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The concept of nearsightedeness of electronic matter �NEM� was introduced by Kohn in 1996 as the
physical principle underlining Yang’s electronic structure algorithm of divide and conquer. It describes the fact
that, for fixed chemical potential, local electronic properties at a point r, like the density n�r�, depend signifi-
cantly on the external potential v only at nearby points. Beyond a distance R, changes �v of that potential, no
matter how large, have limited effects on local electronic properties, which tend to zero as functions of R. This
remains true even if the changes in the external potential completely surround the point r. NEM can be
quantitatively characterized by the nearsightedness range R�r ,�n�, defined as the smallest distance from r
beyond which any change of the external potential produces a density change, at r, smaller than a given �n.
The present paper gives a detailed analysis of NEM for periodic metals and insulators in one dimension and
includes sharp, explicit estimates of the nearsightedness range. Since NEM involves arbitrary changes of the
external potential, strong, even qualitative changes can occur in the system, such as the quantization of the
energy bands or the filling of the insulating gap of an insulator with continuum spectrum. In spite of such
drastic changes, we show that �v has only a limited effect on the density, which can be quantified in terms of
simple parameters of the unperturbed system.
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I. INTRODUCTION

This paper is based on a preliminary remark by Kohn1

about a general concept called “nearsightedness of electronic
matter” �NEM� and on a recent short report by Prodan and
Kohn2 �PK�, which amplified that remark in various aspects
but did not include detailed proofs. In the present paper, we
select that part of PK dealing with noninteracting one-
dimensional �1D� electrons and provide a full discussion,
including detailed proofs. Future publications will amplify
other sections of PK.

By “electronic matter” we understand a system of many
electrons with significant wave-function overlap, in equilib-
rium under the action of a given external potential v�r�, at a
given and fixed temperature T. We shall consider the change
of a local electronic property, like the electron density n�r�,
under the action of an arbitrarily strong potential perturba-
tion w�r��, which vanishes inside a specified sphere �r−r��
=R. Note that we allow situations when the perturbation
completely surrounds the point r. NEM states that the result-
ing density change at r, �n�r ,R�, is bounded by a function
�n�r ,R�,

�n�r,R� � �n�r,R� , �1�

independent of the amplitude or shape of w�r��, and that

�n�r,R� → 0 monotonically as R → � , �2�

provided only that the chemical potential � is held fixed.
The essence of NEM is contained in Eq. �1�. Although it

may not look very special, consider our perturbing potential
w�r��, confined outside the sphere of radius R. Common
sense says that, as we increase its strength, we need to in-
crease the radius R if we want to maintain its effect at the
center of the sphere below a certain level. Common sense
also says that we need to increase R to infinity as we make

w�r�� stronger and stronger. In reality, this is not so: if the
chemical potential is kept fixed, these effects will saturate
and, in fact, no matter what w�r�� we put outside the sphere
of radius R, they cannot exceed a certain upper bound, which
we will determine in this paper.

For a given �n, we can solve for R in �n�r ,R�=�n and
define the nearsightedness range R�r ,�n�. The significance
of R�r ,�n� is the following: no perturbation beyond
R�r ,�n�, of arbitrary shape and amplitude, can produce a
density change at r larger than �n. R�r ,�n� provides a
simple, quantitative measure of nearsightedness.

The above formulation of NEM often reminds people of
Thomas-Fermi screening, sometimes even when we discuss
insulators. However, let us point out a few facts. If one puts
a charge inside the uniform charged electron gas and calcu-
lates the density response, one will find that the Thomas-
Fermi exponential screening is valid only very near the im-
purity. Further away from the impurity, one will see Friedel
oscillations, decaying as an inverse power law.3 These oscil-
lations are not negligible. In fact, the Friedel oscillations
were observed experimentally, though not directly, one year
after their theoretical prediction.4 However, this was not re-
alized until much later, when Kohn made the connection be-
tween the two results.5,6 He showed that there is a big dis-
crepancy between the prediction of the Thomas-Fermi
screening theory and these experimental results and that a
self-consistent calculation along Friedel’s lines of the density
change due to impurities in copper brings the theory and
experiment to almost perfect agreement. The picture that
emerged was that, in the asymptotic region, the screening
only renormalizes the amplitude of the Friedel oscillations.
The whole issue was considered very important at that time,
because it clearly demonstrated the existence of a sharp
Fermi surface in real metals. We also like to mention one
very well-known fact in surface physics, where self-
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consistent calculations of metallic surfaces showed that the
effective potential goes to the bulk value extremely fast, typi-
cally within one or two layers. However, the density oscilla-
tions extend much further into the bulk and they can be
viewed as the Friedel oscillations generated by the screened
surface potential. With these being said, we hope that the
reader will dissociate, right from the begenning, NEM from
the Thomas-Fermi exponential screening and the nearsight-
edness range from the Thomas-Fermi screening length.

Quantum gases display nonlocal density responses to lo-
cal perturbations because of two factors. First, the effect of
any local perturbation propagates to further distances
through interparticle interactions. This effect can be regarded
as classical, since it manifests, in the same way, in classical
gases. Second, there is a purely quantum effect that stems
directly from the uncertainty principle. This paper is con-
cerned with this purely quantum effect, so it neglects the
interparticle interation effects entirely.

The fact that NEM exists for noninteracting systems is
extremely important. To understand why, let us go back in
time and recall that, at the beginning of the electronic struc-
ture calculations, when the exact diagonalization was the
method of choice, people were facing the so-called “expo-
nential wall” when trying to extend the calculations to larger
systems: because the number of operations in such calcula-
tions scales exponentially with the number of atoms N, their
applicability was and is still limited to systems containg a
few tens of atoms. Density functional theory7,8 �DFT� pro-
vided a powerful alternative: because the number of opera-
tions in DFT calculations scales as N3, we can now solve the
electronic structure for systems containing hundreds of at-
oms. However, electronic structure calculations for biologi-
cal and nano systems, or for extremely complex materials,
involve thousands of atoms. At this scale, we start feeling the
“N3 wall.” Ab initio quantum calculations for such complex
systems will require a new generation of DFT algorithms,
scaling linearly with the number of atoms. It is now gener-
ally accepted that NEM is the physical basis for these
algorithms.9

The quest for linearly scaling algorithms was initiated by
Yang, who was the first to argue that O�N� algorithms are
possible.10 The algorithm proposed by Yang is known by the
name of divide and conquer �DC�. There are now several
reviews on linear scaling electronic structure calculations.
We will mention here the one by Goedecker11 and the one by
Wu and Jayanthi,12 which, at the time of their publication,
gave an exhaustive discussion of O�N� methodologies. If we
examine carefully these methodologies, they are all based on
the same original idea, namely, gluing together calculations
done for smaller systems. What is different is the represen-
tation and the way the size of these smaller systems �the
truncation� is determined. For example, the real space ap-
proaches will use the decay of the density matrix while the
localized basis set approaches will use the overlap of these
functions to judge how large these subsystems should be.

Let us focus on the original implementation given by
Yang.10 Consider a self-consistent, finite-temperature DFT
iteration process, for a large quantum system. Each iterative
step consists in calculating the density of a noninteracting
electron gas in equilibrium under a given effective potential

�known from the previous iteration�. In traditional ap-
proaches, this requires a number of operations that scales as
N3. The DC algorithm, if it works as it is supposed to, re-
quires a number of operations that scales linearly with N. It
goes like this. The large system is divided into nonoverlaping
subregions, which are then surrounded with buffer zones.
The global chemical potential � is fixed and the orbitals are
calculated and populated according to the Fermi-Dirac dis-
tribution at � and T, for each subregion+buffer zone. The
density in the buffer zones is discarded so, at this point, one
has calculated a density for each subregion and, by putting
together all these subdensities, one can construct the global
density. The charge neutrality condition is then checked for
this global density and the chemical potential is adjusted, if
necessary. Note that charge neutrality must be satisfied by
the entire system, not by each subsystem. In this way we
have completed the DFT iteration step in a number of opera-
tions that scales linearly with the size of the system. Now,
the question is, how accurate is this algorithm? In fact, the
most important question is, can we obtain arbitrarily small
accuracy with this algorithm? To answer, we need to com-
pare the density calculated for a subregion+buffer zone and
the density calculated for the entire system at once, at the
same chemical potential �. Now one can see why NEM can
be regarded as the basis for this algorithm: the artificial ter-
mination at the outer boundary of the buffer zone, no matter
how it is done, represents the change in the effective poten-
tial in our formulation of NEM. For example, such changes
of the effective potential occur when one calculates the den-
sity matrix and ignores the points outside a subregion, or
when one calculates the density and ignores the elements of
a localized basis set that are centered outside a subregion.
Since we have no control on how the effective potential is
modified by such truncations, Eq. �1� is paramount: it tells us
that the effects of any artificial termination cannot exceed an
upper bound. This upper bound is an intrinsic characteristic
of the system and is independent of the method of termina-
tion. Equation �2� tells us that, if we take the buffer zones
large enough, the difference between the subdensity and the
real density can be made smaller than any desired accuracy.

Examples and estimates of the width of the buffer zones,
together with a discussion of how to optimize this algorithm
in 1D, 2D, and 3D and how the CPU time scales with the
desired accuracy can be found in Ref. 2. We also wish to
mention that DC has been recently implemented in systems
containing as many as 65 000 atoms and shown that it can
generate electronic structures of the same quality as a tradi-
tional approach will do for a system of, let us say, ten
atoms.13 The tests performed in this numerical work agree
qualitatively with our theoretical predictions.

There is another important issue related to DC. The
ground energy in DFT is given by

E = �
j

� j + Exc�n� −� vxc�r�n�r� −
1

2
� n�r�n�r��

�r − r��
. �3�

All the above terms can be calculated directly from the den-
sity, except the first one. However, this term is just the inte-
gral of the energy density,
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��r� = �
�i��

�i��i�r��2, �4�

and we will show that ��r� is also nearsighted. As a conse-
quence, within the DC algorithm, ��r� can be calculated with
arbitrary precision, like the density.

The goal of this paper is twofold. We want to prove NEM,
i.e., Eqs. �1� and �2�, for a simple system, which is the 1D
noninteracting, spin-1

2 fermion, in periodic potentials at T
=0+. We also want to show that one can obtain exact esti-
mates of the nearsightedness range, which is extremely im-
portant for DC. The case of 1D noninteracting electrons is
important for several reasons. In spite of its simplicity, it
captures all the important aspects of nearsightedness. This
allows for a thorough investigation of NEM, while keeping
the technical aspects at a reasonable level. The 1D noninter-
acting case is relevant for linear molecular chains when
treated within DFT.

II. THE STRATEGY

We shall first develop general tools that will allow us to
compute, for arbitrary perturbations, the asymptotic behavior
of the density change at T=0+,

�n�x� = 2 �
�i��

��i�x��2 − 2 �
�i

0
��

��i
0�x��2, �5�

where �i
0�x� ,�i

0 and �i�x� ,�i are the wave functions and the
corresponding energies of the unperturbed and perturbed sys-
tems, respectively. The factor 2 in front of the sums comes
from the spin. The above expression is not very useful when
dealing with the asymptotic behavior of �n�x�. Instead, we
will work with an integral representation. Why an integral
representation? For answer, we point to the theory of special
functions, where the functions are most often defined and
introduced as infinite series but, with no exception, their
asymptotic behavior is derived from equivalent integral rep-
resentations.

We can obtain an integral representation of �n�x� by us-
ing Green’s functions. Indeed, if GE

0 ��E−H0�−1 and GE

��E−H�−1 denote the Green’s functions of the unperturbed
and perturbed systems, respectively, then

�n�x� =
1

�
�

C
�GE − GE

0��x,x�dE , �6�

where C is a contour in the complex energy plane, surround-
ing the occupied states. This can be seen from the eigenfunc-
tion expansions of GE

0 and GE and the residue theorem. Now,
the eigenfunction expansions of GE

0 and GE are, again, not
very useful. Instead, we will use the following compact rep-
resentation:

GE�x,x�� =
�	�x	��
�x
�

W��	,�
�
, �7�

where x	=min�x ,x�� and x
=max�x ,x��; �	�x� and �
�x�
are the solutions of the Schrödinger equation at energy E,
satisfying the boundary condition to the left and right, re-

spectively, and W��	 ,�
� is the Wronskian of the two solu-
tions. For infinite systems, the case considered in this paper,
�	�x� and �
�x� are the solutions decaying at ±�, respec-
tively. We will always assume that E does not belong to the
energy spectrum. When the contour C intersects the energy
spectrum, such as for the case of metals, GE will have a
discontinuity at the point of intersection. Strictly speaking,
this point must be excluded from C, which does not change
the result of the integration. For all the other points of C, GE
is uniquely defined and given by Eq. �7�. Later, we will use
the reflection and transmission coefficients to construct ex-
tremely simple and compact expressions of the Green’s func-
tions �see Eqs. �15�, �22�, and �61��.

The last step of our strategy will be to identify the special
point in the complex energy plane that determines the
asymptotic behavior of the integral Eq. �6�.

This strategy will require from us to go into the complex
energy plane. We will make use of the analytic structure of
the Bloch functions and band energies derived in Ref. 14,
which is briefly discussed in the next section. These analytic
structure results can be generalized to linear molecular
chains and even to 3D crystals.15 Also, the above expression
for the Green’s function, Eq. �7�, can be generalized to linear
molecular chains,15 or to 3D crystals.16 In fact, the entire
strategy can be applied in 2D and 3D, as was already shown
in Ref. 2.

III. THE UNPERTURBED SYSTEM

Throughout this paper, v�x� will be taken as a periodic,
inversion-symmetric potential. Following is a brief discus-
sion, largely taken from Ref. 14, of the periodic Schrödinger
equation.

The solutions of the periodic Schrödinger equation,

�− d2/dx2 + v�x��� = E�, v�x + b� = v�x� , �8�

are the well-known Bloch functions �k �k is the wave vector�
which will be normalized as in Ref. 14. Their fundamental
property is �k�x+b�=eikb�k�x�. When dealing with complex
values of k, it is much more convenient to work with the
variable �=eikb, instead of k. Thus, from now on, we will
index the Bloch functions by �. Their fundamental property
becomes

���x + b� = ����x� . �9�

The parameter � relates to the energy of �� through the
following equation:

�2 − 2��E�� + 1 = 0, �10�

with ��E� the Kramers’ function.17 By examining the funda-
mental property Eq. �9�, one can see that the physical states
correspond to the case ���=1 �� on the unit circle�, otherwise
���x� explodes to either x=� or x=−�. For � on the unit
circle, the solutions behave like waves; thus it is appropriate
to use the term Bloch waves. When discussing arbitrary val-
ues of �, however, it is more appropriate to use the term
Bloch functions.

The energy spectrum consists of energy bands, indexed
here by n=1,2 , . . ., which are separated by energy gaps. The
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energy bands can be computed by solving for E in Eq. �10�
for all � on the unit circle. Due to the symmetry �→1/� in
Eq. �10�, we can and shall restrict � to ����1, and view
���x� and �1/��x� as two independent wave functions. For
���	1, it follows from the fundamental property Eq. �9� that
���x� decays to zero as x→� and �1/��x� decays to zero as
x→−�.

If we restrict � to the unit disk, E uniquely determines �.
The opposite is not true; instead E��� is a multivalued com-
plex function, with branch points of order 1 at �1, �2 , . . ., �n
which are located on the real axis, strictly inside the unit
circle and have alternating signs: 0	 �−1�n�n	1. Their cor-

responding energies Ẽn�E��n� are also real; Ẽn is located in
the nth gap. Estimates of �n in the small-gap and tight-
binding limits are given in Appendix A. E��� can be repre-
sented on a Riemann surface with one sheet per band. The
nth sheet can be taken as the entire unit disk, except for a cut
extending from �n−1 to �n, as shown in Fig. 1. Near a branch
point, E��� behaves as the square root,14

E��� = Ẽn + 2�n��/�n − 1�1/2 + ¯ . �11�

The function E��� on the nth Riemann sheet will be denoted
by En���.

The integral in Eq. �6� will be mapped into the complex �
plane by changing the variable from E to �. Thus, it will be
important to understand how the contour C looks in this
plane. It is more easy to understand how a given contour  in
the � plane is mapped in the complex energy plane, i.e., to
construct the points E��� when � sweeps through the points
of .

The mapping En���, from the unit disk to the complex E
plane, is generic in one dimension, in the sense that it is
qualitatively independent of the periodic potential. This sub-
ject is not discussed in Ref. 14, but it follows from this work.
The general picture is as follows. En��� maps the unit disk
into a domain Dn �see Fig. 2�. The domains Dn, n=1,2 , . . .,
are disjoint �with the exception of a possible common bound-
ary� and, all together, they cover the entire complex E plane.
Now let us consider several contours. In Fig. 2, we used the
same line style for the contour and its image. The unit circle
is mapped into a contour that surrounds the nth band, infi-
nitely close. The energy band is represented in Fig. 2 by a
thick line. The points �= ±1 always correspond to the band
edges. The origin is mapped at infinity. More exactly, if �
approaches the origin from above �below� the branch cut,

En���→ ± i�, respectively. We now deform the unit circle
until it surrounds the branch cut, infinitely tied. It is instruc-
tive to consider an intermediate contour, like C3 of Fig. 2�a�,
which is �qualitatively� mapped by En��� into C3�. As the
contour C3 is continuously shrunk, some points of its image
C3� move toward ±i�, and the limit contour, i.e., the closed
contour formed by C1+C2 in Fig. 2�a�, is mapped into the
contour C1�+C2�. More exactly, C1 �the continuous line� is
mapped into C1� and C2 �the dashed line� into C2�. Figure 2�b�
displays only finite sectors of C1,2� , which extend from −i� to
+i�. The domain Dn mentioned above lies between the
curves C1� and C2�.

The segment from −1 to �n−1 is mapped on the real axis,

from the lower edge of the nth band down to Ẽn−1. The
segment from �n to +1 is also mapped on the real axis, from

Ẽn down to the upper edge of the nth band. This completes
our analysis of the En��� mapping. From the above informa-
tion, one should be able to construct, qualitatively, the image
of any other contour.

We now discuss the analytic structure of the Bloch func-
tions: ���x� and �1/��x� are multivalued analytic functions of
�, with branch points of order 3 at �n. ���x� will be denoted
by �n,��x�, for � on the nth Riemann sheet. Both functions
diverge at the branch points as14

�n,��x� =
un�x�e−qnx

��/�n − 1�1/4 + ¯ �12�

and

�n,1/��x� =
un��x�eqnx

��/�n − 1�1/4 + ¯ , �13�

where un�x� and un��x� are periodic �antiperiodic� functions
for n even �odd� and qn is defined by ��n � =e−qnb. Using the
explicit expressions given in Ref. 14, we can easily calculate
the Wronskian of the two independent Bloch functions,
which is given by

W��n,1/�,�n,�� = −
b�

2�

dEn���
d�

. �14�

Consequently, the Green’s function GE
0 satisfies the identity

GE
0�x,x��

dE

�i
= 2i�n,1/��x	��n,��x
�

d�

b�
. �15�

FIG. 1. The analytic domain of En��� and �n,��x� consists of the
unit disk except for a branch cut, represented by the dotted line. �a�
refers to n even and �b� to n odd.

FIG. 2. Illustration of how En��� maps �a� the complex � plane
into �b� the complex E plane �n even�.

E. PRODAN PHYSICAL REVIEW B 73, 085108 �2006�

085108-4



IV. THE EFFECT OF PERTURBATIONS

A. One-sided perturbations

We consider here perturbations that are either to the left or
to the right of the point x, where we measure the density
change �n�x�. Let us assume that w is to the left of x. For
convenience, we choose the origin of x at the right edge of w,
so that w is confined in the interval �−L ,0�, with L arbitrarily
large but finite. We calculate the particle and energy density
changes at x
0.

As already mentioned, the density change �n�x� is given
by

�n�x� =
1

�i
�

C
�GE�x,x� − GE

0�x,x��dE , �16�

where GE
0 and GE are the unperturbed and perturbed Green’s

functions, respectively, and C is a contour in the complex
energy plane, surrounding the eigenvalues below �F �see, for
example, Fig. 3�a��. Similarly, the change of the energy den-
sity is

���x� =
1

�i
�

C
E�GE�x,x� − GE

0�x,x��dE . �17�

We can focus on �n�x� and give only the final results for
���x�.

We construct the perturbed Green’s function from two
independent solutions of the Schrödinger equation:

�− d2/dx2 + v�x� + w�x����x� = E��x� . �18�

Since w�x� is zero outside the interval �−L ,0�, any solution
of the above equation, outside this interval, is a linear com-
bination of �� and �1/�. As already mentioned, we need the
solutions decaying to ��, which can be conveniently written
in terms of the reflection and transmission coefficients:

�n,�
	 �x� = 	Tn����n,1/��x� , x 	 − L ,

�n,1/��x� + Rn
+����n,��x� , x 
 0

� �19�

and

�n,�

 �x� = 	�n,��x� + Rn

−����n,1/��x� , x 	 − L

Tn����n,��x� , x 
 0,
� �20�

where E was taken to be in Dn �see Fig. 2�. One can use the
fundamental property of the Bloch functions Eq. �9� to check

the behavior of these functions at ±�. The Wronskian of the
two independent solutions is simply W��n,�

	 ,�n,�

 �

=Tn���W��n,1/� ,�n,��, or

W��n,�
	 ,�n,�


 � = −
b

2�
�Tn���

dEn���
d�

, �21�

leading to the following useful identity, for x
0:

�GE − GE
0��x,x�

dE

�i
= 2iRn

+����n,��x�2d�

b�
. �22�

This identity, together with Eqs. �16� and �17�, shows that,
for x
0, �n�x� and ���x� are completely determined by the
unperturbed wave functions and reflection coefficient, in a
simple and universal way.

Since Eq. �22� will be integrated in the complex plane, we
need to understand the analytic structure of the reflection
coefficient. We can derive the analytic structure of the reflec-
tion coefficient from Eq. �22�: Rn

+��� has branch points of
order 1 at �n−1 and �n. If we go around these branch points,
Rn

+ becomes Rn−1
+ and Rn+1

+ , respectively. In other words, Rn
+

are different branches of a multivalued function R+���. Near
the branch points,

R+��� = R+��n� + rn
+��/�n − 1�1/2 + ¯ . �23�

The poles of R+���, if any, are mapped by E��� into the poles
of GE, i.e., the energies of the bound states. For the case
considered in this section, the bound states, if any, are always
located in the gaps and consequently the poles of R+��� are
always located on the real axis and away from the branch
cuts.

The following is a simple generalization, from the uni-
form to periodic potentials, of some well-known facts. By
evaluating the Wronskian of ��

	�x� and �1/�
	 �x� for x	−L

and for x
0 and equating the two results, one can derive the
following identity:

FIG. 4. The exact �solid� and asymptotic �dashed� �n�x� for the
model of Eq. �32� �v0=−2, V0=10, b=1, first band 20% filled�.

FIG. 3. The contour of integration for metals in �a� complex E
plane and �b� complex � plane. The contour in �a� extends from −i�
to +i�.
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T���T�1/�� + R+���R+�1/�� = 1. �24�

For ���=1, this identity becomes �T����2+ �R+����2=1, show-
ing that �R+�����1 for all � on the unit circle. A similar
conclusion holds for R−���. In other words, as in the uniform
case, the reflection and transmission coefficients cannot ex-
ceed unity.

1. Metals

We assume the nth band partially occupied and choose C
in Eq. �16� as in Fig. 3, where �F is defined by �F=En��F�.
We write

x = y + mb , �25�

with y restricted to the first unit cell. Mapping into the �
plane by using Eq. �22� and recalling the fundamental prop-
erty of the Bloch functions, for x
0, we obtain

�n�x� =
2i

b
�

C�
Rn

+����n,��y�2�2m−1d� . �26�

We write �2m−1= �2m�−1d�2m /d� and integrate by parts,
which gives

�n�x� = 2 Im
Rn

+��F��n,�F
�x�2

mb

−
2i

b
�

C�

�2m

2m

d

d�
�Rn

+����n,��y�2�d� . �27�

The integral is of order 1 /x2, as can be seen from another
integration by parts. We can conclude

�n�x� →
2

x
Im�Rn

+��F��n,�F
�x�2� �28�

for large x. Similarly,

���x� →
2�F

x
Im�Rn

+��F��n,�F
�x�2� . �29�

Since �Rn
+��F���1, the amplitudes of �n�x� and ���x� cannot

exceed, in the asymptotic limit, the upper bounds

�n�x� →
2

x
��n,�F

�x��2 �30�

and

���x� → �F�n�x� , �31�

independent of the shape and amplitude of w�x�. This proves
NEM for metals and one-sided perturbations.

A comparison between Eq. �28� and an exact calculation
of �n�x� for the perturbed Kronig-Penney model18

vt�x� = 
v0 �
l=−�

�

��x +
b

2
− lb� , x 
 0

V0, x � 0,

� �32�

is shown in Fig. 4. Note that the asymptotic regime starts
from about two lattice constants away from the perturbation.

2. Insulators

We assume the first n bands completely filled. For insula-
tors, the calculations are more involved since the perturbing
potential w�x� may generate bound states in the insulating
gap �� the gap above the nth band�. There can be a discrete
or a continuum set of states inside the insulating gap. When
the set is discrete, there are four distinct possibilities, as
shown in Fig. 5. Let us analyze these cases first.

No bound states in the insulating gap. We can take C1�
�with opposite orientation; see Fig. 2�b�� as the contour of
integration in Eq. �16�. Mapping into the complex � plane
and using the fundamental property of the Bloch functions
gives

�n�x� = �n
2m2i

b
�

C1

Rn
+����n,��y�2� �

�n
�2m−1d�

�n
, �33�

with C1 shown in Fig. 2�a� and y and m defined in Eq. �25�.
The integrand diverges at �n as ��−�n�−1/2 but this singular-
ity is integrable. Away from the branch point, the integrand is
finite and �� /�n�2m becomes small as we follow the contour
C1 toward �=0. Thus, for large m, the main contribution to
the integral comes from the region in the immediate vicinity
of the branch point. Expanding the integrand near �n and
keeping the leading term,19 we find

�n�x� → Rn
+��n�

2

b
�

C1

i��/�n�2m−1

�/�n − 1

d�

�n
un�x�2e−2qnx. �34�

The integral is equal to −2B�2m ,1 /2� �B is the Beta func-
tion� and behaves asymptotically as −2� /m. We conclude
that

�n�x� → − 2Rn
+��n��2�

xb
�1/2

un�x�2e−2qnx. �35�

Similarly,

FIG. 5. �a� No bound states are present in the insulating gap. �b�
Bound states are present, but all the states below Ẽn are occupied

�solid lines� and all the states above Ẽn are unoccupied �dashed

lines�. �c� States below Ẽn are unoccupied. �d� States above Ẽn are
occupied.
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���x� → − 2Rn
+��n�Ẽn�2�

xb
�1/2

un�x�2e−2qnx. �36�

An implementation of Eq. �35� in the perturbed Kronig-
Penney model described in Eq. �32� is given in Fig. 6. Note
again that the asymptotic regime starts from one or two lat-
tice sites from the perturbation.

To end the proof of nearsightedness, we need to show that
�R+��n�� cannot exceed an upper bound. Since the reflection
coefficient is not evaluated on the unit circle, the inequality
�R+�����1 is no longer guaranteed. However, if h�

	 and h�

denote the logarithmic derivatives at x=0 of ��
	�x� defined in

Eq. �19� and of ���x�, respectively, then

R+��� = −
h�

	 − h1/�

h�
	 − h�

�1/��0�
���0�

. �37�

As in Ref. 14, we choose the phase of the Bloch functions
such that ���0�=�1/��0�, so we can eliminate the last factor
in the above expression. For E in the insulating gap, ��

	�x�,
���x�, and �1/��x� are real functions and since

dh�
	/dE = − ��

	�0�−2�
−�

0

��
	�x�2dx , �38a�

dh1/�/dE = − �1/��0�−2�
−�

0

�1/��x�2dx , �38b�

dh�/dE = ���0�−2�
0

�

���x�2dx , �38c�

it follows that h�=−h1/� and h�
	 and h1/� are decreasing func-

tions of E. The typical behavior of h� and h1/� is shown in
Fig. 7. Now, if there are no bound states in the gap, h�

	 and
h� cannot be equal for any E in the gap. Then, since h�

increases while h�
	 decreases with E, h�

	 can take values only
in the shaded area of Fig. 7, below 0. Consequently, the right
side of Eq. �37� is smaller than or equal to 1, i.e.,

�R+���� � 1 �39�

remains valid when E is in the insulating gap.
We can then conclude that the amplitudes of �n�x� and

���x�, in the asymptotic limit, cannot exceed the upper
bound

�n�x� → 2�2�

xb
�1/2

un�x�2e−2qnx �40�

and

���x� → Ẽn�n�x� . �41�

This completes the proof of NEM for insulators and one-
sided perturbing potentials that do not generate bound states
in the insulating gap.

Bound states in the insulating gap. We show in Appendix
B that if

� w�x��±�x�2dx � 0, �42�

where �±�x� denotes the Bloch function at the upper �lower�
edge of an energy band, then w generates bound states above
�below� this band, even for infinitely small coupling con-
stants. Thus, the presence of bound states in the gaps is not a
rare occurrence in one dimension.

The asymptotic forms of �n�x� and ���x� depend on how
the bound states in the insulating gap are occupied. When all

bound states below the branch point Ẽn are occupied and the

ones above Ẽn are unoccupied, i.e., the situation illustrated in
Fig. 5�b�, the asymptotic behavior Eqs. �35� and �36� of
�n�x� and ���x� remains unchanged.

Consider now that there are unoccupied bound states be-

low Ẽn, as illustrated in Fig. 5�c�. Let �0, of energy E0, be
such a state. For x
0, �0 is equal, up to a factorization
constant, to the exponentially decaying Bloch function of
energy E0 �E0=En��0��:

�0�x� = � �1 − �0
2��

�
0

b

��n,�0
�x��2dx�

1/2

�n,�0
�x� , �43�

where

� � �
0

�

��0�x��2dx �� � 1� . �44�

We have ��0�=e−q0b, with q0 strictly larger than zero, and
��0

�x�=e−q0xu0�x�, with u0�x+b�= �−1�nu0�x�. Since q0 de-

creases as E0 moves away from Ẽn, the first unoccupied state
will have the slowest exponential decay, among all unoccu-

FIG. 6. The exact �solid line� and asymptotic �dashed line�
�n�x� for the perturbed Kronig-Penney model Eq. �32� �v0=−3, b
=1, V0=50, first band completely filled�. FIG. 7. Typical behavior of h� �solid lines� and h1/� �dashed

lines�. E± denotes the upper �lower� edge of the insulating gap. hE
	

can take values only in the shaded areas.
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pied states below Ẽn. Thus, when the contribution of these
states is subtracted from Eq. �35�, one finds that the
asymptotic form of �n�x� is determined by the first unoccu-
pied bound state:

�n�x� → −
2�1 − �0

2��

�
0

b

��n,�0
�x��2dx

u0�x�2e−2q0x, �45�

with the index 0 referring to the first unoccupied bound state
in the insulating gap. Similarly,

���x� → −
2�1 − �0

2�E0�

�
0

b

��n,�0
�x��2dx

u0�x�2e−2q0x. �46�

Since ��1, the amplitudes of �n�x� and ���x� cannot ex-
ceed, in the asymptotic limit, the upper bounds

�n�x� →
2�1 − �0

2�

�
0

b

��n,�0
�x��2dx

u0�x�2e−2q0x �47�

and

���x� → E0�n�x� . �48�

The results remain the same if, instead of unoccupied

bound states below Ẽn, there are occupied bound states above

Ẽn, as in Fig. 5�d�. In this case, the index 0 will refer to the
last occupied bound state.

Continuum states in the insulating gap. We consider the
case when w�x� fills the entire insulating gap with continuum
spectrum, such as when the insulator is in contact with an
infinite metal. In this case, Rn

+��� has a branch cut on the real
axis. The states are considered occupied up to the Fermi
energy �F, which is in the insulating gap of the unperturbed

insulator. We consider only the generic case when �F� Ẽn
and define �F by �F=En��F�. This �F is located strictly inside
the unit circle, as opposed to the case of metals. We also
define qF
0 so that ��F�=e−qFb.

In Eq. �16�, we consider the contour of integration shown
in Fig. 8�a�. Mapping into the complex � plane and using
again the fundamental property of the Bloch functions,

�n�x� = �F
2m2i

b
�

C
Rn

+����n,��y�2� �

�F
�2m−1d�

�F
. �49�

With the new variable q defined by � /�F=e−qb, we can write

�n�x� = − 4�F
2m Im �

q
0
Rn

+��+��n,��y�2e−2mqbdq , �50�

where �+��+ i0+. The asymptotic behavior can be extracted
from a simple integration by parts:

�n�x� → − 2 Im�Rn
+��F

+��
�n,�F

�x�2

x
. �51�

By writing �n,�F
�x� as uF�x�e−qFx, with uF�x+b�= �−1�nuF�x�,

we can conclude that

�n�x� → − 2 Im�Rn
+��F

+��uF�x�2e−2qFx

x
. �52�

Similarly,

���x� → − 2 Im�Rn
+��F

+���FuF�x�2e−2qFx

x
. �53�

An implementation of Eq. �52� in the perturbed Kronig-
Penney model Eq. �32� is shown in Fig. 9. Notice again that
the asymptotic regime starts from two lattice constants away
from the perturbation.

To end the proof of NEM, we need to give an upper
bound on the amplitudes of �n�x� and ���x�. The imaginary
part of Rn

+��F
+� is proportional to the local density of states

g�E ,x� at E=�F and x=0. Indeed, Eq. �22� provides the fol-
lowing identity:

Im�Rn
+��F

+���n,�F
�x�2 =

1

2�

d�F

dqF
Im�G�F+i0�x,x�� , �54�

leading to

FIG. 8. �a� The contour of integration in the complex E plane
�C1� was introduced in Fig. 2�. �b� The same contour in the complex
� plane.

FIG. 9. The exact �solid� and asymptotic �dashed� �n�x� for the
model of Eq. �32� �V0=−5, v0=−2, b=1, and �F=4�.
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Im�Rn
+��F

+�� =
d�F/dqF

2�n,�F
�0�2g��F,0� . �55�

Note that the coefficient in front of g��F ,0� is determined by
the unperturbed system. If we limit ourselves to the generic
case of w’s that generate finite densities of states at �F, then
NEM follows from Eqs. �52� and �55�. For practical applica-
tions, we consider this argument sufficient. However, to
achieve a full proof of NEM, we need to consider also the
cases when g�E ,0� diverges �or becomes extremely large� as
E→�F. For these special cases, the asymptotic form of Eq.
�50� cannot be extracted from a simple integration by parts
and �n�x� is no longer given by Eq. �52�; its specific func-
tional form will depend on the type of singularity of g�E ,0�.
This special situation will not be discussed here.

B. Two-sided perturbations

We consider here the case when the point x, where we
evaluate �n�x� and ���x�, has perturbing potentials wL to the
left and wR to the right, as schematically shown in Fig. 10.
For one-sided perturbations, �n�x� decays as x moves further
and further away from the perturbation and, because of this
simple picture, NEM is intuitive and simple to grasp. When
left and right perturbing potentials are present, this simple
picture is gone: there will be interference terms in �n�x�,
whose amplitudes remain constant in the region between the
two perturbing potentials. In addition, wL+wR can induce a
strong, qualitative change of the system, namely, the energy
bands may become quantized. In spite of all of these, we will
show the following. For metals, the interference terms are
not negligible, but �n�x� still remains bounded. For insula-
tors, the interference terms are exponentially small and
�n�x� is given by the simple superposition of the left and
right density changes. Similar conclusions hold for ���x�.

For convenience, we fix the origin in the middle of the
interval that separates the two perturbing potentials and con-
sider the distance R from the origin to the right �left� edge of
wL,R to be an integer of b, R=Nb. We are interested in the
behavior, for x near the origin, of �n�x� and ���x� when R
→�. We follow our general strategy and derive first an ex-
pression for the Green’s function on the interval �−R ,R�. We
look again for the solutions of the Schrödinger equation

�− d2/dx2 + v�x� + wL�x� + wR�x����x� = E��x� �56�

that decay at ��. On the intervals from −� to the left edge
of wL and from the right edge of wR to +�, these solutions
can be expressed as in Eqs. �19� and �20�, in terms of the
total �corresponding to wL+wR� transmission and reflection
coefficients. Then, one can use again the reflection and trans-
mission coefficients to continue these solutions inside the
interval −R	x	R. On this interval, they take the following
form:

��

�x� =

T���

T̃R���
����x� + R̃R

−����1/��x�� �57�

and

��
	�x� =

T���

T̃L���
��1/��x� + R̃L

+������x�� , �58�

where T̃L,R��� and R̃L,R
± ��� are the transmission and reflection

coefficients of the left �right� potentials, and T��� is the total
transmission coefficient

T��� =
T̃L���T̃R���

1 − R̃L
+���R̃R

+���
. �59�

All these coefficients depend on R. If RL,R
± ��� denote the

reflection coefficients when the right �left� edge of wL,R is at
x=0 �thus RL,R

± ��� are independent of R�, then Eq. �37� gives

R̃L,R
± ��� = �2NRL,R

± ��� . �60�

The Wronskian of the two independent solutions is the same
as given in Eq. �21�. From the two independent solutions
Eqs. �57� and �58� and their Wronskian, we derive, for −R
	x	R, the following identity:

�GE�x,x� − GE
0�x,x��

dE

�i
=

2i�2NRL
+���

1 − �4NRL
+���RR

−���
���x�2d�

b�
+

2i�2NRR
−���

1 − �4NRL
+���RR

−���
�1/��x�2d�

b�
+

4i�4NRL
+���RR

−���
1 − �4NRL

+���RR
−���

���x��1/��x�
d�

b�
.

�61�

We now can use Eqs. �16� and �17� to find �n�x� and ���x�,
for x near the origin. By using the fundamental property of
the Bloch functions, we can understand the behavior of each

term in the above identity. For � not on the unit circle, as is
the case in our integrals, the first term decays exponentially
as x moves to the right, the second term decays exponentially

FIG. 10. The case when the point x �near the origin�, where we
evaluate �n�x� and ���x�, has perturbing potentials to the left and
to the right.
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as x moves to the left, but the third term is periodic, with
period b. Fortunately, the amplitude of this term becomes
smaller and smaller as the two perturbing potentials are
moved apart.

From Eq. �61�, one can easily obtain the energy spectrum
of the perturbed system. So let us discuss first how the si-
multaneous presence of wL,R affects the energy spectrum. We
are interested in the last occupied band �indexed by n�, so,
from now on, � is considered on the nth Riemann sheet. The
energies of the discrete states, if any, are given by the poles
of the Green’s function. From the identity Eq. �61�, one can
see that these poles correspond to those � satisfying the
equation

RL
+���RR

−��� = 1/�4N. �62�

Since the discrete state energies are real, the solutions of Eq.
�62� are always located on the unit circle or on the real axis,
away from the branch cuts. Inside the unit disk we have
���	1; consequently, �1/�4N� becomes very large in the limit
R→�. Thus, if there are solutions of Eq. �62� inside the unit
disk, they must be located very close to the poles of either
RL

+��� or RR
−���. In other words, these solutions are perturba-

tions of the bound states generated by wL �or wR� alone,
already discussed in the previous subsection. Poles on the
unit circle exist if and only if both �RL,R

± ���� are equal to 1. In
this case, the energy band degenerates into a discrete energy
spectrum. Because the left-hand side of Eq. �62� is slowly
varying compared to the right-hand side, one can get the
qualitative picture by setting the left-hand side constant. If
the amplitudes of RL,R

± ��� are equal to 1 on the whole unit
circle, then Eq. �62� has 4N solutions �k distributed on the
unit circle; the spacing between two consecutive solutions is
2� /4N+O�1/N2�. This is the picture in the � plane. In the E
plane, the discrete energies are given by E��k�. The spacing
between two consecutive energies is 2���E��k� /4N
+O�1/N2�.

1. Metals

The effects of band quantization will be the strongest for
metals, since the Fermi energy lies inside the band. We cal-
culate the density change by integrating Eq. �61� along the
contour of integration shown in Fig. 3�a� and map the inte-
gral into the complex � plane. The asymptotic behavior of
�n�x�, for large R, is determined by the behavior of the
integrand near �F and 1/�F �see Fig. 3�b��. In the immediate
vicinity of these points, we can replace the slowly varying
functions in the right-hand side of Eq. �61� �the reflection
coefficients and the Bloch functions� with their value at �F
and 1/�F. The integral then can be explicitly calculated and
the result is

�n�x,R� →
2

R
Im

tanh−1��F
2N�RL

+RR
−�1/2�

�RL
+RR

−�1/2

��RL
+��F

�x�2 + RR
−�1/�F

�x�2�

+
2

R
Im�ln�1 − �F

4NRL
+RR

−�����F
�x��2, �63�

with the reflection coefficients evaluated at �F.
To prove NEM, we need to find an upper bound on the

above expression. A simple analysis reveals that the largest
density changes occur when �RL,R

± �=1, i.e., when the band is
quantized at the Fermi energy. In this case, we can rewrite
Eq. �63� as

�n�x,R� →
4

R
Im�tanh−1��F

2N�RL
+RR

−�1/2��

�Re��RL
+RR

−*�1/2��F
�x�2�

+
2

R
Im�ln�1 − �F

4NRL
+RR

−�����F
�x��2. �64�

The density change, as a function of R, has discontinuities
every time when �F

4NRL
+RR

− =1, i.e., when a discrete energy
crosses the Fermi level. These discontinuities are finite: since
�Im�tanh−1�z����� /4 and �Im�ln�1−z����� /2, for �z��1,
the amplitude of the asymptotic term of �n�x ,R� cannot ex-
ceed the upper bound

�n�x,R� →
2�

R
���F

�x��2, �65�

independent of wL,R potentials and of the position of the
Fermi energy relative to the discretized energies. Similarly,
the amplitude of ���x ,R� cannot exceed the upper bound

���x,R� → �F�n�x,R� , �66�

and this completes our discussion of NEM for metals.
These upper bounds are optimal, in the sense that there

are wL,R potentials �the worst scenario� that generate a den-
sity and an energy density that are equal to these upper
bounds. By comparing with the results of the previous sec-
tion, one can see that interference has nontrivial effects:
these upper bonds are not simply the superposition of the left
and right upper bounds found in the previous section.

2. Insulators

We consider first the situation when there are no bound
states in the insulating gap. We can take C1� of Fig. 2 as the
contour of integration in Eq. �16�, which is mapped into C1 in
the complex � plane. For any � on this curve, the denomi-
nator in the right side of Eq. �61� goes exponentially to 1 as
R→�. Consequently, in this limit, the structure of the inte-
grand becomes completely analogous with the one studied in
the previous subsection. The asymptotic behavior can be ex-
tracted as previously and the result is

�n�x,R� → − 2RL
+��n�� 2�

bR
�1/2

un�x�2e−2qnR − 2RR
−��n�

�� 2�

bR
�1/2

un��x�2e−2qnR − 2RL
+��n�RR

−��n�

�� �

bR
�1/2

un�x�un��x�e−4qnR. �67�

Thus, in the limit of large R, �n�x ,R� is just the sum of the
independent density changes due to the left and right poten-
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tials, plus an exponentially small correction. From the previ-
ous subsection, we can conclude that the amplitude of
�n�x ,R� cannot exceed, for large R, the upper bound

�n�x,R� → 2� 2�

bR
�1/2

�un�x�2 + un��x�2�e−2qnR. �68�

Similarly,

���x,R� → Ẽn�n�x,R� . �69�

For the case when there are bound or continuum states in the
insulating gap, the conclusion is the same: for large R, the
density change near the origin is the sum of the independent
changes induced by the left and right potentials. Upper
bounds on �n�x ,R� can be trivially derived from the previ-
ous subsection.

V. THE NEARSIGHTEDNESS RANGE

The nearsightedness range R�x ,�n� was introduced as the
range beyond which any perturbation, no matter how large,
induces a density change at x less than the given �n. The
asymptotic R�x ,�n�, in the limit �n→0, can now be easily
calculated from the upper bounds on �n�x�, derived in this
paper. Since the periodic systems are macroscopically homo-
geneous, the asymptotic R�x ,�n� will be independent of x.

When solving for R in �n�x ,R�=�n, we first average
�n�x ,R� over one unit cell. For metals, Eq. �65� leads to the
following asymptotic expression:

R��n� → 1/�n . �70�

Such universal behavior is characteristic only to one dimen-
sion; in higher dimensions, the nearsightedness range will
depend on the average particle density.2

For insulators and w’s that generate no bound states in the
insulating gap, Eq. �68� leads to

R��n� →
1

2qn
ln

ñ

�n
, �71�

where

ñ =
42�qn

b
�

0

b

�un�x�2 + un��x�2�dx . �72�

In the small-gap and tight-binding limits, ñ is completely
determined by the exponential decay constant qn, ñ
→4qn

2/� and ñ→4qn /�b, respectively.
It is important to notice that the nearsightedness range

does not depend on the details of the underlying potential
v�x�, but on some simple parameters that can be defined also
for nonperiodic potentials. For example, qn can be identified
with the exponential decay constant of the density matrix.

VI. DISCUSSION

The above analysis provides a quantitative analysis of the
nearsightedness of electronic matter for noninteracting fermi-
ons, moving in one dimension under the action of periodic

potentials. Although the simplest case possible, it allowed us
to understand the different mechanisms behind NEM. The
asymptotic behavior of �n�x� was found to be determined by
the reflection coefficient. For specific cases, the amplitude of
�n�x� cannot exceed an upper bound simply because the
reflection coefficients are always smaller than 1. More gen-
eral, and now including 2D and 3D, one will find that
asymptotic behavior of �n�x� is determined by certain ele-
ments of the scattering matrix and, for specific cases, the
unitarity of the scattering matrix imposes certain upper
bounds. The situation is, however, more complicated when
bound states appear in the insulating gap or when the bands
become quantized.

We have introduced the concept of the nearsightedness
range R�x ,�n�, which is well defined only because there is
this upper bound on �n�x�. R�x ,�n� is a characteristic of the
unperturbed system and gives a simple and effective measure
of nearsightedness. For periodic metals, we found R�x ,�n�
to have, in the asymptotic limit �n→0, a universal expres-
sion, namely, 1 /�n. For insulators, R�x ,�n� is strongly de-
pendent on the band structure but has a weak, logarithmic
dependence on �n.

Although the estimates given in this paper can be applied
only to 1D systems, we think we gain some knowledge that
can be useful for more general situations. We are convinced
that NEM exists in dimensions higher than one, where it can
be quantified in a similar way. In particular, we believe that a
complete theoretical analysis and optimization of the O�N�
divide and conquer algorithm is possible in all dimensions.
Preliminary results in this direction have been already given
in Ref. 2. The one-dimensional analysis proved to be ex-
tremely useful by providing a viable strategy and some un-
derstanding of the effects of the bound states in the insulating
gap and of the band quantization on NEM.
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APPENDIX A

We estimate here the exponential decay rate qn, related to
the branch point by ��n�=e−qnb. According to Ref. 14,

qn =
1

b
ln���n� + �n

2 − 1� , �A1�

where �n is the Kramers function evaluated at the branch

point Ẽn, defined by �d� /dE�E=Ẽn
=0.

For small gaps, the behavior of ��E� inside the entire gap
is well approximated by a quadratic function of E:

NEARSIGHTEDNESS OF ELECTRONIC MATTER IN ONE¼ PHYSICAL REVIEW B 73, 085108 �2006�

085108-11



��E� � �− 1�n�1 −
mn

*b2�E − En
+��E − En+1

− �
2�En+1

− − En
+�

� , �A2�

where En
± is the upper �lower� edge of the nth band, and mn

* is
the effective mass at the upper edge of the nth band. Since
�n�1, qn��1/b�2���n�−1�, which, together with Eq.
�A2�, leads to

qn =
1

2
mn

*�En+1
− − En

+� . �A3�

We consider now a periodic potential �lVa�x− lb�, where
Va�x� vanishes for �x�
c and has atomic levels En�−kn

2, n
=1, . . .. In the limit b→�, we show that

qn �
1

b
ln

8− En

ebWn
, �A4�

where Wn is the width of the nth energy band. For x in
�−b /2 ,b /2� and �x�
c, the solutions of the Schrödinger
equation at an energy E=−k2 are of the general form

��x� = 	a−�k�e−kx + b−�k�ekx, x 	 − c ,

a+�k�e−kx + b+�k�ekx, x 
 c ,
� �A5�

with

�a+�k�
b+�k�

� = T̂�k��a−�k�
b−�k�

� , �A6�

T̂�k� being the transfer matrix of the potential Va. The energy
levels of Va correspond to the zeros of T22�k�, already de-
noted by kn. The Kramers function is given by

��k� =
1

2
�T11�k�e−kb + T22�k�ekb� . �A7�

We estimate first the bandwidths. We look for the solutions
of ��k�= ±1, which give the band edges. For b large, the
solutions of this equation must be located very close to the
zeros of T22�k� since, otherwise, the second term in Eq. �A7�
becomes very large. We can then linearize, T22�k���k
−kn�T22� �kn�, and neglect the exponentially small term in Eq.
�A7�, in which case the equation ��k�= ±1 can be trivially
solved, leading to

Wn =
8kne−knb

�T22� �kn��
. �A8�

We now calculate Ẽn=−k̃n
2, defined by14

�d�

dk
�

k=k̃n

= 0 Û T22� �k̃n� � − bT22�k̃n� . �A9�

For b large, the solutions of the above equation must also be

close to the zeros of T22�k�. Linearizing T22�k�, we find k̃n

=kn−1/b and the Kramers function evaluated at k̃n is

�n =
− T22� �kn�eknb

2eb
=

4kn

ebWn
. �A10�

Since �n�1, qn��1/b�ln�2�n� and Eq. �A4� follows.

APPENDIX B

Let w�x� be a perturbing potential of finite support and
such that

� w�x��+�x�2dx 
 0 �B1�

or

� w�x��−�x�2dx 	 0, �B2�

where �±�x� is the Bloch function at the upper �lower� edge
of an energy band. We show here that, even for infinitely
small coupling constants, this potential will pull bound states
out from the band.

Let H0 denote the periodic Hamiltonian and H�H0+w.
It is known that H has a bound state at some energy E if and
only if the operator20

K̂E = w1/2�E − H0�−1�w�1/2 �B3�

has an eigenvalue equal to 1.20 Here, w1/2=w / �w�1/2. We
show that, for any given energy E below �above� the band,

K̂E has an eigenvalue equal to 1 for some positive , which
decreases to zero as E approaches the edges of the band,
provided the condition Eq. �B1� �Eq. �B2�� is satisfied.

If n is odd, the lower edge of the band corresponds to �
=1. We take an energy E below such band and let �, which
is real and less than 1, be its corresponding � parameter.
Equation �15� gives

K̂E�x,x�� = −
2�

b
w�x�1/2�1/��x	����x
�

�dE/d�
�w�x���1/2,

�B4�

and we notice that dE /d���−1, for �→1, i.e., the kernel

K̂E�x ,x�� diverges at �=1. We can separate the diverging part
by expanding

��−1�x	����x
� = �−�x��−�x�� + �� − 1�W��x,x�� . �B5�

This provides the following decomposition:

K̂E = ������1���2� + Â��� , �B6�

where

� � −
2�

b�dE/d�
, �B7�

Â��� �
2�

b

1 − �

�dE/d�
w1/2W��w�1/2, �B8�

and

�1�x� � w�x�1/2�−�x� ,

�2�x� � �w�x��1/2�−�x� . �B9�

The first term of Eq. �B6� diverges while the second one is
analytic at �=1. Now let � be given by
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� = �Â��� − 1�−1�1, �B10�

which is well defined for small . Then

K̂E� = � + �1 + ������2��Â��� − 1�−1��1���1.

�B11�

In other words, K̂E has an eigenvalue at +1, if

1 + ������2��Â��� − 1�−1��1� = 0. �B12�

We can rewrite this equation as

��2��Â��� − 1�−1��1� −
b�

2�

dE

d�
= 0. �B13�

If we denote the left side by F� ,��, then F�0,1�=0 and
�F�0,1�=−�w�x��−�x�2dx
0, i.e., the conditions of the
analytic implicit function theorem are satisfied, which means
that, for any � near +1, there is always a solution ��� to Eq.
�B12�. Moreover,

��� = −
b�

2�

dE

d�
�� w�x��−�x�2dx�−1

+ ¯ , �B14�

where the ellipsis indicates terms of order o(�1−��2).  is
real and positive, for E below the band, and goes to zero as
E approaches the band edge.

The other possible cases, �=−1 and n even, follow in the
same way.
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