response

theory10,8,11 and using Eq. �6� we find

��kx,�c� =
1

TkxL
�

−


t

ei�c�t−t��dt���Ĵx
Q�kx,t�,K̂�− kx,t���	 �7�

=
− i

�cTkxL
���Ĵx

Q�kx�,K̂�− kx��	

+ i�
0




ei�ct�dt���Ĵx
Q�kx,t��,�K̂�− kx,0�,K��	 . �8�

We integrated by parts to get the second line from the first. In
the limit of almost uniform variation, kx→0, we show that

��Ĵx
Q�kx�,K̂�− kx��	 � − kx��xx	 , �9�

where �xx is the thermal operator, to coin a name. In the

uniform �i.e., kx→0� operator Ĵx
Q is not a constant of motion,

and yet the average is of O�kx�, this is so since the uniform
term vanishes by noting that the thermal average

��Ĵx
Q,K�	 �

1

Z
�Tr e−�KĴx

QK − Tr e−�KKĴx
Q� = 0 �Identity I� ,

with Z=Tr e−�K, the last identity following from the cyclic-
ity of trace. Therefore we can write an equation for the ther-
mal operator directly as

�xx = − lim
kx→0

d

dkx
�Ĵx

Q�kx�,K̂�− kx�� , �10�

and thus it is straightforward if tedious to compute it, given
the explicit forms of the current and energy operators.

The heat current is obtained from the continuity equation
for heat density, written in momentum space as

lim
kx→0

1

kx
�K̂�− kx�,K� = Ĵx

Q, �11�

where Ĵx
Q= Ĵx

Q�k� / k→0, so that the thermal conductivity at
finite frequencies is

���c� =
i

�cT

1

L���xx	 − i�
0




ei�ct�dt���Ĵx
Q�t��, Ĵx

Q�0��	� .

�12�

It is worth making a comment on the difference between this
calculation and that of ����, the electrical conductivity at
this point. A calculation of ����, as in the Appendix, is in
close parallel to this one for ����, with the electrical current
and charge density fluctuation operators �defined in the Ap-
pendix� replacing the heat current and the energy density as

in Ĵx
Q�kx�→ Ĵx�kx� and with K̂�−kx�→��−kx�. In that case, the

commutator �Ĵx�kx� ,��−kx�� explicitly vanishes as kx→0,
and hence the analog of the first term inside the round
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bracket of Eq. �8� automatically begins as O�kx�, with a co-
efficient ���xx	 �defined in Eq. �A4��. In the present case, Eq.
�9� together with Eq. �11� again leads to a cancellation of kx
between the numerator and the denominator, leading to a
finite result in the uniform limit. Thus the thermal conduc-
tivity calculation is somewhat disguised by the noncommu-

tation of the uniform operators i.e., �Ĵx
Q ,K��0, which is

luckily immaterial, since the expectation of this object van-
ishes due to the Identity I.

We perform a Lehmann representation11 to write Eq. �12�
with pn=1/Z exp�−��n� as

���c� =
i

�cT

1

L���xx	 − �
n,m

pn − pm

�n − �m + �c
��n�Ĵx

Q�m	�2� .

�13�

Using the partial fractions identity �for any ��

1

�c��c + ��
=

1

�
� 1

�c
−

1

�c + �
 ,

we obtain

���c� =
i

�cT
DQ +

i

TL�
n,m

pn − pm

�m − �n

��n�Ĵx
Q�m	�2

�n − �m + �c
, �14�

where

DQ =
1

L���xx	 − �
n,m

pn − pm

�m − �n
��n�Ĵx

Q�m	�2�
=

1

L���xx	 − �
0

�

d� �Ĵx
Q�− i��Ĵx

Q�0�	� . �15�

Using the standard identity 1 / ��c−E�= P1/ ��−E�
− i����−E� for any E, it is instructive to write the real part
of the Lehmann representation of Eq. �14� as

Re ���� =
�

T
����D̄Q + Re �reg��� ,

with

Re �reg��� =
�

TL�1 − e−��

�


� �
�n��m

pn��n�Ĵx
Q�m	�2���m − �n − �� ,

�16�

D̄Q =
1

L���xx	 −  �
�n��m

pn − pm

�m − �n
��n�Ĵx

Q�m	�2� . �17�

Here �reg is the regular part of thermal conductivity that

excludes the delta function at �=0, and D̄Q is the weight of
the delta function at �=0. It is seen that the weight of the
zero frequency delta function involves a different object than
the one in Eq. �15�, there is a cancellation of terms with
equal energy between the two terms in Eq. �13�. We elabo-
rate on this distinction below.

The sum rule for the real part of the thermal conductivity
�an even function of �� follows from Eq. �16� by integration,
or equivalently from Eq. �13� and using the Kramers-Kronig
relation to identify the coefficient of i /� at high frequencies
in the complex conductivity as the integral of the real part,

�
0




Re ����d� =
�

2TL
��xx	 . �18�

This interesting sum rule is one of the main formal results of
this paper. The extensive thermal operator �xx is analogous
to the stress tensor �xx in the sum rule Eq. �A11� for the
electrical conductivity ����, and depends in its details upon
the underlying model; we present it in the case of several
problems of current interest in the following.

We may rewrite Eq. �14� in a more compact form as

���c� =
i

T�c
DQ +

1

TL�0




dtei�ct�
0

�

d� �Ĵx
Q�− t − i��Ĵx

Q�0�	 .

�19�

The first term in Eq. �19� is �DQ, and is in addition to the
original Kubo formula10 for thermal conductivity, namely the
second term. It represents a nontrivial correction for nondis-
sipative situations, but vanishes in dissipative cases due to
reasons that we elaborate below.

Integrating the second term of Eq. �19� gives an estimate

for �0

Re ����d� namely � / �2TL��0

�d��Ĵx
Q�−i��Ĵx

Q�0�	,
which has been written in literature earlier in its high tem-
perature limit.12 However it cannot be viewed as a sum rule,
since the estimate is a correlation function of a pair of ex-
tensive currents, rather than a direct expectation value of a
single extensive operator as in Eq. �18�. Further, in nondis-
sipative situations, this estimate misses the contribution from
the DQ term and is thus incorrect. For dissipational systems,
it does reduce to Eq. �18�, on using the vanishing of DQ and
Eq. �15�. Therefore it is clear that in all cases, Eq. �18� stands
in complete parallel to the f-sum rule Eq. �A11� for ����
with the thermal operator �xx relacing the stress tensor �xx.

We next make a few comments on the object DQ, which
enters into the correct expression for thermal conductivity

Eq. �19�, and D̄Q that enters in Eq. �17�. Note that the differ-

ence between DQ and D̄Q lies in the nature of the double sum

over the current matrix elements; D̄Q explicitly excludes
terms with equal energy, so that the difference is a sum over
all degenerate manifolds �including diagonal matrix elements
n=m�

DQ − D̄Q = − � �
�n=�m

pn��n�Ĵx
Q�m	�2. �20�

A detailed discussion of the charge stiffness in the similar
context of charge transport is given in Ref. 13, where the
distinction between zero and finite temperatures is elaborated
upon. Our discussion here is along similar lines, except that
here we use the term charge stiffness to denote both Dc and

D̄c whereas these are denoted by the terms Meissner stiffness
and charge stiffness in Ref. 13. In the case of the thermal

conductivity, DQ and D̄Q are thus the thermal analogs of the
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Meissner stiffness and the charge stiffness of Ref. 13
The value of DQ is zero for most dissipational situations,

i.e., for generic systems at finite temperatures. It is, however,
nonzero in general for systems that display macroscopic
many body coherence, i.e., either superfluidity or supercon-
ductivity. For a superconductor, the analogous object, Dc in
the charge conductivity �see Eq. �A7�� is in fact related to the
London penetration depth or the superfluid stiffness, and its
nonvanishing is the very hallmark of its “super” nature. It is
alternately obtainable from the Byers-Yang relation Dc
� lim�→0�d2 /d�2�F��� where F��� is the free energy of the
superconductor in the presence of a hole threaded by a flux
�. While there is no obvious parallel to the flux for thermal
conductivity, the formal expressions are very similar.

There has been considerable discussion of the correspond-
ing charge stiffness in recent literature14 for integrable many-
body systems in low dimensions, such as the Heisenberg or
the Hubbard models in one dimension �1D�, where the exis-
tence of many conservation laws pushes them away from
equilibrium with negligible restoring forces, leading to a bal-
listic rather than diffusive behavior, as first pointed out by
Giamarchi.14 An interesting numerical study of the statistics
of the Kubo conductivity in 1D has also given some insights
around the zero frequency limit.15 Very recently the thermal
conductivity has also been discussed in literature for inte-
grable models.16 In general terms, integrable models are akin
to the free particle system rather than to superconductors or
superfluids, since there is no broken symmetry. In such cases,

we expect DQ=0 but it is possible that D̄Q�0, albeit possi-
bly only for finite sized systems. This is analogous to the
charge stiffness story,13 where Dc is zero for normal metals

whereas D̄c may be nonzero. In this sense the zero tempera-

ture limit is singular; D̄c occurs in both conductivity and in

the Byers-Yang-Kohn type formula D̄c
� lim�→0�d2 /d�2�E0���, with E0��� the ground state energy
in the presence of a flux,13 whereas at nonzero T there is a
distinction as in the rhs of Eqs. �20� and �A13�. The object

D̄Q involves matrix elements of the current in states with
distinct energy, and these are zero if the energy or heat cur-
rent is conserved, as in the case of the free electron system.
More nontrivially, in the case of the exactly integrable
Heisenberg model in 1D, the higher conservation laws in-
clude the energy current.16 In such a case, since the heat

current is a constant of motion, it follows that Ĵx
Q�t�= Ĵx

Q�0�,
leading to a simple calculation of ���� using Eq. �12�. Here

the second term in Eq. �12� vanishes on using Ĵx
Q�t�= Ĵx

Q�0�,
giving

���c� =
i

�cTL
��xx	 .

Thus ���c� may be computed for integrable models with a
conserved energy current directly from a knowledge of
��xx	.

We will show in Sec. IV that the vanishing of DQ is natu-
ral for generic systems, using an argument based on the
Kubo identity, and also pinpoint the possible technical reason

as to why it is nonzero for, say, a clean superconductor. In
subsequent sections we provide an evaluation of the thermal
operator �xx given in Eq. �10� for various models of current
interest.

III. THERMOPOWER

We next study the linear response formulation for ther-
mopower. If we define the charge current and its Fourier

decomposition as J��r��=1/L� exp�−ik� ·r��Ĵ��k��, then in the
presence of an electric field and a temperature gradient,

�Ĵx	 = ����Ex + �����− �T� , �21�

where Ĵx= Ĵx�kx→0�. The thermopower is defined as

S��� =
����
����

. �22�

We can obtain ���� by linear response theory in parallel to
the thermal conductivity, and the answer is

���c� = lim
kx→0

� �Ĵx�kx�	ei�ct

iTkx�̂�kx�L
 . �23�

The expression for �Ĵx	 follows the same lines as that for the
heat current and we find

���c� =
i

�cTL��	xx	 − i�
0




ei�ct���Ĵx�t��, Ĵx
Q�0��	� ,

�24�

where we have introduced another important extensive op-
erator, the “thermoelectric operator,”

	xx � − lim
k→0

d

dkx
�Ĵx�kx�,K�− kx�� . �25�

It is useful to perform its Lehmann representation, so that

���c� =
i

�cTL��	xx	 − �
n,m

pn − pm

�n − �m + �c

��n�Ĵx�m	�n�Ĵx
Q�m	� . �26�

We can proceed further as in the case of thermal conductivity
by expanding the product using partial fractions and find

���c� =
i

�cT
D� +

i

TL�
n,m

� pn − pm

�m − �n
 �n�Ĵx�m	�n�Ĵx

Q�m	
�n − �m + �c

,

�27�

where

D� =
1

L��	xx	 − �
n,m

pn − pm

�m − �n
�n�Ĵx�m	�n�Ĵx

Q�m	� . �28�

Since the two currents involved are not identical, it is not
possible to take the real part of this expression readily, and it
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is not profitable to seek a sum rule. It is however, interesting
to note that by combining various formulae, the ther-
mopower has a high frequency expansion of the type

S��� = S* + O� 1

�
 ,

where

S* =
�	xx	
T��xx	

, �29�

and so a knowledge of 	xx is useful in determining the
asymptotic behavior. We can rewrite this equation as

���c� =
i

�cT
D� +

1

TL�0




dtei�ct�
0

�

d� �Ĵx�− t − i��Ĵx
Q�0�	 .

�30�

We again note that D�=0 for most dissipational cases.

IV. KUBO-TYPE FORMULA FOR GENERAL
NONDISSIPATIVE SYSTEMS

In an earlier section, we derived the linear response theory
expressions for the various conductivities Eq. �6�, and argued
that the usual formulas quoted in literature, e.g., in Ref. 17
following Kubo10 and others8 have extra terms that arise for
nondissipative systems, such as superconductors and super-
fluids. The reader might wonder as to the origin of these
extra terms, since the common belief is that the Kubo formu-
las are complete and exact. In this section we obtain these
terms from a careful analysis of the Kubo arguments. We
deal with the case of thermal conductivity below, but the
arguments apply equally to the electrical conductivity as the
reader can easily see. In the case of the electrical conductiv-
ity a simpler argument gives the final result using the trans-
verse gauge, i.e., by realizing the electrical field as the time
derivative of a vector potential rather than as the gradient of
a scalar potential,18,19 although the present method is readily
generalized to that case as well, as shown in the Appendix.

We begin with Eq. �7� rearranged in the form preferred by
Kubo,

��kx,�c� =
1

kxTL�0




dtei�ct Tr���0,K̂�− kx,− t��Ĵx
Q�kx�� ,

�31�

with the density matrix �0=e−�K /Z. From this point onwards
one uses three important steps.

�1� The so-called “Kubo identity”10 which is written as
K�K�−kx ,−t��=0 where

K�A� � ��0,A� − �
0

�

�0�A�− i��,K�d� , �32�

which is easily derived by inserting a complete set of states.
�2� The conservation law

1

kx
�K̂�− kx,− t�,K� = Ĵx

Q�− kx,− t� . �33�

�3� The homogeneous or uniform limit kx→0.
These three steps together give the usual stated result Eq.

�12� without the first term involving DQ. These steps lead
one to an expression involving the matrix elements of

K�−k̂x ,−t� /kx and it is tempting to replace this with those of

Ĵx
Q�0,−t�. It is precisely here that one needs to be careful. As

long as kx is finite it is clear that K̂�−kx ,−t� as well as Ĵx
Q

�−kx ,−t� have matrix elements between eigenstates of the
Hamiltonian K that are at different energies, i.e., inhomoge-
neous excitations cost energy. In the limit of kx→0 this need
not be so, the current operator can have matrix elements
between states of the same energy, whereas by construction

the commutator �K̂�−kx ,−t� ,K� filters out states with the
same energy. Thus the operator identity Eq. �33� is poten-
tially in trouble precisely where we need it. What is easier to
justify is to use a time derivative to filter out equal energy
states so that a good alternative identity to Kubo’s identity is
to use

dK�K�− kx,− t��
dt

= 0. �34�

This is the Kubo identity again, but with the operator �−i�
��K̂�−kx ,−t� ,K� in place of K̂�−kx ,−t�, this extra commuta-

tor with K is transferred to Ĵx
Q�−kx ,−t� on using the conser-

vation law, and improves matters. In this form we can take

the next two steps safely since �Ĵx
Q�0,−t� ,K� does not have

any matrix elements between equal energy states. We can
now integrate Eq. �34� between finite times and get

K�K�− kx,t�� = K�K�− kx,0�� . �35�

This equation tells us that the errors in replacing the matrix

elements of K�−k̂x ,−t� /kx with those of Ĵx
Q�−t� are time inde-

pendent, i.e., relating solely to the matrix elements of current
in the manifold of zero energy difference states. Such a
manifold of states is statistically significant only in a super-
conductor, and hence we expect it to be relevant in that con-
text.

Proceeding as before to the uniform limit, we get

���c� =
i

�cTL���xx	 − �
0

�

d� �Ĵx
Q�− i��Ĵx

Q�0�	

+

1

TL�0




ei�ctdt�
0

�

d� �Ĵx
Q�− t − i��Ĵx

Q�0�	 . �36�

The term in curly brackets is recognized as LDQ as in Eq.
�19�, and hence the two derivations lead to exactly the same
answer.

We have seen that DQ owes its possible nonvanishing to
the matrix elements of the current operator in the manifold of
zero energy difference states, such as exist in a supercon-
ductor. For most dissipative systems, such a manifold is sta-
tistically insignificant, and it should be noted that in such
instances, DQ is actually zero.
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The only instances where DQ and analogously Dc of Eqs.
�15� and �A7� are nonzero have to do with superfluid or
superconducting states. We remind the reader of the change
in terminology from Ref. 13 as remarked on earlier below
Eq. �20�, Dc represents the Meissner stiffness of Ref. 13. In
these cases, Dc for example is proportional to the supercon-
ducting density of electrons �s as in the London theory. Tra-
ditionally �s is obtained by taking the current current cor-
relator and taking the limit k�→0 for the transverse part, i.e.,
J� ·k� =0, after having taken the static limit at the outset—this
is the classic Meissner effect calculation.20 However, it is
also natural to see the superconducting fraction in the con-
ductivity where we first set k�→0 and then let �→0. This is
the procedure followed in the well-known Ferrell-Glover-
Tinkham sum rule determination of the penetration depth in
superconductors from the infrared conductivity.21 In this se-
quence of taking the uniform limit, it should not matter if we
have worked with the longitudinal conductivity rather than
the transverse one, and our derivation here is the longitudinal
counterpart of the transverse derivation first obtained for the
Hubbard-type models in Ref. 19. A nice discussion of the
various limits is given in Ref. 22. A superconductor would
also have a nonzero DQ if impurities are neglected; however,
impurities do scatter quasiparticles and hence one expects
disorder to make this object tend to vanish, unlike the vari-
able Dc which is less sensitive to disorder by virtue of the
Anderson theorem. There is also the similarity of the DQ
term with that of second sound that one expects in a super-
conductor, namely an undamped energy wave; DQ then ap-
pears as the residue at a second sound pole in the uniform
limit of a suitable propagator.

This derivation also indirectly shows that in the normal
dissipative cases, when DQ=0, the sum rule Eq. �18� is ob-
tained starting from the conventional Kubo formula, i.e., Eq.
�19� without the first term, by integrating the current current
correlator over frequency. This is so since such an integral
gives the second part of the expression for DQ which must
equal the first for it to vanish.

It is worth mentioning that another independent argument
for the vanishing of DQ and likewise Dc, or in another con-
text, the spin wave stiffness of a fully saturated
ferromagnet,23 uses the notion of a position operator. If a
position operator, or a similar one for energy transport such
as the boost operator ��dr r�H�r�� is allowed in the list of
allowed operators, then it is easy to show that Dc type op-
erators are zero, since one can rewrite the current matrix
elements in terms of the matrix elements of the position op-
erator, and then the second part of Eq. �A7� becomes the
commutator of the current with the position operator and
hence cancels exactly the �xx term. Such a procedure is in-
valid in general, as explained carefully by Herring and
Thouless,23 the position operator is illegal in the Hilbert
space where periodic boundary conditions are used in a con-
tinuum field theory. For a lattice field theory of the sort we
are considering, we can always force the introduction of a
lattice position operator X��r�xjnr�j

, but now a careful calcu-
lation shows that the cancellation is incomplete; while the
bulk terms do cancel, the boundary terms do not.

From this line of thought we conclude that Dc and its
relatives would vanish, if the nature of the quantum states is

such that the error made in introducing the position operator
is negligible; this again is plausible in a highly dissipative
system, where phase coherence is lost over some micro-
scopic length scale that is shorter than the system length. For
a superconductor such is certainly not the case nor, for that
matter, in a ferromagnet �Ref. 23�.

V. HIGH FREQUENCY RESPONSE: LORENTZ RATIO
AND THERMOELECTRIC FIGURE OF MERIT

Of great interest are the two quantities, the Lorentz ratio

L��� =
����

T����
�37�

and the thermoelectric figure of merit Z times T �a dimen-
sionless number�

Z���T =
S2�������T

����
�38�

=
�2���T

��������
. �39�

We can readily evaluate these in the high frequency limit
as

L* =
��xx	

T2��xx	
, �40�

Z*T =
�	xx	2T2

��xx	��xx	
. �41�

Let us also note that the thermopower at high frequencies
is expressible in terms of the operators we displayed earlier,

S* =
�	xx	
T��xx	

. �42�

These variables are computable much more readily than their
dc counterparts, and since these do capture the effect of in-
teractions, they are of considerable interest.

VI. LATTICE THERMAL CONDUCTIVITY

We consider here the sum rule as applied to the case of
the lattice vibrations. This is a field of great current
activity,24,25 where most studies are in low dimensions and
treat classical anharmonic and disordered lattices with a view
to study the conditions for existence of a Fourier law, and
also for the emergence of a finite conductivity. We consider a
general anharmonic disordered lattice with a Hamiltonian

H = �
j

Hj ,

Hj = � p� j
2

2mj
+ Uj�, Uj =

1

2�
i�j

Vj,i, �43�

where Vi,j =Vj,i=V�u� i−u� j� is a symmetric two-body potential
that is an arbitrary function of the displacement variables u� i
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including possible anharmonicity. Since no particle flow is
involved, it suffices to consider the canonical ensemble
Hamiltonian. We will denote the equilibrium lattice points by

R� j ��Xj ,Y j , . . . � and the antisymmetric force vector F� i,j =
−��� /�u� i�Vi,j. In the following, we will need the derivatives of
the antisymmetric force vector which will be denoted by
Fi,j

x�n�= ��n /��ui
x�n�Fi,j

x , and have the obvious symmetry prop-
erty Fj,i

x�n�= �−1�n−1Fi,j
x�n�. The energy current can be obtained

from computing the time evolution of the energy density, and
combining it with the conservation law thereby giving

Jx
E = lim

k→0

1

kx
�H,H�k�� , �44�

where H�k�=� je
ik�.R� jHj. This form of the current operator is

popular in literature, e.g., Ref. 26 and differs from the one
given by Hardy27 in some details, which are not expected to
be very significant. To aid the passage to a classical limit we
display the dependence on Planck’s constant in this section,
setting it to unity elsewhere. The current at finite wave vec-
tors can be found from the above as

Jx
E�k�� =

1

4�
i,j

�Xi − Xj�
mi

eikxXi�px,i,Fi,j
x � , �45�

where we have chosen k� along the x axis. Using the various
definitions, we find the thermal operator

1


�xx = �

i

1

4mi
��

j�i

Fi,j
x �Xi − Xj��2

−
1

8�
i,j

�Xi − Xj�2

mimj

��4Fi,j
x�1�px,ipx,j + 2iFi,j

x�2��px,i − px,j� + 2Fi,j
x�3�� .

�46�

This, together with Eq. �18�, then gives us the sum rule for
thermal conductivity. Note that the classical limit exists and
is readily found by dropping terms involving  in this ex-
pression. In the classical limit of Kubo’s formula Eq. �19�,
the inner integral over � collapses to give

�classical��c� =
1

kBT2L�0




ei�ctdt �Ĵx
Q�− t�Ĵx

Q�0�	classical,

�47�

and it is clear that we can express the sum rule in terms of

the expectation of �Ĵx
QĴx

Q	. However our formula Eq. �18�
provides a slight advantage in this case too: our result im-
plies that

1


��xx	classical =

1

kBT
�Ĵx

QĴx
Q	classical, �48�

a result that is nontrivial since the lhs involves a single ex-
tensive operator whereas the rhs involves the square of an
extensive operator, and moreover the only way to prove it
seems to be to go back to the inhomogeneous �i.e., k depen-
dent� energy density and perform the steps stated above.

As a simple illustration consider the case of a 1D Har-
monic lattice, H=�ipi

2 / �2m�+ks /2�i�ui−ui+1�2, with ks

�m�0
2. In this case, we expect heat transport to be ballistic

rather than diffusive, and hence the static thermal conductiv-
ity to diverge. Unlike the case of free electrons �discussed
elsewhere in this paper�, the current operator is not com-
pletely diagonal in the normal mode �phonon� operators, in
contrast to the Peierls form of the energy current,28 namely
JE=��kvknk. The integrated conductivity is nontrivial; it
gets its weight at finite frequencies from phonon pair cre-
ation and destruction processes. The force is linear in the
displacements and hence we work out the thermal operator,

�xx = ��0
2a0

2�� 1

m
�

i

pipi+1 +
ks

4 �
i

�ui−1 − ui+1�2� .

�49�

The expectation of this object can be computed at finite tem-
peratures on using the phonon harmonic oscillator represen-
tation as

��xx	 = L�2�0
3a0

2��
0

� dk

�

���1

2
+

1

e��k − 1
��k

�0
cos�k� +

�0

�k
sin2�k�
� ,

�50�

where �k=2�0 sin�ka0 /2� is the acoustic phonon energy. At
zero temperature, i.e., in the ground state, it can be shown to
vanish exactly; this precise cancellation is a characteristic
feature of the thermal operators that is in common with most
other quantum systems, and we discuss its connection with
the vanishing of the specific heat in another section �see dis-
cussion near Eq. �89��. Similar expressions can be worked
out in any dimension d. At low temperatures, it is easy to see
that �xx�Td+1 in d dimensions, so that the sum rule Eq. �18�
is �Td, i.e., similar to the lattice specific heat. At high tem-
peratures, since this model has no scattering of phonons, the
sum rule increases linearly with T indefinitely. Through Eq.
�18� this implies a T independent behavior at sufficiently
high T. The computation for the nonlinear lattice would con-
tain the effects of umklapp as well as normal scattering, and
should be numerically feasible as well as interesting.

VII. INTERMEDIATE COUPLING MODELS: FINITE U
HUBBARD MODEL, HOMOGENEOUS ELECTRON

GAS, AND PERIODIC ANDERSON LATTICE

In this section we will consider the popular intermediate
coupling models, namely the Hubbard model and the elec-
tron gas as well as the periodic Anderson lattice. We derive
for these models the thermal operator �xx and the thermo-
electric operator 	xx. We further demonstrate the formalism
in the limit of zero interaction, where the Boltzmann-Drude
results are reproduced for the specific transport variables
mentioned in the earlier sections, namely the Lorentz number
and the thermopower. We begin by writing the Hubbard
model Hamiltonian in the grand canonical ensemble

K = �
r�

K�r�� , �51�
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K�r�� = − �
�,��

t��� �cr�+1/2�� ,�
† cr�−1/2�� ,� − ��

�

nr�� + Unr�↓nr�↑.

�52�

Here �� represents all the neighbors of the site r�, t��� � is the
hopping matrix element, and we have adopted the “midpoint
rule” for defining densities of all nonlocal objects such as
hopping so as to get convenient expressions for the Fourier
transforms of the grand canonical ensemble Hamiltonian K

=H−�N̂,

K̂�k�� = �
r�

eik�·r�K�r�� �53�

=�
p� ,�

��p� − ��cp�+1/2k�,�
† cp�−1/2k�,� + �

r�
eik�·r�Unr�↓nr�↑, �54�

with �p� =−��� t��� �exp�−i�� · p�� the kinetic energy and nr�

=��nr�,�. A more general model, with arbitrary two-body in-
teraction between particles, including the homogeneous elec-
tron gas �HEG� model is represented by

K̂�k�� = �
p� ,�

��p� − ��cp�+1/2k�,�
† cp�−1/2k�,�

+
1

2L �
p� ,q� ,l�,�,��

U�q��cp�+q�+1/2k�,�
† cp�−1/2k�,�c

l�−q� ,��

†
cl�,��.

�55�

By specializing to U�q��=U and restricting the momenta to
the first Brillouin zone we recover the Hubbard model,
whereas the electron gas is obtained by letting U�q��
=4�e2 / �q� �2 and letting L→� the box volume. In all cases,
the electronic charge density is ��r��=qenr�, where qe is the
charge of the electron �qe=−�e��. The charge current density

is given by J��r��= i�qe /���� ,��� t��� �cr�+1/2�� ,�
† cr�−1/2�� ,�, and

hence its Fourier transform follows as

Ĵ
��k�� = qe�

p�
v�p�cp�+1/2k�,�

† cp�−1/2k�,�, �56�

where the velocity vector v�p� = �� /�p���p� = i /��� t��� ��� exp
�−i�� · p��. We set the lattice constant a0=1 throughout this
paper.

A. The thermoelectric operator �xx

Let us now work out the thermoelectric term 	xx defined
in Eq. �25�. The commutator can be taken and on further
carrying out the limiting procedure we find with �̄=−�

	xx = −
qe

2
�

�� ,��� ,r�,�

��x + �x��
2t��� �t���� �c

r�+�� +��� ,�

†
cr�,�

− qe
�


�
�� ,�

�x
2t��� �cr�+�� ,�

† cr�,� +
qeU

4

� �
r�,�� ,�

t��� ���x�2�nr�,�̄ + nr�+�� ,�̄��cr�+�� ,�
† cr�,� + cr�,�

† cr�+�� ,�� .

�57�

This object can be expressed completely in Fourier space as

	xx = qe�
p� ,�

�

�px
�vp

x��p� − ���cp� ,�
† cp� ,� +

qeU

2L

� �
l�,p� ,q� ,�

�2

�lx
2 ��l� + �l�+q��cl�+q� ,�

†
cl�,�cp�−q� ,�̄

† cp� ,�̄. �58�

The more general HEG model yields the result

	xx = qe�
p� ,�

�

�px
�vp

x��p� − ���cp� ,�
† cp� ,� +

qe

2L

� �
l�,p� ,q� ,�,��

�U�q��
�2

�lx
2 ��l� + �l�+q�� +

�U�q��
�qx

�v
l�+q�
x

− v
l�
x��

�c
l�+q� ,�

†
cl�,�cp�−q� ,��

† cp� ,��. �59�

B. Heat current and the thermal operator �xx

We first derive the expression for the heat current; this
follows from Eq. �11�. Using Eq. �54� and the fact that the
O�U2� term vanishes �both terms are functions of nr�,�� s only�,
we find

Jx
Q = �

p�
vp� ,�

x ��p� − ��cp� ,�
† cp� ,�

+
iU

2
�
�� ,�

t��� ��xcr�+�� ,�
† cr�,��nr�,�̄ + nr�+�� ,�̄� �60�

=�
p� ,�

vp�
x��p� − ��cp� ,�

† cp� ,�

+
U

2L �
l�,p� ,q� ,�,��

�v
l�
x

+ v
l�+q�
x �

�c
l�+q� ,�

†
cl�,�cp�−q� ,��

† cp� ,��. �61�

We also need the current operator at a finite wave vector
chosen along the x axis as k� � x̂kx; this may be written in the
case of the more general HEG model as

Jx
Q�k�� = �

p� ,�

vp�
x��p� − ��cp�+1/2k�,�

† cp�−1/2k�,� +
1

2L �
l�,p� ,q� ,�,��

U�q���v
l�
x

+ v
l�+q�
x �c

l�+q�+1/2k�,�

†
cl�−1/2k�,�cp�−q� ,��

† cp� ,��. �62�

We evaluate the thermal operator by a direct calculation
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�xx = �
p,�

�

�px
�vp�

x��p� − ��2�cp� ,�
† cp� ,� +

1

2L �
p� ,q� ,�

U�q��� �

�px
��p� + �p�+q�� +

1

2
�vp�

x + vp�+q�
x �2�cp�+q� ,�

† cp� ,��−q� +
1

4L �
p� ,q� ,l�,�,��

�U�q�����l�−q�

− �l��
�

�px
�vp�

x − vp�+q�
x � + �vp�

x + vp�+q�
x ��v

l�
x

+ v
l�−q�
x �
 − 2

�U�q��
�qx

�vp�
x + vp�+q�

x ���l�−q� − �l���cp�+q� ,�
† cp� ,�c

l�−q� ,��

†
cl�,�� +

1

4L2 �
p� ,q� ,q�� ,�

U�q��

��U�q�� �
�

�px
�v

p�+q�+q��
x

+ vp�+q�
x + v

p�+q��
x

+ vp�
x� +

�U�− q�� �
�qx�

�v
p�+q�+q��
x

+ v
p�+q��
x

− vp�+q�
x − vp�

x��c
p�+q�+q�� ,�

†
cp� ,��−q��−q�

� . �63�

Here we denote �p� =vp�
x��p� −�� and �q� =�k,�ck�+q� ,�

† ck�,�. This
expression simplifies somewhat in the case of the Hubbard
model in real space with U�q��→U, where it may be written
as

�xx = �
p,�

�

�px
�vp�

x��p� − ��2�cp� ,�
† cp� ,�

+
U2

4
�
�,�

t��� ��x
2�nr�,�̄ + nr�+�� ,�̄�2cr�+�� ,�

† cr�,�

− �
U


�
�� ,�

t��� ��x
2�nr�,�̄ + nr�+�� ,�̄�cr�+�� ,�

† cr�,�

−
U

8
�

�� ,���,�

t��� �t��� ����x + �x��
2

��3nr�,�̄ + nr�+�� ,�̄ + nr�+���,�̄ + 3nr�+�� +���,�̄�

�cr�+�� +���,�
† cr�,� +

U

4
�

�� ,���,�

t��� �t��� ����x

+ �x���x�cr�+�� ,�
† cr�,��cr�+�� ,�̄

† cr�+�� +���,�̄ + cr�−���,�̄
† cr�,�̄ − H.c.� .

�64�

C. Disorder by a site potential

We work out the various sum rules in the presence of site
diagonal disorder produced by a �random� potential Kd
=�rVr�nr�, where we use the subscript d to denote the disorder
contribution to various objects. While such a potential disor-
der does not change the electrical current operator, it does
change the heat current, and it is easy to see that

�Ĵx
Q�d =

i

2
�
�,�

�xt��� ��Vr� + Vr�+���cr�+�� ,�
† cr�,�

=
1

2�
l�,�

V̂−l��vp�+l�
x

+ vp�
x�c

p�+l�,�

†
cp� ,�, �65�

where we defined the Fourier transform of the potential V̂k�

= �1/L��r� exp�ik� ·r��Vr�. From these definitions, we find the
disorder contribution to the thermopower sum rule

�	xx�d =
qe

2 �
l�,p� ,�

V̂−p�� �2�l�+p�

�lx
2 +

�2�l�

�lx
2 c

p�+l�,�

†
cl�,�

=
1

2
�
�,�

�x
2t��� ��Vr� + Vr�+���cr�+�� ,�

† cr�,�. �66�

We compute the disorder contribution to the thermal conduc-
tivity sum rule as

��xx�d =
1

4 �
r�,�� ,�

t��� ��x
2�Vr� + Vr�+���2cr�+�� ,�

† cr�,�

− � �
r�,�� ,�

t��� ��x
2�Vr� + Vr�+���cr�+�� ,�

† cr�,�

+
U

2 �
r�,�� ,�

t��� ��x
2�Vr� + Vr�+����nr�,�̄ + nr�+�� ,�̄�cr�+�� ,�

† cr�,�

−
1

8 �
�� ,���,�

t��� �t��� ����x + �x��
2

��3Vr� + Vr�+�� + Vr�+��� + 3Vr�+�� +����cr�+�� +���,�
† cr�,�.

�67�

This expression can be written in Fourier space as

��xx�d =
1

4 �
l�,p� ,�

�2
d

dpx
��p� + �p�+l�� + �vp�

x + v
p�+l�
x �2
V̂−l�cp�+l�,�

†
cp� ,�

+
1

4 �
l�,p� ,l�� ,�

d

dpx
�vp�

x + v
p�+l�
x

+ v
p�+l��
x

+ v
p�+l�+l��
x

�

�V̂−l�V̂−l�
� c

p�+l�+l�� ,�

†
cp� ,� +

U

2L �
l�,l�� ,p� ,q� ,�

d2

dpx
2

���p� + �p�+q� + �p�+l� + �p�+l�+q��

�V̂l�cq�+l�� ,�̄

†
cl�

� ,�̄cp� ,�
† cp�+l�+q� ,�. �68�

Here we need to average the final expression over the
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disorder potential, either perturbatively or numerically ex-
actly. We save this task for a future work.

D. Free electron limit and comparison with the Boltzmann
theory

It is easy to evaluate the various operators in the limit of
U→0, and this exercise enables us to get a feel for the mean-
ing of these various somewhat formal objects. We note that

��xx	 = 2qe
2�

p

np�
d

dpx
�vp�

x� ,

��xx	 = 2�
p

np�
d

dpx
�vp�

x��p� − ��2� ,

�	xx	 = 2qe�
p

np�
d

dpx
�vp�

x��p� − ��� . �69�

Here np� is the Fermi function and the factor of 2 arises from
spin summation. At low temperatures, we use the Sommer-
field formula after integrating by parts, and thus obtain the
leading low T behavior:

��xx	 = L2qe
2�0�����vp�

x�2	�

��xx	 = LT22�2kB
2

3
�0�����vp�

x�2	� �70�

�	xx	 = LT22qe�
2kB

2

3
��0������vp�

x�2	� + �0���
d

d�
��vp�

x�2	�� ,

�71�

where �0��� is the density of states per spin per site at the
Fermi level � and the primes denote derivatives with respect
to �, the average is over the Fermi surface as usual. These
formulas are indeed very close to what we expect from Bolt-
zmann theory. Indeed, replacing i /�→� with a relaxation
time � in the leading �high frequency� terms in the general
formulas reproduces the familiar Boltzmann-Drude results29

for the thermal conductivity, thermopower, and the electrical
conductivity. We may form the high frequency ratios

S* = T
�2kB

2

3qe

d

d�
ln��0�����vp�

x�2	�� ,

L* =
�2kB

2

3qe
2 . �72�

It is therefore clear that the high frequency result gives the
same Lorentz number as well as the thermopower that the
Boltzmann theory gives in its simplest form. Clearly one can
get more sophisticated with respect to the treatment of trans-
port issues, such as a k dependent relaxation time in the
Boltzmann approach,28,30 provided the interesting physics is
in that direction. Our approach enables us to provide a more
sophisticated treatment of interactions and disorder by com-

puting the averages of the more complex operators given
above, and this is useful for strongly correlated systems pro-
vided the transport relaxation issues are relatively benign.

E. Periodic Anderson lattice

We present the thermoelectric operator for the important
case of the periodic Anderson lattice describing conduction
electrons c’s that hybridize with a correlated set of localized
levels described by f’s as

K = − �
�,��

t��� �cr�+��
† cr� − ��

�

nr�� + ��0 − �� �
1���Nf

fr�,�
† fr�,�

+ U �
�,r�,����

nr�,�
f nr�,��

f + �
�,�

V��,���cr�,�
† fr�,� + H.c.� . �73�

The charge current operator is exactly as it is in the case of
the Hubbard model since the f levels are localized, and using
the same ideas as before to define an inhomogeneous energy
K�k�� and computing the familiar commutator Eq. �25� we
find the thermoelectric operator

	xx = qe�
p� ,�

�

�px
�vp

x��p� − ���cp� ,�
† cp� ,�

+
qe

2
�

�,�,k�
V��,��

d2��k��
dkx

2 �ck�,�
† fk�,� + fk�,�

† ck�,�� . �74�

At T=0 the expectation of this operator should vanish �see
the discussion section�, whereby we obtain a formal expres-
sion for the chemical potential at T=0 from the above.

VIII. STRONG COUPLING MODELS: THE HEISENBERG
MODEL AND THE U=� HUBBARD MODEL

In this section we consider the case of strong coupling,
and present the thermal and thermoelectric operators for the
case of the Heisenberg model and the infinite correlation
limit of the Hubbard model.

A. Heisenberg model

We first obtain the thermal operator for the ever popular
Heisenberg model in any dimension described by the Hamil-
tonian

H = �
r�

Hr�, Hr� =
1

2�
��

J��S�r� . S�r�+�� . �75�

Clearly H�k��=�eik�·r�Hr� and from the conservation law of lo-
cal energy we obtain the energy current operator

Ĵx
E�kx� =

1

4 �
r�,�� 1,�� 2

��1,x − �2,x�J�� 1
J�� 2

�S�r�+�� 1
� S�r�+�� 2

. S�r��eikxx.

�76�

Using the standard commutators we find the thermal operator
to be a four-spin operator in general. It is expressed as
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�xx =
1

8 �
r�,�� 1,�� 2,�� 3

��1,x − �2,x�J�� 1
J�� 2

J�� 3

���3,x�S�r�+�� 1
� S�r�+�� 2

� · �S�r� � S�r�+�� 3
�

− �2�2,x + �3,x��S�r�+�� 1
� S�r�� · �S�r�+�� 2

� S�r�+�� 3
�

+ �2�1,x + �3,x��S�r�+�� 1
� S�r�+�� 3

� · �S�r�+�� 2
� S�r��� .

�77�

In this expression r� ,r�+�� 1 ,r�+�� 2 are necessarily distinct sites,
but r�+�� 3 can coincide with the last two, and hence the order
of the products needs to be treated carefully. For simple cu-
bic lattices this expression simplifies a bit, but in essence it
involves four-spin correlations.

B. The U\� Hubbard model

In this section we consider the limit of U→
, and con-
sider the kinetic energy only, i.e., the t part of the t-J model,
since this is expected to dominate in transport properties, at
least far enough from half filling and for t�J. The addition
of the J part can be done without too much difficulty, but we
ignore it here for brevity. In this limit the fermionic commu-
tation relations need to be modified into the Gutzwiller-
Hubbard projected operators31

c̃r�,� = PGcr�,�PG,

�c̃r�,�, c̃
r�� ,��

†
� = �r�,r�

� ���,���1 − nr�,�̄� + �1 − ��̄,���c̃r�,�
† c̃r�,�̄�

� Y�,���r�,r�
� . �78�

The presence of the Y factor is due to strong correlations,
and makes the computation nontrivial. The number operator
nr�,� is unaffected by the projection. We note down the ex-
pressions for the charge current and the energy current at
finite wave vectors by direct computation

K̂�k� = − �
r�,�� ,�

�t��� � + ���� ,0�eik�.�r�+1/2�� �c̃r�+�� ,�
† c̃r�,�,

Ĵx�k� = i
qe


�

r�,�� ,�

�xt��� �eik�.�r�+1/2�� �c̃r�+�� ,�
† c̃r�,�,

Ĵx
Q�k� = −

i

2
�

r�,�� ,���,�

��x + �x��t��� �t��� ��eik�.�r�+1/2��� +�����

�Y��,��r� + ��� �c̃
r�+�� +��� ,��

†
c̃r�,� −

�

qe
Ĵx�k� . �79�

We evaluate the thermopower operator as

	xx = −
qe

2 �
�� ,��� ,r�,�,��

��x + �x��
2t��� �t���� �

�Y��,��r� + �� �c
r�+�� +��� ,��

†
cr�,� − qe�

��
�� ,�

�x
2t��� �cr�+�� ,�

† cr�,�. �80�

Note that if we set Y →1, this expression reduces to the U
→0 limit of the Hubbard result Eq. �58�, as one would ex-
pect. We next compute the thermal operator �summing over
all spin variables�

�xx = � �
�� ,��� ,r�,�,��

��x + �x��
2t��� �t���� �Y��,��r�

+ �� �c
r�+�� +��� ,��

†
cr�,� + �2�

�� ,�

�x
2t��� �c̃r�+�� ,�

† c̃r�,�

+
1

4 �
�� ,��� ,��� ,r�,�,��,��

��x + �x� + �x���2�x + �x�

+ �x��t��� �t���� �t���� �Y��,���r� + �� + ��� �Y��,��r�

+ ��� �c̃
r�+�� +��� +��� ,��

†
c̃r�,� +

1

4 �
�� ,��� ,��� ,r�,�

��x + �x���− �x

+ �x� + �x��t��� �t���� �t���� �

���c̃
r�+��� ,�

†
c̃r�+��

� +��
� ,�̄ + c̃

r�+��� +��� ,�

†
c̃r�+��

� ,�̄�c̃
r�+�� +��� ,�̄

†
c̃r�,�

− �c̃
r�+��� ,�̄

†
c̃r�+��

� +��
� ,�̄ + H.c.�c̃

r�+�� +��� ,�

†
c̃r�,�� . �81�

IX. THE TRIANGULAR LATTICE SODIUM COBALT
OXIDE: HIGH TEMPERATURE EXPANSION

FOR THERMOPOWER

The sodium cobalt oxide NaxCoO2 system is of great cur-
rent interest; the composition x�0.68 gives a metal with a
high thermopower �100 �V/K, which is further highly
magnetic field dependent.32,33 It is notable in that the under-
lying lattice is triangular, and it has been modeled by a tri-
angular lattice t-J model with electron doping.34 In this sec-
tion we give a brief application of our technique to this
system, which yields an interesting formula for the high T
limit of the thermopower S* that contains significant correc-
tion to the Heikes-Mott formula that is used in the same high
T limit. A detailed study is in preparation and will be pub-
lished separately; here we use the leading high T term to
illustrate the advantage of the above formalism in tackling
such a problem. We neglect contributions from the exchange
part of the t-J model and focus on the kinetic energy which is
expected to dominate the transport contributions. Let us
compute the thermopower S* from Eqs. �80�, �A4�, and �29�,

S* = −
�

qeT
+

qe�

T��xx	
, �82�

where

� = −
1

2
�

�� ,��� ,r�

��x + �x��
2t��� �t���� ��Y��,��r� + �� �c

r�+�� +��� ,��

†
cr�,�	 .

�83�

This is a very useful alternate formula to the Heikes
formula,35,36 where the second term in Eq. �82� is thrown out.
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It interpolates very usefully between the standard formulas
for low temperature as well as at high temperature. The sec-
ond term represents the “transport” contribution to the ther-
mopower, whereas the first term is the thermodynamic or
entropic part, which dominates at high temperature, as we
shall show. In fact for S* we can actually make a systematic
expansion in powers of �t, unlike the dc counterpart, where
it is not possible to make such an expansion.

The computation of the different parts proceeds as fol-
lows: we show readily that �for the hole doped case� using
translation invariance and with n as the number of particles
per site at high T,

��xx	 = 6Lqe
2t�c̃1

†c̃0	 � 3Lqe
2�t2n�1 − n� . �84�

The structure of the term Eq. �83� is most instructive. At
high temperatures, for a square lattice we need to go to sec-
ond order in �t to get a contribution with �x+��x�0, to the

expectation of the hopping �c
r�+�� +��� ,��

†
cr�,�	. For the triangular

lattice, on the other hand, we already have a contribution at
first order. For the triangular lattice, corresponding to each
nearest neighbor, there are precisely two neighbors where the
third hop is a nearest neighbor hop, and each of these gives
the same factor ��x+�x��

2=1/4, hence at high temperatures

� � −
3

2
Lt2 �

�,��

�Y��,���� �c̃
�� +��� ,��

†
c̃0� ,�	 . �85�

The spins must be the same to the leading order in �t where
we generate a hopping term c̃

0� ,�

†
c̃�� +��

� ,� from an expansion of

exp�−�K�, and hence a simple estimation yields

� = −
3

4
Lt3�n�1 − n��2 − n� + O��3� . �86�

This, together with � /kBT=ln�n /2�1−n��+O��2t2�, gives us
the result for 0�n�1

S* =
kB

qe
�ln�2�1 − n�/n� − �t

2 − n

4
+ O��2t2�
 , �87�

and

S* =
kB

qe
�ln�2�n − 1�/�2 − n�� + �t

n

4
+ O��2t2�
 �88�

for 1�n�2 using particle hole symmetry. Thus we can es-
timate the hopping parameter from the high temperature T
dependence of the thermopower. From the temperature de-
pendence of the data of Terasaki et al.32 and assuming S
�S* one finds that t=−110° K, and with this, S*

�120 �V/K, fairly close to the observed value. Thus the
sign and rough magnitude of the hopping are as expected
from other grounds.34 An interesting corollary of our analysis
is that if the sign of hopping t were reversed, i.e., if t�0 for
the electron doped case, then the thermopower S* would ap-
proach its high T value from above, and since the low T
behavior is fixed to vanish linearly, it implies that S* �and
hence presumably S�, must have a maximum, unlike the case
t�0. It follows that a material with similar absolute value of
hopping as NaxCoO2, but with the opposite sign of hopping,

would have a greater and hence an even more exciting ther-
moelectric behavior.

Hence, the nature of the high T expansion shows that the
triangular lattice is exceptional in that the transport correc-
tions to the entropic part are much larger than for the square
lattice; they are of O��t� for the first as opposed to O��t�2

for the latter. Also these are potentially much more sensitive
to a magnetic field than the corresponding one for the square
lattice since these O��t� terms are themselves functions of
the magnetic field �O�B2�. In the degenerate limit, it seems
quite possible that the field dependence of the transport part
might be comparable to the spin entropy contribution.33

The alternate formula Eqs. �82� and �29� for the ther-
mopower thus has the interesting property that it captures the
expected low T Fermi-liquid-type behavior as well as the
high T Heikes-type behavior. It should be most interesting to
apply numerical techniques to evaluate this for all T, a cal-
culation that seems quite possible with existing techniques,
at least for small systems.

X. DISCUSSION

It is curious that the recognition of the sum rule Eq. �18�
for the thermal conductivity, has lagged so far behind Kubo’s
seminal paper in 1957.10 One of the reasons may be that
most later workers followed the method given in Sec. IV
following the Kubo identity. This method does give the sum
rule as shown here, but only when one dissects the Kubo
identity carefully, keeping the possibility of superconductiv-
ity in mind. On the other hand, the many-body linear re-
sponse type method adopted in Sec. II runs into some dis-
couragement, which is relieved only upon recognizing the
role of Identity I in leading to a sensible result, as elaborated
in the discussion following Eq. �12�.

We have shown that the sum rule for thermal conductivity
involves the thermal operator �xx and the Seebeck coeffi-
cient involves 	xx, which are formally evaluated in this
work, for various models of current interest. We plan to re-
turn to a numerical evaluation of some of these in the context
of strongly correlated matter in a future study. We make
some remarks on the nature of the variables and the pros-
pects for their evaluation.

One notable fact is the vanishing with T2 of the expecta-
tion of �xx and 	xx for a Fermi gas; this is seen from the
evaluation in Eq. �71� explicitly. This leads to questions such
as: What is the origin of this behavior? Is this behavior true
in general? The answer is that these variables must vanish at
low temperature in a fashion that is dictated by the specific
heat. This connection is a deep one and we explain it next.

Let us first recognize that the specific heat �at constant
chemical potential� can be written as an energy-energy cor-
relation function,

C� =
1

T
lim
k→0

�
0

�

d��K̂�k,− i��K̂�− k�	 , �89�

and the T dependence of this correlator is known in various
systems in general terms. For metals and other Fermi liquids,
the specific heat at constant N, i.e., CN is the usual measured
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one and differs from this by the thermodynamic relation

C� = CN + T
��S/���T

2

��N/���T
, �90�

where the correction term is small for a Fermi liquid at low
T�O�T3�. The thermal operator is expressed as

��xx	
T

=
1

d
C�vef f

2 , �91�

where d is the spatial dimension, and the above defined ef-
fective velocity vef f is given by

vef f
2 = lim

k→0,t→0

− d

kx
2TC�

d2

dt2�
0

�

d��K̂�k,t − i��K̂�− k�	

= d

�
0

�

d��Ĵx
Q�0,− i�� · Ĵx

Q�0,0�	

�
0

�

d��K̂�0+,− i��K̂�0−,0�	
. �92�

Here we have used the relation DQ=0 for generic systems to
replace �xx by the current current expectation. The above
formulas show that the variable �xx /T is best thought of as
being the specific heat times the square of a velocity, much
as in the kinetic theory of thermal conduction where �
= �1/d�Cv2�, so that the temperature dependence comes pre-
dominantly from the specific heat and the effective velocity
captures the dynamics, without being very sensitive to T. Of
course it must be understood that �xx does not contain the
scattering rate, which disappears in the sum rule. From a
computational point of view, it seems best to use such a
decomposition. At any rate, this line of argument gives us a
qualitative understanding for the rather “magical property”
of the �xx operators listed, namely the vanishing of their
average at low T in the true ground state.

Our work also yields an interesting exact formula for the
zero temperature chemical potential for most metallic many-
body systems. Since we expect the thermopower of metals to
vanish in the ground state at all frequencies �being related to
the entropy�, equating the expectation of 	xx to zero gives us
explicit formulas for the ground state chemical potential
��0�. This approach can be used in most cases, including
hard core Bose metallic systems. In the interesting case of
the Hubbard model, from Eq. �57�, we find a formula for the
ground state chemical potential as a ratio of expectation val-
ues of two operators

��0� =
N
D ,

N =
U

4 � t��� ���x�2��nr�,�̄ + nr�+�� ,�̄��cr�+�� ,�
† cr�,� + cr�,�

† cr�+�� ,��	

−
1

2 � ��x + �x��
2t��� �t���� ��c

r�+�� +��� ,�

†
cr�,�	 ,

D = � �x
2t��� ��cr�+�� ,�

† cr�,�	 , �93�

where the denominator is recognized as essentially the stress
tensor ��xx	. In the noninteracting case, this reduces to ��0�
=�F, and thus generalizes this familiar relation to the inter-
acting case. Similar formulas result for other models consid-
ered in this work, using the same idea. Usually one has to
resort to differentiating the ground state energy with respect
to the number of particles, and this can be inaccurate in
numerical studies. Our formula is exact and a consequence of
the vanishing of S* at T=0. It is interesting that standard
many-body textbooks11,17 do not quote this type of expres-
sion, and hence it is interesting to verify this in some cases
where exact results are known from other arguments. The
Hubbard model on bipartite lattices is a good a check of this
result, since the chemical potential at half filling �only� is
easily found using particle hole symmetry to be U /2. One
can manipulate the expression Eq. �93� using the particle
hole symmetry, and this result is easily reproduced.

We have presented the detailed form of the thermal and
thermoelectric operators �xx and 	xx for the Hubbard model,
and also for the strongly correlated limit U→
 above. Re-
sults for other models not discussed here can be readily
found using the method presented. We have also presented
the operators that give the disorder contribution to these vari-
ables, these can in principle be evaluated in perturbation
theory in the disorder and interaction, and it should be inter-
esting to compute these as well in low dimensions where the
effect of disorder is marked. The operators for the lattice
thermal conductivity should be interesting in the context of
nonlinear lattices, and lend themselves to numerical evalua-
tion rather easily in the classical limit, and the quantum cases
also seem to be manageable with existing computational re-
sources.

One set of applications concerns the effect of strong cor-
relations on the thermoelectric power factor and the figure of
merit in narrow band systems. These can be evaluated at
high frequencies and such calculations should be useful
guides to the role of interactions and band filling. We provide
in Sec. IX a simple example of this formalism by computing
the high temperature thermopower for the triangular lattice.
This important and currently popular case models the phys-
ics of sodium cobalt oxide.33 Interestingly the T dependence
of the thermopower leads to estimates of the band width that
seem comparable to other estimations.
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APPENDIX: ELECTRICAL CONDUCTIVITY

To complete the calculation we summarize the results for
the electrical conductivity, which are already well known in
literature.6,13,18,19,21,22 We note that in parallel to the calcula-
tion of the thermal conductivity, the conductivity can be ex-
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pressed in terms of the correlations of the current operator Ĵx
as

���c� =
i

�c

1

L���xx	 − i�
0




ei�ct�dt���Ĵx�t��, Ĵx�0��	� ,

�A1�

where the stress tensor

�xx = lim
k→0

1

kx
�Ĵx�kx�,��− kx�� �A2�

=
qe

2


� �x

2t��� �cr�+�� ,�
† cr�,� or �A3�

=
qe

2


�
k�,�

d2�k�

dkx
2 ck�,�

† ck�,�, �A4�

assuming a charge qe for the particles, and n�r�� the particle
density at r�, and the charge fluctuation operator ��k��
=qe� exp�ik� ·r��n�r��. Again performing the Lehmann repre-
sentation we find

���c� =
i

�c

1

L���xx	 − �
n,m

pn − pm

�n − �m + �c
��n�Ĵx�m	�2� .

�A5�

We can use partial fractions and write

���c� =
i

�c
Dc +

i

L �
n,m

pn − pm

�m − �n

��n�Ĵx�m	�2

�n − �m + �c
, �A6�

where the charge or Meissner stiffness is given by

Dc =
1

L���xx	 − �
n,m

pn − pm

�m − �n
��n�Ĵx�m	�2� . �A7�

The more familiar superfluid density �s�T� and plasma fre-
quencies �p ,�p,s for the total and superconducting conden-
sate are defined in terms of Dc and ��xx	 by

�p,s
2 �

4�qe
2�s�T�
m

=
4�Dc�T�


,

�p
2 =

4�

L
��xx	 , �A8�

so that Eq. �A7� is just the lattice version of the well-known
London decomposition of electronic density into supercon-
ducting and normal parts. The real part of the Lehmann rep is

Re���� = �����D̄c +
�

L�1 − e−��

�


� �
�n��m

pn��n�Ĵx�m	�2���m − �n − �� , �A9�

where

D̄c =
1

L���xx	 −  �
�n��m

pn − pm

�m − �n
��n�Ĵx�m	�2� , �A10�

using a cancellation between the terms with equal energy
between the two terms.

The lattice version of the f sum rule for the real part of the
conductivity �an even function of �� follows as

�
0




Re ����d� =
�

2L
��xx	 . �A11�

We may rewrite Eq. �A6� in a more compact form as

���c� =
i

�c
Dc +

1

L�0




dtei�ct�
0

�

d��Ĵx�− t − i��Ĵx�0�	 .

�A12�

The difference between the two stiffnesses is

Dc − D̄c = − � �
�n=�m

pn��n�Ĵx�m	�2. �A13�

Thus if we know that Dc=0 by some independent argument,

then this provides us with an alternate expression for D̄c.
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