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We show that any short-range Hamiltonian with a gap between the ground and excited states can be written
as a sum of local operators, such that the ground state is an approximate eigenvector of each operator sepa-
rately. We then show that the ground state of any such Hamiltonian is close to a generalized matrix product
state. The range of the given operators needed to obtain a good approximation to the ground state is propor-
tional to the square of the logarithm of the system size times a characteristic “factorization length.” Applica-
tions to many-body quantum simulation are discussed. We also consider density matrices of systems at non
zero temperature.
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I. INTRODUCTION

The application of numerical renormalization group to
quantum systems is a natural idea with a long history. De-
spite Wilson’s success with the Kondo model,1 other early
attempts based on keeping low-lying eigenstates in each
block were less successful.2 The basic idea of these methods
is to break a system into subsystems, solve each of the sub-
systems, and then join the solutions together.

This leads to the following general question: how do you
solve a system if you know the solution of its subsystems?
Consider, for example, the following toy impurity problem: a
single spin-1 /2 impurity embedded in a band gap insulator.
Suppose that the electrons in the insulator do not interact
with each other, but only with the impurity spin. The prob-
lem of the electrons alone can readily be solved, even in an
infinite system, by filling Bloch states up to the Fermi level,
and one finds exponentially decaying correlations in this sys-
tem. If the interaction with the impurity is strong, the impu-
rity problem does not admit an analytic solution, but given
the finite correlation length, one might approximately solve a
finite periodic region around the impurity on a computer.
How, though, can one write down a solution for the com-
bined system? How can one “sew” the two solutions to-
gether?

In one-dimension, density matrix renormalization group
�DMRG�3 provides a means to do exactly this and has been
extremely successful. The states that it finds are matrix prod-
uct states.4–6 There exist some promising higher dimensional
generalization of these matrix product states.4,7 Precise
bounds on how well one can approximate a given quantum
state by a matrix product state are still lacking, however.

Recently, there have been several advances in understand-
ing the connection between a gap and the locality of corre-
lation functions,8–12 providing a firm analytical basis for the
notion that a gap implies exponentially decaying correlations
while a power law density of states implies correlations are
bounded by an algebraic decay. In this paper, we will simi-
larly use the existence of a gap to study this problem of
sewing states together.

All of the known Hamiltonians that give matrix product
states, such as the AKLT13 Hamiltonian, have the property
that the ground state is an eigenvector of each term in the

Hamiltonian separately. We refer to this as a local projective
Hamiltonian. The first portion of this paper will construct a
form of arbitrary gapped Hamiltonians such that the ground
state is an approximate eigenvector of each term separately,
writing the Hamiltonian as a sum of terms in Eq. �8�. This
will be a first step to building a matrix product form of the
ground state. We construct such a form in this paper, but do
not bound the number of states required in the matrix prod-
uct construction. Such a bound will be given in a future
work. While the proofs here will be to some extent construc-
tive, they will assume that certain properties of the ground
state are known, and thus they are not so useful in them-
selves for the problem of finding ground states.

Next, we briefly discuss applications to numerical simu-
lation. Of course, one application is in analyzing existing
algorithms, but we suggest the possibility of different algo-
rithms based on the proofs in the first part. In this case, we
will discuss how to find the needed properties of the ground
state used in the proofs in the first part.

The last portion of the paper will consider systems at
nonzero temperature. In this case we will show that the den-
sity matrix of the system can be written in a matrix product
form, which provides a higher dimensional generalization of
the one-dimensional matrix product form for density
matrices.21

II. APPROXIMATE LOCAL PROJECTIVE FORM OF THE
HAMILTONIAN

Consider the AKLT Hamiltonian,13 H=�Hi, with Hi

=S� i ·S� i+1+ �1/3��S� i ·S� i+1�2. This Hamiltonian has an exact ma-
trix product ground state. For a chain of N−1 sites, suppose
there are ground states labeled by an index �. Then, a chain
of N sites is supposed to have ground states labeled by an
index �, with ��=��,sA�,��s��� � s�, where s� denotes a
complete set of states on the Nth site �in this case, there are
three such states�, and A�,��s� is the matrix defining the ma-
trix product state. This then gives a wave function which
sews the solutions of the two subsystems together. One way
to find such wave functions is DMRG, while another is the
variational matrix product method. For the AKLT chain, the
ground state has �=1,2 with
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�
s

A�,���s�s� = � �0� �i�2 + �

�i�2 − � � − 0�
� . �1�

For more general Hamiltonians, the range of the indices
� ,� ,s may be larger and the matrix A�,��s� may be different.

This ground state not only minimizes the Hamiltonian H,
but also minimizes each Hi individually, and thus is an ei-
genvector of each Hi. This observation is fundamental to the
work in this section. We take an arbitrary Hamiltonian and
approximately rewrite it in an approximate local projective
form, defined to be a form in which the Hamiltonian is a sum
of local terms Mi such that the ground state is close �as
defined below� to an eigenvector of each Mi separately. A
Hamiltonian with such a form can truly be solved by solving
subsystems separately. Break a chain of N sites up into two
subchains of N−m and m sites. For each chain, find the
eigenvectors of the Hamiltonian with the correct eigenvalue
�the same eigenvalue as the ground state of the full system
has for the Hamiltonian of the subchain�. The ground state of
the full chain will be a linear combination of outer products
of the given states in each subchain. The matrix product
method realizes this for m=1.

We consider an arbitrary Hamiltonian H which is assumed
to have some number of degenerate ground states and then a
gap �E to the rest of the spectrum. That is, define �a� to be
an eigenstate state of H with energy Ea, and let �a� for a
=0¯n−1 be n distinct ground states while for a�n we
have Ea��E. We consider the case E0=E1= ¯En−1=0.14

We assume that H obeys the finite range conditions.8,15 That
is, the Hamiltonian H can be written as a sum of terms Hi
such that each Hi has a bounded operator norm, 	Hi	�J for
some J and such that each Hi acts only on sites within some
interaction range R of site i,16 while there are at most S sites
j within distance R of sites i for any i. Introduce some metric
on the lattice d�i , j� as the distance between sites i and j,
while d�O , j� is defined to be the distance between an opera-
tor O and a site j: that is, the minimum, over sites i on which
operator O acts, of d�i , j�. Then, for any operator Oj which
acts on a site j with d�i , j��R, we have 
Hi ,Oj�=0.

We now construct the approximate local projective form,
and in the next section construct the ground states.
Following,9 define

H̃i
0 =

�E
�2�q

�
−	

	

dtH̃i�t� , �2�

where

H̃i�t� 
 Hi�t�exp
− �t�E�2/�2q�� ,

Hi�t� = exp�iHt�Hi exp�− iHt� , �3�

with q to be chosen later. That is, Hi�t� is defined following

the usual Heisenberg evolution of operators, while H̃i�t� is
equal to Hi�t� multiplied by a Gaussian which cuts off the
integral in Eq. �2� at times t of order �q /�E. The notation of

Ref. 9 for these operators H̃i
0 is chosen to indicate that we

make an approximation �hence the tilde� to the zero fre-
quency �hence the zero� part of the Hi.

Now, here is the key point of the paper. We claim that H̃i
0,

acting on a ground state, gives back another ground state up
to some exponentially small difference. To see this, compute

�H̃i
0�ab
��a , H̃i

0�b�, the matrix element of H̃i
0 between

states ��a and �b�.17 A direct computation gives

�H̃i
0�ab = �Hi�ab exp�− q�Ea − Eb

�E
�2

/2� . �4�

Let

Plow = �
0�a�n

��a���a� �5�

and

Phigh = 1 − Plow. �6�

Thus, Plow projects onto the space of ground states while
Phigh projects onto the remaining states. Then, from Eq. �4�,
the norm

�PhighH̃i
0��a�� � 	Hi

0	exp�− q/2� � J exp�− q/2� , �7�

as claimed.
One important fact is that

�
i

H̃i
0 = �

i

Hi = H . �8�

Also, Hi and H̃i
0 have the same matrix elements in the sub-

space of ground states: �H̃i
0�ab= �Hi�ab if 0�a�n and 0�b

�n. Finally,

	Hi
0	 � 	Hi	 � J .

The H̃i
0 are local in that the commutator of Hi with any

operator Oj which acts only on a site j is exponentially small

in d�i , j�. This follows since Eq. �2� defines H̃i
0 as an integral

of Hi�t� over times t; the Gaussian in Eq. �3� cuts this inte-
gral off for a sufficiently long time while for short time Hi�t�
is local. The precise statement shown in the Appendix is that,
for any operator Oj which acts only on a site j,

	
H̃i
0,Oj�	 � J	Oj	�g�c1l,l� + 2 exp
− �c1l�E�2/�2q��� ,

�9�

where l=d�Hi , j� and the function g�c1l , l� is an exponen-
tially decaying function of l /
C for some microscopic length
scale 
C of order the interaction range R. The constant c1 is a
characteristic inverse velocity of propagation in the system;
the existence of a finite velocity of propagation, as discussed
in the Appendix, is essential in showing that Hi�t� is local for

short time. Equation �9� implies that H̃i
0 is local in that it has

a small commutator with operators which are far enough
from i.

We can further define Mi to be an approximation to H̃i
0

which is truly finite range: Mi will exactly commute with Oj
if d�i , j� is greater than a certain range lproj. To do this, define
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Mi = ��E/�2�q� � dt exp
− �t�E�2/2�Hi
trunc�t� , �10�

where

Hi
trunc�t� = exp�iHloct�Hi exp�− iHloct� , �11�

Hloc = �
j,d�i,j��lproj−R

Hj . �12�

Thus, Hloc is the sum of terms Hj with d�i , j� less than lproj

−R, so that Hi
trunc�t� only acts on sites within distance lproj of

i. Thus, the procedure to define the Mi is very simple: one
uses the definition Eq. �3�, but as one evolves Hi�t� one drops
terms which involve sites more than lproj from i.

In the Appendix, we show that

	H̃i
0 − Mi	 � J�N�lproj�g�c1lproj,lproj�

+ 2 exp
− �c1lproj�E�2/�2q��� , �13�

where N�lproj� is defined to be the number of sites j with
lproj−R�d�i , j�� lproj+R. Note also that 	Mi	�J.

We now pick q. For a given range lproj of the Mi, we want
to minimize �PhighMi�a��, so that the ground states are ap-
proximate eigenstates of the Mi. By a triangle inequality,

�PhighMi��a�� � �PhighH̃i
0��a�� + 	H̃i

0 − Mi	 � J�exp�− q/2�

+ N�lproj�g�c1lproj,lproj�

+ 2 exp
− �c1lproj�E�2/�2q��� .

To get the best bound, we pick q=c1lproj�E. Then,

�PhighMi��a�� � JO
exp�− lproj/lfac�� , �14�

where O denotes a quantity of order exp�−lproj / lfac�, with lfac

being the characteristic factorization length. The length lfac is
equal to the minimum of �c1�E�−1 and 
C, and thus for small
�E, lfac= �c1�E�−1.

With the given q, the bound in Eq. �13� becomes

	H̃i
0 − Mi	 � J
N�lproj�g�c1lproj,lproj� + 2 exp�− c1lproj�E/2�� .

This difference is exponentially small in lproj / lfac, so that dif-
ference between the ground state energy per site of H
=�iHi and that of the Hamiltonian M =�iMi is exponentially
small in lproj / lfac. Defining N to be the number of sites i in the

system, if N	H̃i
0−Mi	 is less than of order �E, then the

ground state of M has a nonvanishing projection onto the
ground state of H. This requires an lproj which is of order
ln�N�.

We claim that these Mi realize the approximate local pro-
jective form,

H � M = �
i

Mi. �15�

We start with the simplest case of only one ground state, n
=1. Then, Eq. �14� implies that the ground state �0� is close

to an eigenvector of each M̃i. That is,

��Mi�0� − �Mi���0�� � JO
exp�− lproj/lfac�� ,

where �¯� denotes the ground state expectation value. By
picking lproj large, we can make this difference as small as
desired.

The Mi give the desired approximate local projective form
for the case of a unique ground state. We will show in the
next section how to construct matrix product states that are
approximate ground states of this Hamiltonian. However, we
first consider the case of multiple degenerate ground states.

If there are multiple ground states with a gap to the rest of
the spectrum, then the situation is slightly more complicated.

Equation �7� implies that the H̃i
0 acting on ground states

gives states which are close to ground states, but no longer
necessarily implies that the ground states are eigenstates of

the H̃i
0. Instead, it depends to some extent on what basis we

choose for the ground states. As a simple example, consider
the Majumdar-Ghosh Hamiltonian for a one-dimensional

spin-1 /2 chain: H=�iHi with Hi=J�i
S� i ·S� i+1+ �1/2�S� i ·S� i+2�.
This Hamiltonian has two exact ground states; in one state
sites i=1,2 are in a singlet, sites i=3,4 are in a singlet, and
so on, while in the other state sites i=2,3 are in a singlet,
sites i=4,5 are in a singlet, and so on. Denote the first state
by �even� and the second state by �odd�. Now, the states
�even� and �odd� break translational symmetry; the expecta-
tion value ��even ,Hi�odd� is an alternating function of i.
However, in an infinite system the expectation value
��odd,Hi�odd� vanishes. Thus, in the subspace formed by the
two vectors �even,odd�, the Hi are diagonal and therefore the

H̃i
0 are also diagonal in this subspace, so with the given Mi,

there is no problem in this basis of ground states: the states
�even,odd� are approximate eigenstates of the Mi for large q.
Of course, as is well known for the Majumdar-Ghosh chain,

if we were to pick Hi= �J /2�
S� i ·S� i+1+S� i ·S� i−1

+ �1/2�S� i−1 ·S� i+1�, then the states �even,odd� would be exact
eigenstates of the Hi, but let us suppose that we do not know
that this form of the Hamiltonian is available.

Suppose instead we choose to form ground states which
are eigenvectors of the translation operator by �S�=�even�
+�odd� and �A�=�even�−�odd�. Then, the Hi are not diago-
nal in this subspace, and the states �S,A� are not approximate

eigenvectors of the H̃i
0, no matter how large q is. One way to

get around this is to go to an enlarged unit cell of two sites,
setting H=� jHj� where Hj�=H2j +H2j+1 and then the states
�S,A� are approximate eigenvectors of Mj�. However, the
simplest solution is to use the states �even,odd� instead of
�S,A�.

Thus, the important question is: can we simultaneously
diagonalize all of the Mi in the subspace formed by the
ground states �a� for 0�a�n? If so, then we can ensure
that, by the appropriate choice of basis for the ground states,
each ground state is an approximate eigenvector of each of
the Mi and we will have

��Mi − ��a,Mi�a����a�� � JO
exp�− lproj/lfac�� , �16�

If the states �a� in this basis break translational symmetry,
then the expectation value of Mi in a state �a� may depend
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on i even if H is translationally invariant. In order to simul-
taneously diagonalize the Mi in the subspace of ground
states, we need the Mi to commute in this subspace.

The conditions for the Mi to commute in this subspace are
discussed in an Appendix. We will show that, except for a
few artificial examples, the Mi approximately commute. In
particular, if H is translationally invariant, we will show that
the commutator of the Mi in this subspace vanishes exponen-
tially in the system size, and thus we can pick �a� such that
Eq. �16� holds. For H which are not translationally invariant,
we show that most of the Mi commute in this subspace.
More precisely, for any basis of the ground states, define o�i�
to be the operator norm of the off-diagonal part of Mi in the
low energy sector in that basis �the off-diagonal part of Mi is
a matrix which has zeros on the diagonal, but whose off-
diagonal elements are the same as Mi�. We will show in the
Appendix how to choose a basis in which we can bound
�io�i� by Eq. �B3�. This implies that we can pick the �a�
such that

��Mi�a� − ��a,Mi�a���a�� � JO
exp�− lproj/lfac�� + o�i� ,

with the sum of o�i� bounded.

III. MATRIX PRODUCT STATE FOR THE LOCAL
PROJECTION HAMILTONIAN

We pick a given ground state �a� and approximate it by a
matrix product state, with an appropriately bounded error.
For simplicity, we consider the case in which we can pick the
�a� such that Eq. �16� holds. This includes, as discussed
above, all translationally invariant systems, as well as many
translationally invariant systems, those without local zero en-
ergy excitations as discussed in the Appendix. We review
previous work on matrix product or valence bond states, and
then provide various constructions of the matrix product
state in the given case. The value of lproj required to obtain a
good approximation to the ground state will be seen to grow
as a power of the logarithm of the system size.

A. Matrix product and valence bond states

The one-dimensional matrix product state, as discussed
above, takes a chain of N−1 sites with a set of ground states
�, and constructs the ground states of an N site chain by
��=��,sA�,��s�s����, where �� are ground states of an N
−1 site chain. Matrix product ground states in one dimension
can always be written as valence bond states.4 Construct an
enlarged Hilbert space on each site, labeling states on site i
by two indices �i ,�i. A wave function is constructed in the
enlarged space, such that this wave function

��1 ,�1 ,�2 ,�2 , . . . � is a product of wave functions

��1 ,�2�
��2 ,�3� , . . .. Finally, a map is written on each site
from the original Hilbert space s� to the enlarged Hilbert
space �i�i�, and the wave function on the original Hilbert
space is defined to be the wave function of the mapped state
on the enlarged Hilbert space. To make this concrete, sup-
pose the matrix product construction gives ��
=��,sA�,��s�s����. Then, set 
��i ,�i+1�=���i ,�i+1�. Let F
map state si� on site i onto ��i�i

A�i,�i
�si��i�i�. Alternately,

this map F can be viewed as a projection from the space of
states �i�i� onto the states si�.18 Then, the matrix product
wave function is given by 

F�s1 ,s2 , . . . ��.

In the AKLT case, �i labels one of the two spin-1 /2’s and
�i labels the other one. The product wave function is a prod-
uct of singlet pairs, while the map F projects the two spin-
1 /2’s onto a spin-1. The matrix product state for the AKLT
chain can be written also as a valence bond state. Each site
has a spin-1, which may be represented by two spin-1 /2
spins. One spin-1 /2 is in a singlet with a spin-1 /2 on the
next site to the right, and one is in a singlet with a spin-1 /2
on the next site to the left. This state is then projected onto
the spin-1 state of the two spin-1 /2 spins on each site.

Matrix product states and valence bond states are equiva-
lent. However, the discussion above was confined to pure
states �wave functions� on finite systems. In Ref. 4, matrix
product and valence bond states were also constructed for
mixed states �density matrices� and again shown to be
equivalent.

Thus far we have discussed systems in one dimension. A
higher dimensional system can always be viewed as a one-
dimensional system as follows. For a d-dimensional system
in which each site is labeled by d coordinates, all of the sites
with a particular value of one coordinate can be grouped into
one super site, leaving a one-dimensional chain. This method
is very limited in practice; for a system of linear size L, the
size of the Hilbert space on a single super site is exponential
in Ld−1 and thus the range of the indices � ,� is also expo-
nentially large. This method amounts to studying a one-
dimensional ladder system.

Valence bond states are often regarded as a more appro-
priate way for constructing states in more than one dimen-
sion. To construct such a state,4,7 on an arbitrary lattice in
any number of dimensions, for each site i one constructs one
k-dimensional auxiliary Hilbert space per bond, where the
bond connects site i to site j. A wave function is defined in
the enlarged Hilbert space, which is a product of wave func-
tions on each bond, where the wave function on each bond is
a function of states at the “ends” of the bond �in one dimen-
sion, these are the indices �i ,�i+1�. For each site, a map is
defined from the original Hilbert space to the product of the
auxiliary Hilbert spaces on that site. In this paper, we restrict
to methods based on super sites for higher dimensions, while
a future publication will provide valence bond constructions
in this case.19

Manipulating these higher dimensional valence bond
states is difficult. After Ref. 4, most higher dimensional work
involved special examples where the Hamiltonian was ex-
actly equal to a sum of projection operators,20 so that the
ground state is exactly a higher dimensional generalization
of the AKLT ground state. However, in an important
advance,7 valence bond states were suggested as a good an-
satz for arbitrary Hamiltonians, with a numerical technique
being used to compute the state. We now provide a construc-
tion of the matrix product or valence bond states.

B. Construction of matrix product state

We first give the matrix product construction in one di-
mension. The approach discussed above in one dimension is
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an iterative procedure: from the ground states of an N−1 site
chain, we construct those of an N site chain. This procedure
is shown schematically in Fig. 1�a�. We first find the set of
allowed states on the first two sites, then the set of allowed
states on the first three sites, and so on. Our procedure will
instead be a “hierarchical” procedure, as shown in Fig. 1�b�.
We will find a set of allowed states on pairs of sites; we then
find sets of allowed states on groups of four sites, and so on.
In practice in DMRG, the iterative approach works better,
but we find the hierarchical approach gives better bounds
here.

Consider a one-dimensional system with given lproj. First
group the sites into super sites with sites 1� i�2lproj
grouped into one super site, sites 2lproj+1� i�4lproj+1 into
another super site, and so on, grouping 2lproj sites into each
super site. Suppose each site has an m-dimensional Hilbert
space. The dimension of the space of states on the sites 1
� i�2lproj is at most m2lproj. From now on, we refer to these
super sites simply as “sites;” with this grouping, the opera-
tors Mi act only on pairs of neighboring sites, with no longer
range interaction or three site interactions. We let Mk,k+1 be
the sum of the operators Mi which act on sites k and k+1.
Label the super sites of the system by i=1, . . . ,N. The sys-
tem is periodic, so that site N+1 is identical to site i; simi-
larly, d�N ,1�=1,d�N ,2�=2, and so on.

Pick a given �a. Let �k
1 label a complete basis of states

�k
1� on site k. From Eq. �16�,

��Mk,k+1 − ��a,Mk,k+1�a����a�� � JlprojO
exp�− lproj/lfac�� .

Let Pk
1 project onto the eigenvectors of Mk,k+1 with eigenval-

ues � such that ��− ��a ,Mk,k+1�a���x, for some x to be
chosen later. Let �k

2 label these different eigenvectors �k
2�.

Then,

x��a,�1 − Pk
1��a� � ��Mk,k+1 − ��a,Mk,k+1�a����a��

� JlprojO
exp�− lproj/lfac�� .

Then, choose x=JlprojO(exp�−lproj / 
log2�N�lfac��), so that

��a,Pk
1�a� � 1 − b1, �17�

where b1=exp
−
1−1/ log2�N���lproj / lfac��. This implies that
Mk,k+1 has at least one eigenvalue �, such that

�� − ��a,Mk,k+1�a�� � JlprojO„exp�− lproj/
log2�N�lfac��… .

Therefore, there is at least one state �k
2� for each site k.

For each pair of sites k ,k+1 surrounded by an oval on the
second line of Fig. 1�b�, we calculate the Pk

1 of the preceding
paragraph. Then, for each group of four sites, k ,k+1,k
+2,k+3 surrounded by any oval on the third line of Fig.
1�b�, we let Pk

2 project onto the eigenvectors of
Pk

1Pk+2
1 Mk+1,k+2Pk+2

1 Pk
1 in the space of states �k

2� � �k+2
2 �, such

that the eigenvector has eigenvalue � such that

�� − ��a,Mk+1,k+2�a�� � Jlproj�O
exp�− lproj/lfac��

+ 2b1�1/log2�N�.

Let �k
3 label the resulting eigenvectors �k

3�. Define �a
1

= Pk
1Pk+2

1 �a� /���a , Pk
1Pk+2

1 �a�. This vector is normalized to
unit norm. Then, ��a

1−�a��2b1. Thus,

��Mk+1,k+2 − ��a
1,Mk+1,k+2�a

1����a
1��

� JlprojO
exp�− lproj/lfac�� + 2b1Jlproj.

Therefore, ��a
1 , Pk

2�a
1��1−b2, where b2= 
exp�−lproj / lfac�

+2b1�1−1/log2�N�.
Proceeding in this fashion, we find that ��a

m−1 , Pk
m�a

m−1�
�1−bm, where bm= 
exp�−lproj / lfac�+2bm−1�1−1/log2�N�. There
are h
 log2�N� levels of this construction. Thus, after the last
step, bh is bounded by a quantity of order N exp
−�lproj / lfac�
��1−1/h�h��N exp�−lproj /elfac�. Choose lproj such that
lproj / lfac�O
ln�J /�E�ln�N�2�. Then, there is at least one
state �h�, and one may show that

��h,�
i

Mi�
h� � ��a,�

i

Mi�a�
+ NJO„exp�− lproj/
log2�N�lfac��… .

�18�

Thus, the energy of this state �h� will be within �E of the
ground state energy.

Thus, this procedure yields a matrix product state close to
the ground state in energy. At the same time, this procedure
does not yield too many states. All of the states �h� are
within energy of order �E of the ground state. We can
choose lproj so that they lie within energy �E /2 of the ground
state; it can then be shown that the number of distinct �h� is
at most 2n, where n is the number of ground states. By
choosing the bound on the expectation value of the energy
even smaller, the ground state may be approximated to arbi-
trary accuracy.

This procedure can be extended to systems in more than
one dimension. One possibility is to treat a higher dimen-
sional system as a one-dimensional system by grouping all
the sites with a particular value of a coordinate into a super
site as described in the section reviewing the matrix product
and valence bond constructions. Another possibility is to
group 2d sites together at each stage of the hierarchy. In

FIG. 1. Illustration of iterative and hierarchical procedures. �a�
Iterative procedure. Filled circles represent sites, ovals surrounding
sites representing grouping of sites into a super site. The first stage
groups sites 1 and 2. The second groups the combined site with site
3, and so on. �b� Hierarchical procedure. The first stage groups pairs
of sites, the second stages groups four sites into a single site, and so
on.
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either case, it is still only necessary to take an lproj which
grows as a power of ln�N� to get a good approximation to the
ground state.

IV. QUANTUM SIMULATION

One application to quantum simulation of matrix product
or valence bond states in higher dimensions is variational,7

and the results here may be useful in analyzing such algo-
rithms. However, another application of these results to
quantum simulation involves using the construction of the
preceding sections. The results in this section are illustrative,
and will be worked out for more practical examples in a
future presentation.19 The goal here is to show, for at least
some simple examples, that in principle one can actually use
computations on finite systems to write down wave functions
for much larger, or even infinite, systems, and to provide a
variational technique that gives a lower bound on the energy.

To do this, we propose to calculate the matrices Mi, de-
termine the correct eigenvalue of each Mi, and then use this
to determine the ground state wave function for a large sys-
tem. At this point, there is a very natural objection. The
procedure requires that we find the correct eigenvalue of the
Mi. If we can do this, then we know the ground state energy
of the system �up to an exponentially small error�. If lproj is
sufficiently large to obtain approximately correct eigenvalues
for the Mi, then why not just do an exact diagonalization of
the system on a system of size lproj and compute the ground
state energy that way? One answer is that the ground state
energy is not the only interesting aspect of the system. Cor-
relation functions are much more important, and it is often a
difficult task to determine the long-range order from the
quantum numbers �such as momentum and spin� of the low-
lying states found in exact diagonalization. The procedure
we outline of sewing together solutions will provide a way of
taking a solution on a finite size system and extending it to a
wave function for a system of much larger, or even infinite,
size. This wave function can then be used to compute long-
distance behavior of correlation functions. Also, as we will
see below, in some cases this yields better energy estimates
than exact diagonalization of the same size system.

We now discuss the first step, computing the Mi. One way
is to directly calculate the Mi, using Eq. �10� and using Eq.
�11� to define Hi

trunc�t�. One way to compute Hi
trunc�t� is via a

series expansion Hi
trunc�t�=Hi+ it
Hloc ,Hi�+. . .. Another way

is to exactly diagonalize a finite system of size lproj, compute
the matrix elements of Hi between the eigenvalues, and use

Eq. �4� to get matrix elements of H̃i
0. In both cases it is

necessary to choose q to minimize the difference 	H̃i
0−Mi	

given by Eq. �13� and also the norm �PhighH̃i
0�a�� of Eq. �7�,

giving a q of order c1lproj�E.
Given that the ground state is an approximate eigenstate

of the Mi computed in this way, the question arises: what is
the eigenvalue? That is, what is the approximate expectation
value of �Hi� in the ground state? In some cases, finding the
correct eigenvalue is an extremely difficult problem. For ex-
ample, consider an Ising spin-glass Hamiltonian, H=�iHi
with Hi=� jJijSi

zSj
z, where Jij is some set of random couplings

between nearby spins. This is a purely classical problem,
since all of the Hi commute, and any state in which each spin
has a definite value of Sz is an eigenvector of every Hi.
However, to find the ground state is clearly a difficult task. In
this highly disordered system, each Hi has a different expec-
tation value and one must find the correct eigenvalue for
each one. For ordered systems the task is much easier. If the
ground state does not break translational symmetry then each
Mi has the same ground state expectation value. If there is a
symmetry breaking ground state with an enlarged unit cell,
there are still only a discrete number of different expectation
values for the Mi. For example, in the Majumdar-Ghosh
chain, the ground states are invariant under translation by
two sites, and there are two different ground state expecta-
tion values for the Mi.

We have performed some simple numerical experiments
on systems of free particles on a lattice with different gapped
band structures. In this case there is no symmetry breaking,
and if H is translationally invariant, then the expectation val-
ues of the Mi in the ground state are also translationally

invariant. The lowest eigenvalue of H̃i
0 for given q always

provides a lower bound to the energy as in Eq. �19�. How-
ever, we have found that as q is increased, the lowest eigen-
value increased and converges rapidly to the ground state
energy per site. There are several other eigenvalues very
close in energy to the lowest, and then a gap to the rest, so in
this case at least the identification of the correct eigenvalue is
easy and this technique in fact provides a way to compute the
energy per site. An upper bound to the energy per site as well
as a macroscopic wave function can be obtained by using
one of the matrix product constructions above. The most
important question, of course, is how well this procedure can
be extended to complicated interacting systems.

Although the main point of the present paper is the formal
construction of the Mi, we finally discuss here two brief at-
tempts to apply these techniques to interacting systems. First,
the techniques here provide a variational lower bound to the
energy of the system. Consider a translationally invariant
Hamiltonian, H=�iHi, with all the Hi equal. Then, the
ground state energy per site, E0 /N is at least equal to the
smallest eigenvalue of Hi. Further,

E0/N � �min�Hi + ia1
Hi,H� + a2

Hi,H�,H� + ¯ � ,

�19�

where �min�O� is equal to the smallest eigenvalue of O, and

a1 ,a2 , . . . are arbitrary constants. The operators H̃i
0 are given

by a particular choice of the constants ak that can be obtained
from Eq. �2�. Other choices are possible, and varying over
the constants will provide a variational lower bound for the
energy. Thus, this provides an interesting complementary ap-
proach to other quantum simulation techniques, since almost
all other techniques provide either approximate estimates or
variational upper bounds.

We have studied how this bound is approached on a
spin-1 Heisenberg chain. The ground state energy of this
chain is known very accurately from DMRG. The present
method �19� here is not intended to compare to DMRG, but
rather we compare to exact diagonalization. In essence, this
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method provides another type of boundary condition, instead
of the usual periodic or antiperiodic boundary condition,
with the advantage that in this case we know rigorously how
the ground state energy compares to the energy from this
procedure. We have some freedom to pick the constants
a1 ,a2 , . . .. We also have freedom to choose Hi to be an op-
erator on a pair of neighboring sites, on three neighboring
sites, or in general on any supercell of m sites. Since H is
real symmetry in this case, we pick ak=0 for k odd. If m
=2, at the most trivial level of ak=0 for all k, we need to
diagonalize a Hamiltonian with n=2 sites. For a2�0, ak=0
for k�2, we need to diagonalize a Hamiltonian with n=6
sites, and so on. If we instead pick m=3 we need to diago-
nalize a Hamiltonian with n=3 sites if all ak=0, a Hamil-
tonian with n=7 sites if a2�0, ak=0 for k�2, and a Hamil-
tonian with n=11 sites if a2�0, a4�0, ak=0 for k�2.

We have chosen to take m odd for the following reason.
This technique provides a lower bound for the energy of the
Hamiltonian, both for the infinite system and for the particu-
lar n-site Hamiltonian. However, we know for the spin-1
chain that on even size systems the energy obtained is al-
ready less than the ground state energy. Thus, the most effi-
cient results will be obtained for odd size systems, and hence
we pick an odd m.

For m=3 and ak=0 for all k we find E0 /N�−1.5, which
is equal to one-half the energy of an open three site chain.
For m=3 and a2�0, with all higher ak=0, we find E0 /N�
−1.425 69 after picking a2=−0.075. This requires diagonal-
izing a seven site system; the most naive estimate that can be
obtained from a seven site system, taking m=7 gives a worse
bound of E0 /N�−1.439 09. For m=5, a2=−0.075 and all
higher ak=0, we find E0 /N�−1.4156. Slight improvements
on these bounds can be found by better optimization of a2.
This last estimate requires diagonalizing a nine site system.
One we move to an 11 site system, we have the option of
either considering m=7, a2�0, or m=5, a2�0, a4�0, with
all higher ak vanishing.

For purposes of computing the energy, then, this tech-
nique offers some slight improvements over exact diagonal-
ization. Using exact diagonalization with periodic boundary
conditions in this particular case, even size systems offer
lower bounds, while odd size systems offer upper bounds,
while we find a lower bound in every case. The estimate
from a nine site system using this method, for example, is
better than that found using exact diagonalization of an eight
site system, where the energy is estimated to be −1.417, but
not as good as that found by diagonalizing a 10 site system,
where one finds −1.4094, while for a seven site system the
estimate is better than that found from diagonalizing a six
site system, where one finds −1.44. Further this method of-
fers the only way to obtain rigorous lower bounds. This may
become especially important in studying frustrated systems.
On a frustrated system with spiral order, for example, one
has no foreknowledge that exact diagonalization of a peri-
odic chain of a given length will provide a lower or upper
estimate on the energy. The energy estimates of this unfrus-
trated chain obtained from exact diagonalization of odd size
systems are poor compared to those obtained by exact diago-
nalization of even size systems; on a frustrated chain one has
no notion of which sizes will yield accurate estimates of the
energy.

In one dimension on unfrustrated systems, then, this tech-
nique does not give much improvement on the energy, as one
can obtain a better estimate by exact diagonalization of a
system of one site more. However, in higher dimensions,
even on an unfrustrated system, this technique may become
more useful again. Suppose we have an unfrustrated system
of size L-by-L in higher dimensions, and suppose it follows
the pattern found here, that the most accurate estimate of the
energy from exact diagonalization is found from periodic
systems with even L where one obtains a lower bound. The
present technique offers the possibility of obtaining accurate
estimates of the energy from a system of size L−1 instead of
size L, which means studying a system with 2L−1 fewer
sites.

We know that the ground state wave function of the full
system has a bounded projection onto states other than those
with close to the given eigenvalue of Hi+a2

Hi ,H� ,H�
+¯. Indeed, for the particular choice of Eq. �2�, the projec-
tion onto such states is provably exponentially small in the
size of the system considered. Thus, one can follow a proce-
dure of breaking a chain or lattice into blocks, building the
Mi for each block and diagonalizing it in each block, restrict-
ing to the states with the given eigenvalues in each block,
and then studying the behavior of the full Hamiltonian in this
reduced space of states. As a first test of this algorithm, we
take m=3. If we simply take the project onto the states with
lowest eigenvalues of the three site Hamiltonian, all ak=0,
this provides a poor approximation to the eigenstates of
larger systems. For example, on a seven site chain, with the
three sites taken in the middle of the chain, there are 35

=243 states such that the three site Hamiltonian has an en-
ergy per bond given by E /2=−1.5. The Hamiltonian of the
seven site chain with open boundary conditions has a lowest
energy state with energy per bond equal to −1.439 09, but if
we project onto the given 243 states above, we only achieve
an energy per bond of −1.364 96. However, if we take a2=
−0.075 with ak=0 for k�2, there are 243 eigenvalues of the
Hamiltonian with E /2�−1.34, and then the 244th state has
eigenvalue −0.945 706. Projecting the Hamiltonian of the
seven site chain with open boundary onto these 243 states we
find a energy per bond of −1.433 31. Thus, we have accu-
rately selected the needed states, having projected from 2187
states to 243 states, or from 393 states with Sz=0 to 51 states
with Sz=0.

A further test breaking a 14 site periodic spin-1 chain into
seven site blocks and taking m=3 and a2=−0.075 to project
onto states in each block showed that the lowest energy wave
function in this subspace had energy per site equal to
−1.395 45, compared to the exact result of −1.403 94 for this
size. If instead of joining subblocks we had added sites to a
subblock one at a time, and used the present method of pro-
jecting onto the states in each subblock, we would arrive at
an algorithm similar to DMRG. However, the goal is not to
compare to DMRG in one dimension, but rather to present an
algorithm that can be extended to higher dimensions, which
DMRG cannot.

A second technique, which may also offer the possibility
of improved accuracy on the energies compared to exact di-

agonalization is based on the idea that the operators H̃i
0 are
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defined by the choice of constants ak=0 for k odd, and ak
= �−1�k/2
�k−1�!! /k!��q /�E2�k for k even. We then have a

series expansion for H̃i
0 in powers of q. We can then pertur-

batively expand the eigenvalues of H̃i
0 in powers of q and

extrapolate to q=	 from a finite number of terms. This is a
speculative approach that is currently being studied.

V. NONZERO TEMPERATURE

We now turn to systems at nonzero temperature. In this
case the temperature enables us to construct an approximate
matrix product form for the density matrix, regardless of
whether or not there is a gap. The unnormalized density ma-
trix for the system is equal to �=exp�−�H�.

We will construct an approximate matrix product form,
��� , lproj�, so that

���� � ���,lproj� = �
��k�

�1��1��2��2� ¯ F1��� j��F2��� j�� ¯ ,

�20�

where for each site i we assign an index �i defined below,
and sum over all values of that index. The operator �i��i�
acts only on site i, and the functions Fi obey a finite range
constraint: each Fi depends only on the � j for d�i , j�� lproj

for some lproj defined below. The error between ���� and
��� , lproj� will be exponentially small in lproj, while the range
of the indices �i will depend on lproj. Specifically, we bound
the error by showing that for any operator O,
Z−1�Tr
O�����−Tr
O��� , lproj����c	O	, for some constant c,
where we define Z=Tr
�����.

Before defining ��� , lproj�, we recall the Trotter-Suzuki22

decomposition of the path integral. In this case, we write
������n, where �n= 
�i exp�−�Hi /n��n, where the product
ranges over all i in some given sequence; since the different
Hi do not commute, the result depends on the particular se-
quence chosen. We claim that each of the �n can be written
exactly in a matrix product form as in the right-hand side of
Eq. �20�. A given operator exp�−�Hi /n� acts on sites within
a distance R of site i, and can be written as exp�−�Hi /n�
=���i,j�

Fi���i,j��� j,d�i,j��ROj��i,j�, where the operator Oj acts
only on site j and the range of values of index �i,j is expo-
nentially large in S, the number of sites within distance R of
site i. Here, Fi���i,j�� is some function of the S different
indices �i,j with the given i. The operator �n is a finite prod-
uct of these operators exp�−�Hi /n�. Each term in this prod-
uct can be written in matrix product form. For each site i, the
operator exp�−�Hi /n� appears n times in the given product,
and on the mth time it appears, we use a set of indices �i,j

m to
provide the matrix product form as above. For each site, j,
we have n different indices �i,j

m for each site i within distance
R of site j, and thus at most nS different indices for each site
j. Grouping all such indices for a given site j into one index
� j, and defining Fi�����=�m=1

n Fi���i,j
m ��, we arrive at the ma-

trix product form for �n.
Thus, the Trotter decomposition gives an approximate

matrix form, but the error in this approximation compared to
the exact result is not very good. In contrast, the stochastic

series expansion23 provides a much better way of approxi-
mating the desired ���� with much smaller error, but it is
difficult to write the stochastic series expansion result in a
matrix product form. Below, we will propose a matrix prod-
uct form with a bound on error comparable to that in the
stochastic series expansion.

A. Percolation transition at high temperature

The exponential exp�−�H� can be expanded as a power
series 1−�H+¯. We will show that at sufficiently high tem-
peratures, �−1�J, there is a “percolation transition” in this
exponential, as we now describe. Any given term in the
power series expansion is a product of Hi for different sites i.
For each term, we define a set of “active bonds” and “clus-
ters” as follows: for each Hi which appears in the given term,
we connect by active bonds all sites acted on by Hi, so that
the length of the active bonds is at most 2R. We define a
cluster to be a set of sites, all connected to each other by
active bonds, and not connected to any other sites outside the
cluster by active bonds. Then, for ���0, where �0 is speci-
fied below, define ��� , lproj� to include only the terms in the
power series such that no two sites i , j, with d�i , j�� lproj, are
in the same cluster. Thus, each term in ��� , lproj� is a product
of operators, each operator acting on the sites within a given
cluster, such that each cluster has a diameter at most lproj. See
Fig. 2. For ���0, at temperatures above the percolation
transition, we will be able to bound the difference between
���� and ��� , lproj�.

Let C be some set of sites i. Define HC=�i�CHi. Define
B�C� to be equal to the set of all sites j such that j� i for any
i�C and such that Hj acts on a site i for some site i�C.
Then, HB�C�=�i�B�C�Hi. Then, if a given term in the power
series expansion for exp�−�H� includes Hi for every i�C,
but does not include Hj for all j�B�C�, then this term in the
power series expansion has a cluster which includes exactly
the sites acted on by Hi for all i�C.

For any operators O1 ,O2 , . . .,

Z−1 Tr
OO1�i�1�O2�i�2� ¯ exp�− �H�� � 	O		O1		O2	 ¯ ,

where O�i��=exp�−H��O exp�H�� and 0��1��2� ¯ ��.
Thus, if C has nC sites and B�C� has nB�C� sites, we find that
for any operator O,

Z−1 Tr�O exp
− ��H − HC − HB�C����

� 	O	exp
�nC + nB�C��J�� , �21�

as can be seen by using a power series expansion of

Z−1 Tr�O exp
− ��H − HC − HB�C����

= Z−1 Tr�OT exp��
0

�

d�
HC�i�� + HB�C��i����
�exp�− �H�� ,

where T gives the �-ordered exponential.
We now define ��� ,C� to be equal to the sum of all terms

in the power series expansion of exp�−�H� that include Hi
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for all i�C, but do not include Hj for any j�B�C�. For any
O,

Tr
O���,C�� � 
exp�J�� − 1�nC

�exp��	HC + HB�C�	�Tr
O exp�− �H�� ,

as can be seen by a power series expansion. Using 	HC
+HB�C�	� �nC+nB�C��J�SJnC gives

Z−1 Tr
O���,C�� � 	O	
exp�J�� − 1�nC exp�nCSJ�� .

�22�

Then, ����−��� , lproj� is a sum over terms which include
a sequence of active bonds connecting any two sites i , j sepa-
rated by a distance at least lproj. This difference ����
−��� , lproj�=−�m=1

	 �−1�m�m, where �m is equal to the sum of
all terms in the power series expansion of � which include at
least m clusters with diameter greater than lproj. Using Eq.
�22�, Z−1 Tr�O�1���clustersy

nC	O	, where the sum ranges
over all different clusters on the lattice which connect
two sites separated by distance greater than lproj and nC
is the number of sites in the cluster and where
y= 
exp�J��−1�exp�SJ��. Similarly, Z−1 Tr�O�m�� �1/m!�
���clustersy

nC�m	O	.

We now show the “percolation transition.” The number of
clusters of nC sites is bounded on a regular lattice by NxnC for
some constant x, as is known for lattice animals,24 where N is
the number of sites on the lattice. Thus for sufficiently small
�,

�
m=1

	

�1/m!�� �
clusters

ynC�m
� exp�N �

n=lproj+1

	

�xy�n� − 1.

For fixed J ,S, we can make y as close to zero as desired by
taking sufficiently small �. Thus, there exists some small
enough �0 such that for ���0,

�
m=1

	

�1/m!�� �
clusters

ynC�m
� exp
N exp�− lproj/
perc�� − 1,

where 
perc is of order the interaction range R. Then,

Z−1�Tr
O����� − Tr
O���,lproj���

� �exp
N exp�− lproj/
perc�� − 1�	O	 . �23�

B. Matrix product form at high temperature

We now show that ��� , lproj� realizes the matrix product
form Eq. �20� for ���0. Each term in ��� , lproj� is a product
of terms acting on clusters of sites. We now specify the in-
dices �i. First, if site i is in a cluster, the index �i indicates
all the sites in that cluster. There is some redundancy in this
description: if two sites i and j are in the same cluster, then
the indices �i and � j specify the same set of sites. Each �i
will also specify some additional information. The sum of all
terms which include a given cluster is some operator acting
on the sites in the cluster; this operator can be decomposed
into a sum of products of operators that act on individual
sites in the cluster. The indices �i will also keep track of the
terms in this sum. The number of different values that each
index �i can assume is exponentially large in lproj

d in this
construction. However, this is much smaller than the number
of different values that would be needed to describe a general
operator �: in general, one might need a range of values
which is exponentially large in the system size. Thus,
��� , lproj� can be exactly written in a matrix product form, as
on the right-hand side of Eq. �20�.

Further, we have shown that ��� , lproj� is a good approxi-
mation to ����. This can be expressed in terms of the trace
norm. For any operator O, the trace norm �O� is equal to
Tr��O†O�, where Tr�¯� denotes the trace over all states and
the unique positive square-root is taken. For a Hermitian
operator, such as ���� or ��� , lproj�, �O� is equal to the sum of
the absolute values of the eigenvalues. For a positive definite
Hermitian operator, such as ����, the trace norm is equal to
the trace. Use Eq. �23�, valid for arbitrary O, and choose O
so that in a basis of eigenvectors of ����−��� , lproj�, O is a
diagonal matrix with each diagonal entry equal to ±1, the
sign being chosen the same as the sign of the corresponding
eigenvalue. Then,

FIG. 2. Example of a set of active bonds shown as solid lines;
dashed lines represent bonds which are not active while circles
represent sites. The Hamiltonian is a sum of terms which act on
pairs of neighboring sites, so that the bonds connect only neighbor-
ing sites. Using a Manhattan metric for the lattice, the set of active
bonds shown here is a term in ��� , lproj=2�. There are four distinct
clusters, three with diameter two and one with diameter one.
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����� − ���,lproj�� � �exp
N exp�− lproj/
perc�� − 1������� .
�24�

By taking an lproj that is of order ln�N�
perc, we can obtain a
small error �����−��� , lproj��.

We now obtain a matrix product form at arbitrary tem-
perature � that guarantees positive definiteness of ��� , lproj�.
For ���0, set

���,lproj� = ���/n,lproj�n, �25�

where n is the smallest even integer such that � /n��0. By
picking n even we guarantee that ��� , lproj� is positive defi-
nite. Equation �25� realizes a matrix product form �20�: for
each site i there are n different indices �i, one from each of
the ��� /n , lproj�. We group these into one single index, and
call the new index �i, giving Eq. �20�. The number of differ-
ent values that the new �i can assume is exponentially large
in �� /�0�lproj

d . We can bound the error at arbitrary tempera-
ture as follows.

For each ��� /n , lproj� we define clusters. We can show, as
above, that

Z−1 Tr�O��k�/n����/n,C��
�n − k − 1��/n�� � 	O	ynC,

for any 0�k�n−1, where y= 
exp�J� /n�−1�exp�SJ� /n�.
Define �m to be the sum over all terms in which there are

at least m clusters with diameter greater than lproj. Then,

Z−1 Tr�O�m� � �1/m!�� �
clusters

nynC�m
	O	 .

Following the same arguments as before

Z−1�Tr
O����� − Tr
O���,lproj���

� �exp
��/�0�N exp�− lproj/
perc�� − 1�	O	 �26�

and so we need an lproj that grows logarithmically in the
system size to obtain a good approximation. At the value of
lproj that gives a good approximation, lproj��
perc ln�N�, the
number of different values that each index � can assume is
of order

exp�O

perc
d ln�N�d���/�0�� . �27�

The final matrix product form turns a quantum statistical
mechanics problem into a classical statistical mechanics
problem, as tracing over the �i gives a probability distribu-
tion for the �i. However, the resulting classical problem may
suffer from a sign problem.

DISCUSSION

We have shown how to construct an approximate local
projective form of short range, gapped Hamiltonians, and
used this to show that the ground states are close to matrix
product states. The main goal of the present paper is at a
formal level; the techniques developed in this paper provide
a way to, in principle at least, extend calculations on small
systems to wave functions on much larger system sizes. It is
worth comparing to Ref. 25, which showed how to write a
very general class of Hamiltonians as a sum of projection

operators. The projection operators there were two-by-two
matrices which makes it much easier to find the ground state.
Here, the projection operators are large matrices, and the task
of constructing the ground state from these operators is
tricky. However, the important advance here is that the pro-
jection operators are local. This strongly constrains the
ground state and leads to the matrix product for the ground
state.

In addition to the formal interest, this work may find prac-
tical use in numerical simulation, as, at least in simple cases,
it is possible to directly calculate the local projective form.
Further, we have provided �19�, a variational lower bound on
energy.

We finally return to the impurity problem raised in the
introduction. The following procedure will generate a good
wave function for the whole system. First, numerically com-
pute the Mi for some region around the impurity. Next, com-
pute the appropriate Mi for the system outside that region;
this can be done analytically since that part of the system is
noninteracting. Then, determine the appropriate eigenvalues
for the Mi and get a basis of states �impurity� � �insulator�. Fi-
nally, use the Mi that connect the two regions to determine a
wave function in this basis of states. This procedure can be
followed even if there are many impurities embedded in the
system and the resulting wave function can be used as a
starting point for further improvement.
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APPENDIX A: LOCALITY

The locality of the H̃i
0 relies on the finite group velocity

result.8,15,26 Given the finite-range conditions on the Hamil-
tonian above, one can bound the commutator 	
A�t� ,B�0��	,
where A�t�=exp�iHt�A exp�−iHt�, and show that this com-
mutator is exponentially small for times t less than c1l where
l is the distance between A and B and c1 is some character-
istic inverse velocity. The bound is that 	
A�t� ,B�0��	
� 	A		B	� jg
t ,d�A , j��, where the sum ranges over sites j
which appear in operator B and where the function g has the
property that for �t � �c1l, g�c1l , l� is exponentially decaying
in l for large l with decay length 
C. Also, for t� t�, g�t , l�
� �t / t��g�t� , l�.

Consider 
H̃i
0 ,Oj� for some Oj which acts only on site j.

This equals ��E /�2�q��−	
	 dt
Hi�t� ,Oj�exp
−�t�E�2 / �2q��.

Applying a triangle inequality to the integral we have

	
H̃i
0,Oj�	 � ��E/�2�q��

−	

	

dt	
Hi�t�,Oj�	

�exp
− �t�E�2/�2q�� .

Let l=d�Hi , j� be the distance between Hi and site j. We split
the integral over times t into a sum of one integral over �t �
�c1l and one integral over �t � �c1l. For �t � �c1l, we use the
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finite group velocity bound to bound 	
Hi�t� ,Oj�	 while for
�t � �c1l we use 	
Hi�t� ,Oj�	�2J	Oj	. Thus

	
H̃i
0,Oj�	 � J	Oj	� �E

�2�q
�

�t��c1l

g�c1l,l�exp
− �t�E�2/�2q��

+ 2
�E

�2�q
�

�t��c1l

exp
− �t�E�2/�2q���
� J	Oj	�g�c1l,l� + 2 exp
− �c1l�E�2/�2q��� , �A1�

giving the claimed bound on the commutator �9�.
We now bound the difference 	H̃i

0−Mi	. We have

	H̃i
0 − Mi	 � ��E/�2�q�

�� dt exp
− �t�E�2/�2q��	Hi�t� − Hi
trunc�t�	 .

�A2�

The difference between Hi�t� and Hi
trunc�t� is due to the dif-

ferent Hamiltonians used to define the time evolution.
We now bound the difference between Hi�t� and Hi

trunc�t�.
This result will also be needed in the nonzero temperature
calculation. We can replace Eq. �12� by Hloc
=� j,d�i,j��lproj−RHj +� j,d�i,j��lproj+RHj; by adding the terms Hj

with d�i , j�� lproj+R we do not change Hi
trunc�t�. Then,

	Hi�t� − Hi
trunc�t�	 � �

j,lproj−R�d�i,j��lproj+R
�

0

t

dt�	
Hj,Hi�t��	 .

Using the finite group velocity bound we have

	Hi�t� − Hi
trunc�t�	 � �

j,lproj−R�d�i,j��lproj+R

J2S

��
0

t

dt� g�t�,lproj − 2R� ,

where lproj−2R is the minimum distance between the opera-
tors Hj and Hi and S is defined to be the number of sites
acted on by the operator Hj. However, the integral
JS�0

t dt� g�t� , lproj−2R� is bounded by g�t , lproj�.8 Thus,

	Hi�t� − Hi
trunc�t�	 � �

j,lproj−R�d�i,j��lproj+R

Jg�t,lproj�


 N�lproj�Jg�t,lproj� , �A3�

where N�lproj� is defined to be the number the number of sites
j with lproj−R�d�i , j�� lproj+R.

Equation �A3� can be expressed in a more general form.
For any operator Oi, we can define Oi

trunc�t� by Oi
trunc

=exp�iHloct�Oi exp�−iHloct�, with Hloc=� j,d�i,j��ltrunc−RHj.
Then, Oi

trunc�t� only involves sites within distance ltrunc of i
�assuming that Oi originally involved only sites within that
distance�. Then,

	Oi�t� − Oi
trunc�t�	 � �

j,ltrunc−R�d�i,j��ltrunc+R

	O	g�t,ltrunc�


 N�ltrunc�	O	g�t,ltrunc� , �A4�

where N�ltrunc� is defined to be the number the number of
sites j with ltrunc−R�d�i , j�� ltrunc+R.

In Eq. �A2�, for �t��c1lproj we can use the bound on g to
bound the difference 	Hi�t�−Hi

trunc�t�	, while for �t � �c1lproj

we use 	Hi�t�−Hi
trunc�t�	�2J. Thus,

	H̃i
0 − Mi	 � J�N�lproj�g�c1lproj,lproj�

+ 2 exp
− �c1lproj�E�2/�2q��� , �A5�

giving Eq. �13�.

APPENDIX B: COMMUTATOR IN LOW ENERGY
SECTOR

Here we consider sufficient conditions for the Mi to com-
mute in the low energy sector. We consider the case that n is
uniformly bounded above, and �E is uniformly bounded be-
low, independent of system size. The important result is that
for most systems of interest, including all translationally in-
variant systems, the commutator of the Mi is exponentially
small in the system size; for a few examples certain of the Mi
do not commute, but even in that case the lack of commuta-
tion only poses problems in a finite region of the system �in
this case, as we will see, there are local zero energy degrees
of freedom�.

The operators Mi are local, in that each acts only within a

finite range lproj of site i. Consider then the operators M̃i
0, for

some q. This q is not necessarily the q of Eq. �2�. Using the
locality results, we have

	
M̃i
0,Mj�	 � J2�NMg�c1l,l� + 2 exp
− �c1l�E�2/�2q��� ,

�B1�

where l=d�i , j�−2lproj is the smallest distance between sites
acted on by Mi and Mj and NM is the total number of sites
acted on by Mj.

Now, PlowM̃i
0Plow= PlowMiPlow. Therefore,


PlowM̃i
0Plow,PlowMjPlow� = 
PlowMiPlow,PlowMjPlow� .

The second commutator is the low energy commutator that
we wish to evaluate. We can bound the first commutator by a
triangle inequality,

	
PlowM̃i
0Plow,PlowMjPlow�	 � 	
M̃i

0,Mj�	 + �	PhighM̃i
0Plow	

+ 	PlowM̃i
0Phigh	�	Mj	 .

Following Eq. �7�, 	PhighM̃i
0Plow	�J exp�−q /2� and also

	PlowM̃i
0Phigh	�J exp�−q /2�. Combining this with Eq. �B1�,

	
PlowMiPlow,PlowMjPlow�	 � J2�NMg�c1l,l�

+ 2 exp
− �c1l�E�2/�2q��

+ 2 exp
− q/2�� .

SOLVING GAPPED HAMILTONIANS LOCALLY PHYSICAL REVIEW B 73, 085115 �2006�

085115-11



Pick q=c1l�E, we find that the commutator of

	
PlowMiPlow,PlowMjPlow�	 � J2
NMg�c1l,l�

+ 4 exp�− c1l�E/2�� .

�B2�

Thus, the commutator of Mi with Mj in the low energy sector
is exponentially small in d�i , j�.

For a translationally invariant, d-dimensional, system on a
lattice, this suffices to show that the commutator of Mi with
Mj in the low energy sector is exponentially small in the
system size. We can introduce coordinates for each site,
�x� ,y�. The d-dimensional vector x� labels the particular unit
cell to which the site belongs, while the coordinate y indi-
cates the particular site within that cell. The Hamiltonian is
invariant under translation so we can pick a basis in which
the n ground states are eigenvectors of the translation opera-
tors. In this basis, the matrix elements of the M are related by
�Mx�,y�ab= �Mx�+x��,y�ab exp
ix�� · �k�a−k�b��, where k�a is the mo-
mentum of ground state a, for 0�a�n−1.

In the simplest case �a case which applies to every system
of which we are aware�, the k�a are vectors of rational mul-
tiples p /q of 2�, such that p ,q are integers with some de-
nominator q which is independent of system size for large
enough systems. That is, k�a=2��pa

1 /qa
1 , . . . , pa

d /qa
d�. Then, it

is possible to identify a supercell, such that all of the n
ground states are unchanged by translation by a supercell.
The size of this supercell in a given direction m is equal to
the least common multiple of the n different qa

m. For ex-
ample, in the Majumdar-Ghosh chain, the two lowest states
have momentum 0 and �, so that in one case p=0,q=1, and
in the other p=1,q=2. Then, the ground states are un-
changed under translation by two sites. For a system with
momenta 0 ,� /3 ,2� /3 for the ground states, the ground
states would be unchanged under translation by three sites.
Then, consider any commutator 
Mx�1,y1

,Mx�2,y2
�. This equal


Mx�1,y1
,Mx�2+x��,y2

� where x�� translates x�2 by some number of
supercells. By choosing x�� correctly, we can make the dis-
tance between �x�1 ,y2� and �x�2+x�� ,y2� of order the linear size
of the system. Then, we can use the result that the commu-
tator vanishes exponentially in the spacing between the op-
erators to show that the original commutator 
Mx�1,y1

,Mx�2,y2
�

is exponentially small in the system size, as desired.27

A slightly more complicated, but very artificial, case, is
that in which the p ,q depend on system size in such a way
that the size of the supercell is equal to the linear size of the
system. It is not clear that such a thing can actually happen in
a system with a finite number n of low energy states. Even in

this case it is possible to show the commutator of any two
Mi ,Mj in the low energy sector is exponentially small in the
system size, by using the smallness of the commutator

Mi ,Mj� for large d�i , j� and expanding the commutator in
intermediate states. However, the proof is sufficiently artifi-
cial that we do not give it here.

What if a system does not have translational invariance?
In this case, the Mi need not commute in the low energy
sector. Consider the following example system, a one-
dimensional system of spin-1 /2 on each site i. For i
�0,1 ,2, we have Hi=Si

z, while H0=S0
x +S0

y, H1=−S0
x −S1

z ,
and H2=−S0

y +S2
z . This is a complicated way of writing the

Hamiltonian H=�i�0Si
z, since all the terms acting on site 0

cancel between H0, H1, and H2. This Hamiltonian has a dou-
bly degenerate ground state, with all spins pointing down,
except for spin-0 which can point in either direction. For
large enough q , lproj, the commutator of the Mi in the low
energy sector is close to that of the Hi in the low energy
sector. However, clearly H0 and H1 do not commute in the
low energy sector, since 
S0

y ,S0
x��0. Similarly, H1 and H2 do

not commute, and H0 and H2 do not commute. Still H0 com-
mutes in the low energy sector with Hi for i�2.

In this case, the lack of commutation is localized near site
0. The two ground states differ only locally, on site 0, and
only the Hi for i=0,1 ,2 fail to commute, while the others are
diagonal in the low energy subspace.

We now show how to choose a basis of the ground states
to bound �io�i�. Consider a system with n=2. Then, find the
j which maximizes �� j, where �� j is the difference between
the two eigenvalues of Mj in the low energy sector, and work
in a basis which diagonalizes Mj in the low energy sector.
Then, o�i�� 	
PlowMiPlow, PlowMjPlow�	 / ��� j�. From Eq.
�B2�, the commutator is an exponentially decaying function
of d�i , j�, and summing over all i we find that

�
i

o�i� � O�J2/c1l�E�� j� , �B3�

independent of system size.
For a system with n�2, we can proceed similarly; we

first find the Mj with the maximum difference between its
largest and smallest eigenvalues, and and use this to bound
the off-diagonal matrix elements of other Mi between the
corresponding eigenvectors. We then find an Mk which has
two different eigenvalues, with different eigenvectors from
Mj, and show that off-diagonal matrix elements between
those two states are exponentially small in d�i ,k�. We pro-
ceed like this until we have bounded all off-diagonal matrix
elements.
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