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The envelope function approach for the electric and magnetic fields of the light wave in the photonic crystals
has been used to investigate the propagation of light in disordered photonic crystals and its reflection or
refraction at the boundary. We showed that small long-range distortion of the crystal lattice can explain
peculiarities of the transmittance spectrum of the polystyrene colloid film we have grown.
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I. INTRODUCTION

Photonic crystals provide a powerful tool for manipulat-
ing and controlling of light in three dimensions of space.
Nanotechnology may be considered as a promising photonic
technology, which can be used for template assisted self-
assembly of the microlenses arrays,1 fabrication of nanoap-
ertures for mapping of the transmitted light,2 the assembling
photoactive antenna �semiconductor nanocore� arrays,3

direct-writing electron-beam lithography for fabrication of
thin-film Ni-O-Ni diode-antenna structures,4 etc.

Photonic crystals of spherical nanoparticles are usually
produced by the self-assembly or lithography techniques.
Different combinations of these methods are also possible.5

Lithography permits formation of the crystal structures of
different symmetry, which determines by the substrate. Self-
assembly of spherical particles usually results in 3D close
packing �fcc or hcp structures�, whereas more complicated
structures also can be grown. It is important that the lattice
constants of all photonic crystals are comparable with the
size of the particles their comprising. At the same time, dis-
persion of the particles sizes, which is inevitable for the ar-
tificial ”atoms,” leads to imperfection of the photonic crys-
tals. This is the main point that distinguishes the photonic
and common crystals. The latter comprise of identical atoms
that occupy rather small part of the lattice volume.

The problem of the light propagation in the perfect pho-
tonic crystals can be solved numerically. Translational sym-
metry of crystals considerably simplifies the problem, be-
cause in this case the Bloch theorem holds.6 Solution of the
Maxwell equations for the light fields in the crystal lattice
yields the photonic band structure, which was calculated for
the perfect photonic crystals of different symmetries.7 This
allows one to estimate the transmission spectra of the finite
photonic crystal layers and compare the results with
experiments.8–10 It has been established that positions of dips
in these spectra are usually in accordance with the contem-
porary theory; however, the dips are essentially wider and
their depth is a few orders of value less than that predicted by
the theory. We believe that this discrepancy is due to imper-
fection of the real photonic crystals.

The problem of light propagation in the imperfect photo-
nic crystals is much more complicated, because even small

disorder disturbs the translational symmetry; this violates the
Bloch theorem making difficulties for the numerical consid-
eration. To cope with this problem, we employ the envelope
function approach �EFA�, which is commonly used in the
solid state theory for investigation of the electron properties.
EFA permits dividing the problem into two parts: �1� deter-
mination of the photonic band structure of the perfect crystal
and �2� investigation of the influence of imperfection or
small disorder on the photon transport. The first problem
should be considered numerically;6,7 the results of such cal-
culations can be expressed in terms of the gap values and
effective speeds of light in the appropriate photonic bands.
These values can be used then as the phenomenological pa-
rameters for solution of the second problem; this consider-
ably simplifies the numerical consideration of the problem
and permits its analytical analyzing for the small or smooth
imperfections.

To study the reflection or refraction of light at the crystal
boundary, we have to apply the boundary conditions to the
effective electric and magnetic fields. In the optics of com-
mon crystals this procedure leads to the well-known Fresnel
equations. Derivation of these equations assumes the dielec-
tric permittivity as the smooth function on a scale of the
wavelength.11 This is possible, if the wavelength of light
much exceeds the lattice constant of the crystal. This is the
case of the common crystals, but not the photonic crystals,
the lattice constant of which is comparable with the photon
wavelength. To avoid this difficulty, the authors of Ref. 12
used the dynamic scattering theory that has been developed
for investigation of the x-ray scattering at the crystal surface.
This theory supposes that electric field does not change es-
sentially on a scale of an atom. This is the case of the com-
mon crystals, but not the photonic crystals, which “atoms”
are of the size comparable with the wavelength of light.

The EPA for the Maxwell equations has been suggested in
the papers,13–17 where this approximation has been used to
study the influence of the point defects on the optical prop-
erties of PC,13,14 optical properties of the photonic
heterostructures,15,16 and waveguides.16,17 In this paper we
use the EPA to consider the influence of the extensive defects
on the light propagation in the photonic crystals. We obtain
the boundary conditions for these envelopes at the bound-
aries between photonic crystals and photonic crystal—
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vacuum, taking into account existence of the intermediate
region at the boundary where one crystal order changes into
another. The approach is used to investigate the transmit-
tance of the photonic crystal film.

II. SAMPLE PREPARATION

The shear-flow crystallization method developed by the
group of Xia �see, for example, Ref. 18� has been used for
fabrication of the metal, metal oxide, and polymer photonic
crystals. Typical examples of the fabricated structures are
presented in Fig. 1. The structure and optical properties of
the films including transmission spectra and band gap struc-
ture were reported.19

III. ENVELOPE FUNCTION APPROXIMATION FOR THE
LIGHT FIELDS IN PHOTONIC CRYSTALS

A. Equation

Let us consider a photonic crystal lattice composed of
equal beads, the dielectric permittivity of which is different
from that of the surrounding media. For the sake of simplic-
ity we assume both materials as isotropic and the lattice as
cubic. The electric field E�r� of the light wave obeys the
equation

�E�r� + �2���r� + ��r��E�r� = 0, �1�

where � is the frequency of the light, the permittivity ��r� is
a periodical function of the position r, and ��r� is its nonpe-
riodical addition caused by irregularity. We adopt the units
where the speed of light in vacuum is equal to unity �c=1�,
otherwise the substitution �→� /c has to be done.

The Eq. �1� with ��r�=0 leads to the eigenvalue problem
that was numerically solved in Ref. 7. The electric field of
the wave propagating along the wave vector k obeys the
equation

�Ek,n
� �r� + �n

2�k���r�Ek,n
� �r� = 0. �2�

Here Ek,n
� �r� is a Bloch function of the nth band, �n�k� is the

frequency of this band, and �=1,2 is the polarization index.

In general, the frequency �n�k� also depends on polarization,
and a more complicated operator should replace � in Eq. �2�;
this is not the case for the crystals of cubic symmetry we are
considering. The Bloch functions can be normalized as

�
V

��r�Ek,n
�* �r�Ek�,n�

�� �r�d3r = M�n,n���,���k,k�,

where V is the unit cell, M =4�	�n�k�Nph, and Npn is the
number of photons in the unit cell. We can introduce the
Wannier functions Wn

��r−Ri�, localized at the ith site as fol-
lows

Ek,n
� �r� =

1
�N

�
Ri

eik·RiWn
��r − Ri� ,

Wn
��r − Ri� =

1
�N

�
k

e−ik·RiEk,n
� �r� ,

�
V

��r�Wn
�*�r − Ri�Wn�

���r − R j�d3r = M�n,n���,���Ri,Rj
. �3�

Here N is the total number of “atoms” in the lattice. Let us
find the solution of the Eq. �1� in the form

E�r� = �
n,Ri,�

En
��Ri�Wn

��r − Ri�e�, �4�

where e� is the unit vector of polarization �e1�e2�k�,
En

��Ri� is the envelope function of the � polarization of the
electric field. Equation �4� determines the envelope only at
the lattice sites Ri. To obtain the equation for this value we
have to substitute Eq. �4� into Eq. �1�, multiply the derived

equation by Wn�
��*�r−R j�e��, and integrate it over r. Then we

obtain

�2En
��Ri� − �

Rj

En
��R j�
n�R j − Ri�

+ �2 �
n�,Rj

En�
� �R j�Un,n��R j,Ri� = 0, �5�

where


n�R j − Ri� =
1

N
�

k
�k,n

2 e−ik�Rj−Ri�,

Un,n��R j,Ri� =
1

N
� ��r�Wn�

�*�r − R j�Wn
��r − Ri�d3r .

If we consider the envelope En
��r� as a smooth function of the

position r, then this equation can be rewritten as

�
n�− i � � − �2�En
��r� −

�2

M
�

n�,r�

En�
� �r��Un,n��r,r�� = 0.

�6�

Here 
n�−i� � is the Fourier transform of 
n�R j −Ri�, i.e.,
�k,n

2 , after the substitution k→−i�. Note that the equation

FIG. 1. Examples of photonic crystals, fabricated from the col-
loidal polystyrene spheres with diameter 404 nm �SEM patterns�.
Left: a homogeneous crystal with the top �111� surface parallel to
the substrate. Right: a nonhomogeneous crystal build of two kinds
of domains with the top surfaces �111� and �100� parallel to the
substrate. Note that the homogeneous crystal as well as different
domains of the nonhomogeneous crystal have the same ccp struc-
ture. Scale bar is 1 �m.
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div En
��r� = � · �En

��r�e�� = 0

follows from Eqs. �3� and �4�.
Equation �6� is the equation for the envelope electric field

in the photonic crystal. In contrast to Eq. �1�, it does not
contain explicitly the terms describing the crystal lattice. The
effect of the crystal, in particular its symmetry and material
of the “atoms,” is described by the term 
n, which should be
determined numerically. While this term can be expressed
via effective parameters: the photonic band gaps and the
speeds of light related to the appropriate bands. In our esti-
mations we use the simple model of the photonic band struc-
ture considered in the Appendix. Outside the gap region we
can assume 
n�−i� �=−Sn

2�, where Sn�1 is the speed of
light in the nth photonic band.

The interaction Un,n��r ,r�� is due to irregularity of the
photonic crystal. For the week or smooth irregularity it can
be considered as perturbation. This is not the case for the
correction to the dielectric permittivity ��r� caused by irregu-
larity �this value is either zero or ��r����. Additional sim-
plification is possible, if we assume that the Wannier func-
tions Wn

��r−Ri� and Wn�
� *�r−R j� overlap only for Ri=R j and

n=n�. Then

Un,n��r,r�� = Un�r� ,

and Eq. �6� turns into the wave equation with the position
dependent speed of light.

Note that Eq. �6� does not contain the terms resulting in
the light repolarization. This is the consequence of our
model, where the optically isotropic crystal has been com-
posed from the isotropic beads. In the more general case, the
anisotropy has to be arisen as the result of dependence of
�n�k� on the wave polarization.

B. Boundary conditions

At first assume �k,n=Snk, where Sn is the speed of light in
the nth photonic band. In the band spectra of real photonic
crystals such a relation occurs just apart the band edges.7

Then 
n�−i� �=−Sn
2�, and the Eq. �6�, in the absence of

interaction, can be written as

	� +
�2

Sn
2 
En

��r� = 0. �7�

Equation �7� permits introduction of the envelope function

for the magnetic field rot En
� = i�Hn

��, which obeys the equa-
tion

rot�Sn
2rotHn

�� − �2Hn
� = 0. �8�

Consider scattering of the light wave, the electric field of
which is normal to the plane of incidence �E wave�. The
electric field En

��r� satisfies Eq. �7� with Sn=1 in vacuum
�z�0�. For uniqueness of solution of this equation in the
whole space, it is necessary to determine its discontinuity
and discontinuity of its normal derivative at the boundary
z=0. Artificially it is possible to reduce the symmetry of
vacuum to that of the photonic crystal. To obtain the bound-
ary conditions for En

�, we replace the sharp boundary with

some smooth interface where the velocity of light Sn changes
continuously from its value in the photonic crystal to that
outside it. Then we can choose some region at the interface
as a cylinder of small height h. Assuming h→a0→0 �a0 is
the lattice constant� after integrating of Eq. �7� over this re-
gion, we obtain

� �Ey

�z
� = 0. �9�

Square brackets here denote discontinuity of the respective
value at the boundary. To obtain the second boundary condi-
tion, we have to multiply the Eq. �7� by z before the integra-
tion

�Ey� = 0. �10�

Boundary conditions for the H wave �the light wave,
which electric field is in the incidence plane, hence, the mag-
netic field is normal to this plane� can be obtained from Eq.
�8�. The values of Sn

2�Hy /�z and Hy should been continuous
at the boundary. Thus,

�Ex� = 0, �11�

���2

q2

�Ex

�z
� = 0, �12�

where q is the z component of the light wave vector.
The boundary conditions we just have obtained mean con-

tinuity of the tangent components of the electric and mag-
netic fields at the interface. In the transmission-reflection
problem they lead to the well-known Frensel expressions.
These BC hold also for a complicated dispersion law. Indeed,
we can expand 
n�−i� � in series of �, or � due to the
evenness of �n�k�. Equations �9� and �10�, follow after mul-
tiplication of the obtained equations by the relevant power of
z and integration over the interface region.

Influence of the omitted term in Eq. �6� is more interest-
ing. If we suppose Un,n��r ,r�� as a smooth function of the
distance at the interface, then its contribution vanishes after
integration. However, this is not the case, if Un,n��r ,r�� has a
singularity. The origin of this singularity could be interpreted
as deviation of the dielectric permittivity from its bulk value
at the interface. As the result, Eqs. �9� and �12� accept the
form

� �Eny
�

�z
� + �2	Eny

� + �
n��n

�n,n�En�y
� 
 = 0,

���2

q2

�Enx
�

�z
� + �2	Enx

� + �
n��n

�n,n�En�x
� 
 = 0. �13�

The same result could been obtained, if we had not supposed
a0→0 when integrating of Eq. �7�. The rough estimation
yields

 �
a0

MSn
2�

V
��r�Ekn

�*�r�Ekn
� �r�d3r ,
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�n,n� �
a0

MSn
2�

V
��r�Ekn�

�* �r�Ekn
� �r�d3r ,

where ��r� is difference between ��r� in the balk of the pho-
tonic crystal and that in the first bordering layer. Apparently,
�a0 and �nn��.

The second terms in Eq. �13� can be interpreted as an
intermediate thin layer at the boundary. Indeed, the boundary
conditions �10�, �11�, and �13�, �with �n,n�=0� relate the elec-
tric fields at the interface z=0 of two equal medias z�−d
and z�d in the presence of thin dielectric layer −d�z�d;
here =2d��, 2d is thickness of the layer and �� is differ-
ence of dielectric permittivities of the medias and the layer.
This term arises in Eq. �13� because of violation of transla-
tional symmetry at the boundary, which concerns mainly the
first row of “atoms.” Note that small roughness of the bound-
ary also sometimes can be considered as a thin interface
layer.20

The third terms in Eq. �13� result in interband mixing at
the interface that never occurs when the light transmission
through the ordinary crystal is considered. They are the terms
that determine diffraction of light at the crystal boundary.
They mix together all the photonic bands. It is apparent,
however, that not all of them are of equal importance. In-
deed, the fields of the far remote bands are strongly decaying
and so do not affect appreciably the bulk of the crystal. As
to the boundary, we can accept there En

��z��exp�−�nz�,
so that �En

� /�z=−�nEn
�, with the decay exponents �n

=��2n2 /a2−�2 /Sn
2 nearly independent of the photon energy

for n��a /�Sn. Expressing all these fields via each other,
we can rewrite Eq. �13� for only one or a few nearest bands.
The new parameters  and �n,n� depend on �n, but not on the
photon energy. Thus, these parameters can be considered as
characteristic for the particular boundary.

The Wannier functions Eq. �3� for the photonic states have
been introduced in Refs. 13, 14, and 17. It is shown that they
can be chosen localized at the lattice site after some unitary
transformation.14 The Wannier function representation has
been used to calculate the defect states in photonic crystals.
The good agreement with the FDTD simulations has been
achieved.14 The EPA for the Maxwell equations has been
developed in Ref. 21. In that paper the envelope was intro-
duced after separation of the slowly and rapidly varying
components of the light fields and averaging of the latter.
Determination of the envelope function we have used in this
paper has been developed in Refs. 13–17. The boundary con-
ditions for the envelopes �9�–�12� have been obtained in Ref.
15. Here we improve these BC by taking into account the
discrete character of the photonic crystals �a0�0�.

IV. TRANSMISSION THROUGH THE IDEAL CRYSTAL
LAYER. THEORY

Consider the light wave incidence on the photonic crystal
localized between the planes z�d. Let XZ be the plane of
incidence, � and �1 are the incident and refraction angles.
Omitting the band mixing, we can write the y component of
the envelope electric field of the light wave polarized nor-
mally to the incidence plane �E wave� as

Ey = eik�x�eipz + Re−ipz if z � − d ,

C1eikz + C2e−ikz if z � d ,

Teipz if z � d ,
� �14�

where Ey belongs to the lower photonic band, if its frequency
��cG /2, or to the upper photonic band, if ��cG /2; k� is
the parallel to the boundary component of the photon wave
vector, p=� cos � and k= �� /S�cos �1=���−sin2 � are the z
components of the photon wave vector outside and inside the
layer, respectively; k belongs to the appropriate photonic
band and it is imaginary, if � belongs to the photonic gap.

To obtain the coefficients R, C1, C2, and T, we have to
write BC �10� and �13� �where �n,n�=0� at both boundaries.
This routine leads to the following expression for the trans-
mission coefficient

Tp =
4kp

�i�p − k� + �2�2e2ikd − �i�p + k� + �2�2e−2ikd

�15�

or for the transmission rate

Tp2 =
16k2p2

Q
,

where

Q = ��p − k�2 + �42�2 + ��p + k�2 + �42�2

− 2��p2 − k2 + �42�2 − 4k2�42�cos 4kd

− 8k�2�p2 − k2 + �42�sin 4kd

for the real k and

Q = ��p − G�2 + ��2 + ��2�2e−4�d

+ ��p + G�2 + ��2 − ��2�2e4�d

− 2��p2 − G2 + �42 − �2�2 − 4�p� + �2G�2�cos 4Gd

− 8�p2 − G2 + �42 − �2��p� + �2G�sin 4Gd ,

for the imaginary k=G+ i�.
The values of arguments of sin and cos �4kd�4Gd� are

rather large for the thick layers. It is possible to average T2
using the equality

1

2�
�

0

2� dt

a + b cos t + c sin t
=

1
�a2 − b2 − c2

.

Then for the real k we obtain

�Tp2� =
2kp

k2 + p2 + �42 . �16�

Transmission rate at the midgap is determined by the largest
of exponents exp�4�d�, so that T2�exp�−4�d�.

The x component of the envelope electric field of the H
wave can be written as
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Ex = eik�x cos ��eipz + Re−ipz if z � − d ,

C1eikz + C2e−ikz if z � d ,

Teipz if z � d .
� �17�

The boundary conditions �11� and �13� yield the transmission
coefficient

Ts =
2i�kpe−ipd

��2p2 − k2�i + p�2�sin 2kd + 2�kp�i + p�cos 2kp
,

which is equal to Eq. �15� for �=0. Thus

�Ts2� = �
2�kp

�2p2 + k2�1 + 2p2�
for real k ,

16�2G2p2e−4�d

��G + �p�2 + 2G2p2�2

for k = G + i�,� � G ,

and e4�d � 1.
�

�18�

Mean transmission rate of the nonpolarized light is

�T2� = ��TP2� + �TS2��/2.

V. TRANSMISSION THROUGH THE CRYSTAL LAYER
EXPERIMENT

Figure 2 presents the transmission spectrum of the poly-
styrene colloid film we have grown �Fig. 1�. The close
packed fcc crystal has been composed of spherical beads; the
diameter of the beads is D=404 nm, thus, the lattice constant
is a0=571 nm; the thickness of the film is 2d=25 �m. We
have studied the light transmission through the �111� bound-
ary. The transmittance outside the gap has been estimated
from Eq. �16�, where the value of =0.12a0 ensures the best
fit.

The photonic band structure of the polystyrene close-
packed fcc lattice has been calculated in Ref. 22. Position of
the dip can be estimated as �min=2neffd111, where d111
=D�2/3 is the body diagonal and neff is the effective refrac-
tion index. We assume11

neff
2 = �1 + 3�1 − f�

�1��2 − �1�
�2 + 2�1

,

where �1=2.53 and �2=1 are the dielectric permittivities of
the polystyrene and vacuum, respectively, f =0.74 is the den-
sity of fcc packing. Small deviation from this estimation can
be explained by the details of the photonic band structure of
fcc packing of the polystyrene beads discussed in Ref. 19.

Choosing the gap value � from the experiment �Fig. 2�,
we can estimate transparency of the film from Eq. �A2�. The
result of this estimation is also presented in Fig. 2 �solid
curve�; it is of five orders less than the measured value of
transparency. Similar results have been obtained also in Refs.
8–10, where the measured values of transparency of the col-
loid structures have been compared with those obtained after
calculation of the photonic band structures from the first
principles. Farther in this paper we show that this is the
result of disorder of the colloid structures.

VI. TRANSMISSION THROUGH THE NON-IDEAL
PHOTONIC CRYSTAL LAYER

In general, the vector potential A�r , t� of the light wave
obeys the equation

rotA�r,t� +
1

c2 ���r� + ��r��
�2A�r,t�

�t2 = 0. �19�

Equation �1� follows from it, if we choose the gauge with
the zero scalar potential

E = −
�A

�t
, H = rotA ,

and assume A�r , t�=A�r�exp�−i�t� for the monochromatic
light wave. The equality E= i�A allows us to introduce the
envelope function for the vector potential, which also satis-
fies Eq. �6�.

Let us consider transmittance of light through the photo-
nic crystal located in the region −d�z�d. The light wave
propagates from z=−�, so that for the envelope vector po-
tential in the region I �z�−d� we can write

A��,z� = Ieik��+ipz +� R�kx,ky�eik�+iqzdkxdky

and in the region III �z�d�

A��,z� =� T�kx,ky�eik�+iqzdkxdky .

Here I is the unit vector in the direction of polarization, R
and T are the reflection and transmission vectors, �, k, and k�

are the coordinate and wave vectors in the XY plane, and q
=��2−k2 and p=��2−k�

2 are the z components of the wave
vectors.

Thus, for the average total transparency we obtain

� T�kx,ky�2dkxdky =
1

�
� A��,d�A*��,d�d2� .

The integrand of this equation is the sum of the
diagonal components of the photonic Green function

FIG. 2. �Color online� Transparency of a photonic crystal under
normal incidence. The theoretical curve corresponds to the model of
the perfect crystal.
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Dij��1 ,z1 , t1 ;�2 ,z2 , t2�=−i�TÂi��1 ,z1 , t1�Âj
*��2 ,z2 , t2�� �where

T means the time ordering�. The equation for this function
follows from Eq. �6�. This is the usual equation for the pho-
tonic Green function,23 where the typical photon dispersion
��k�=S ·k has to be replaced by �n�k� from Eq. �2�, with the
random potential Un,n��r1 ,r2� as the perturbation. This allows
using the diagrammatic technique to determine the average
over the random potential Green function,23,24 which also
should satisfy the boundary conditions �10�, �11�, and �13�.
We do not carry out this routine in this paper; instead we
consider two simple models of the structure irregularity that
are helpful for analyzing of the transmittance spectra.

A. Sort-range irregularities in pseudo-PBG crystals

Position of the midgap is determined by the edge of the
Brillouin zone, therefore it depends on the direction in the
crystal. The gap width is small in the photonic crystals of the
small-index materials. The gap is not absolute in such mate-
rials; photon propagation in some direction can be forbidden,
but it is not forbidden for the photon of the same frequency
in another direction. Such photonic structures are called
pseudo-PBG crystals.

If the frequency of light � belongs to the photonic gap in
the direction of the normal n to the crystal boundary z=0,
then the light propagation in this direction is prohibited.
However, midgap position depends on direction in the crys-
tal, and if the gap value is small, then the same � can be
outside the gap in some direction close to n. If so, then
elastic scattering of the light can increase the in-gap trans-
parency. In this connection, transparency of the thick film
depends on the number of scatterers in the decay length 1/�,
but not on the film thickness.

Let us assume the vector potential in the region II
�z�d� as

A�r� = A0�r� + A1�r� ,

where A0=C1eik0z+C2e−ik0z is the unperturbed vector poten-
tial and A1 is the perturbation caused by irregularity. Then
for the zero-range scattering we write

A1�r� = f�
i

A0�ri�
eikr−ri

r − ri
, �20�

where f is a scattering amplitude, we assume it is scalar; ri
are coordinates of the scatterers. We have

eikr−ri

r − ri
=

i

2�
� ei�kx�x−xi�+ky�y−yi�+qz−zi�

q
dkxdky ,

q =��2

�
− kx

2 − ky
2.

Hence

� A1
*��,d�A1��,d�d2�

= f2�
i,j

A0
*�ri�A0�r j� � ei�kx�xi−xj�+ky�yi−yj�+q�zi−zj��

q2 d2k .

�21�

Averaging on ri, r j results in two components. One of
them follows from Eq. �21�, if kx=ky =0; it is not interesting
for us. The second one arises, if ri=r j, it yields

� A1
*��,d�A1��,d�d2� = f2�

i

A0�ri�2� d2k

qz
2 .

The integral is equal to 2� ln�� /��. The sum can be esti-
mated as

�
i

A0�ri�2 � Ni��
0

2d

e−2�zidzi =
Ni�

2�
�1 − e−4�d� .

Thus, contribution of the short-range irregularities to the
transparency can be estimated as

Timp =
1

�Li
ln	�

�

�1 − e−4�d� , �22�

where Li= ��f2Ni�−1 is the mean free path.
We see that transmittance is small, if the density of impu-

rities Ni is also small, but it does not contain the exponential
factor exp�−4�d�. This is a result of the approximation of
low density we have assumed. In the opposite limit we
should substitute unperturbed function A0 in Eq. �20� by its
exact value. If we substituted the value of A0

*�ri�A0�r j� in Eq.
�21� by the averaged Green function of the disordered media,
then the Eq. �22� would obtain the factor exp�−4d /Li�. This
would also suggest the exponential decay of transmittance,
but with a considerably low rate Li

−1��. Note that the same
factor exp�−4d /Li� appears also in the expression for trans-
parency outside the gap, so that it doesn’t exist in the peak-
to-valley ratio.

Assuming the short-range scattering as the main mecha-
nism limiting the midgap transparency, we can estimate the
mean free path as

Li =
2S

Tmin�
ln

W

�
, �23�

where Tmin is the peak-to-valley ratio.
Figure 3 presents results of estimations using this model

for the specimen from Fig. 1. We see that short-range irregu-
larity increases the midgap transparency, but does not lead to
widening of the dip. The reason is clear. Short-range scatter-
ing changes the wave vector of the in-gap photon and, con-
sequently, makes it out-gap. Inverse process, i.e., scattering
that changes the wave vector of the out-gap photon and
makes it in-gap is improbable for the narrow-gap photonic
crystals.

B. Long-range irregularities

Let us consider an imperfect photonic crystal, whose ir-
regularities are due to the smooth structure distortion. Such a
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distortion effectively changes the lattice constant and, there-
fore, shifts the midgap frequency, which becomes position
dependent. As a result, the photon that frequency belong to
the gap in the perfect crystal can propagate without attenua-
tion in some regions of the imperfect crystal where the gap
position is different. On the other hand, the photon that fre-
quency is outside the gap, but close to it in the perfect crystal
propagates with attenuation in some regions of the imperfect
crystal where its frequency corresponds to the local gap.
Thus, long-range irregularities should lead to widening of the
dip in the transparency spectra and increase the midgap
transparency.

The light propagation in the structure with long-range ir-
regularities can be described by wave equation with the
position-dependent effective speed of light S. The z compo-
nent of the photon wave vector obeys Eq. �A2� where the
photonic band width W=GS is also position dependent. We
can write this dependence as W=W0�1+��f�, where ��1 is
a constant, and �f is deviation of the density of the cpp
packing; this is a random function of the position. This al-
lows us to rewrite Eq. �A2� in the form

q�z� = �� + ��z� ,

where

� =
��2 − W2�2 − W2�2

4S2W2 , and � = −
�2 − W0

2 + �2/2

S2 ��f

�24�

is also a random function.
The z factor of the envelope function in the WKB ap-

proximation contains the exponent

J�z� = ei�0
z �q�z�−q*�z��dz. �25�

To average J�L� over ��z�, let us expand it as

J̄ = 1 + i�
−d

d

�q1 − q1
*�dz1

−
1

2
�

−d

d

�q1 − q1
*��q2 − q2

*�dz1dz2 − ¯ , �26�

where q1=q�z1�, q2=q�z2�. Third term in this equation can be
written as

�
−d

d

�q1 − q1
*��q2 − q2

*�dz1dz2

= �
−d

d

�q1 − q1
*��q2 − q2

*�dz1dz2

+ �
−d

d

�q1q2 − q1
*q2 − q1q2

* + q1
*q2

*�dz1dz2.

The last terms �−d
d q1q2dz1dz2�2dlq2 �where l is the correla-

tion length; this is the characteristic length of the distortion�
are small in comparison with ��−d

d q1dz1�2�4q2d2, if l�2d.
Collecting the first-type terms from each summand of Eq.
�26�, we obtain

J̄ = e−4 Im q̄·d. �27�

Obviously, Im q̄ should replace �=Im k in expressions �15�
and �16�.

Assuming the normal distribution of the random value
��z�, we can evaluate the average q�z� as

q̄ =
1

��2�
�

−�

+�

e−�2/2�2�� + �d� ,

where

�2 = �2 =
��2 − W0

2 + �2/2�2

S4 �2�f2.

Then

FIG. 3. �Color online� Transparency of a photonic crystal under
normal incidence. The theoretical curve corresponds to the model of
short-range irregularity.

FIG. 4. �Color online� Transparency of a photonic crystal under
normal incidence. The theoretical curve corresponds to the model of
the long-range irregularity.
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Im q̄ =�
�3/2

4���
e−�2/4�2�K3/4	 �2

4�2
 − K1/4	 �2

4�2
� if � � 0,

�3/2

4���
e−�2/4�2�K3/4	 �2

4�2
 + K1/4	 �2

4�2
 + ��2�I3/4	 �2

4�2
 + I1/4	 �2

4�2
�� if � � 0.� �28�

In particular, outside the gap edges ����� this estimation
yields

Im q̄ = �
�2

2�2�3/2
e−�2/2�2

if � � 0,

��	1 −
�2

16�2
 if � � 0.�
The factor �27� for positive ��� �outside the gap region� is
equal to

ln J̄ = −
�2d�2

�3/2 e−�2/2�2
.

This means widening of the dip. In the gap region ���0� we
obtain decrease of the dip depth. Thus, for the midgap value
we obtain the additional factor exp��2 / �4�3/2�d�. Rough es-
timation yields

T � e−4�/S�1−�2�f2�d

for the midgap transparency and

���min
2 � ��min

��f2

for the mean width of the dip.
To obtain the exact value of transparency, we have to

replace �=Im k with Im q̄ from Eq. �28� in the expressions
�15� and �16�. The results of such simulations for the speci-
men of Fig. 1 are presented in Fig. 4. The best fit corre-
sponds to =0.13, ���f2=0.02, and � /W0=0.02; the latter
is close to the gap value calculated in Ref. 22. From this

figure it is clear that the model of long-range irregularity is
most appropriate to our experiments.

Figure 5 presents results of our experiments and simula-
tions for the oblique incident light. Parameters used in simu-
lations are listed in Table I. It is important that  and ��f2

are the parameters of the structure, which should not depend
on the angle of the light incidence. It is apparent from the
table that the values of =0.14 and ���f2=0.02 ensure a
good fit with experiments for ��25°, where the dips are
strongly pronounced. Rough estimation of ��3�1�2
−�1 / �neff

2 ��2+2�1�� yields ��0.25. Thus, mean square de-
viation of the bead size can be estimated as 4–6%.

It seems that increase of  at ��25° is the effect of
diffraction, which has not been taken into account in our
estimations and which is important at the large incident
angles. The reason of oscillations of transparency in the
Fig. 5 can be related with inaccuracy of the expansion �24� at
�=0.

VII. DISCUSSION

The envelope function approach used in this paper per-
mits us to consider the light fields in the perfect photonic
crystal as the zero-order approximation. Then distortion of
the crystal structure can be considered as perturbation.
Simple models we have studied evaluate the result in terms
of mean square deviation of the dielectric permittivity ���r�2.
In general, diagrammatic approach leads to the more compli-
cated correlators, such as ���r����r��, etc. It is important that
all such averages are the statistical parameters of disorder.
They should appear in the equation for the average Green
function, solution of which directly yields the transmission
rate.

TABLE I. Parameters of simulation.

Angle
�deg.�

Dip position
�nm�

Thickness of
intermediate layer
 �lattice const�

Mean disorder
���f2

0 910 0.13 0.0178

5 903 0.15 0.0196

10 884 0.13 0.023

15 856 0.14 0.025

20 817 0.14 0.02

25 778 0.18 0.013

30 743 0.19 0.016

35 757 0.20 0.05

FIG. 5. �Color online� Transparency of an imperfect photonic
crystal under oblique incidence. Theoretical curves �solid lines� cor-
respond to the model of long-range irregularity.
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At the boundary of the photonic crystal the envelopes of
the light fields must satisfy the boundary conditions, that are
more complicated than ones commonly used in optics. In-
deed, interaction of light with an individual atom in a com-
mon crystal contains a small factor e2 /	c�1/137. The ef-
fect of this interaction, the dielectric permittivity �, arises as
a result of interaction of light with a large amount of atoms.
This allows considering � as a smooth function of distance
from the boundary, that is necessary to derive the commonly
used boundary conditions for the electric and magnetic
fields.

Interaction of light with an individual “atom” in the pho-
tonic crystal is not so small. Therefore, the boundary condi-
tions for the envelope fields should be more complicated. In
general, not only the magnetic fields � Eqs. �13��, but also the
electric fields can be discontinuous at the boundary. It seems
that additional terms have to appear in the equations �10� and
�11� for the photonic crystals of the magnetic materials. The
form of the boundary conditions depends on the equations
for the envelope fields and symmetry of the Bloch functions
of the appropriate bands.25 Similar problem of the boundary
conditions for the wave equations at the semiconductor het-
erojunctions is discussed in Ref. 26.

The boundary conditions �10�, �11�, and �13� are more
general than that used in Ref. 15. The additional terms origi-
nate from the first layer of “atoms” where neither Eq. �7� or
its vacuum analog with Sn=1 hold. Effective thickness of
this layer was found to be small =0.14a0. This is the result
of close packing 1− f =0.26�1. Indeed,  is zero, if 1− f
=0.

The last terms in Eq. �13� determine diffraction of light at
the boundary. Diffraction does not affect essentially transmit-
tance of the photonic crystal layer, because of the exponen-
tial factor which essentially determines this value. However,
diffraction is very important when the reflection spectra are
investigated; these spectra were found to be sensitive to the
polarization of the oblique incident light wave.27 The effect
is also sensitive to the boundary roughness.28

The reflectivity spectra of the 2D AlxGa1−xAs photonic
crystal was studied both experimentally and theoretically in
Ref. 29. The theory29 is based on the scattering matrix
method justified in Ref. 30. To ensure the best fit with the
experiment, the influence of a thin oxide layer inserted on the
surface of the photonic crystal has been taken into account in
calculation. It seems that this layer has the same nature as the
second terms in Eq. �13�.

The simple models of the structure distortion we have
considered include the effects of short-range and long-range
disorder on the transmittance spectra. It was found that the
short-range disorder considerably increases the midgap trans-
mittance, but does not influence the width of the dip. Mean-
while, the long-range disorder causes widening of the dip. In
addition, the irregularities of different range demonstrate dif-
ferent dependence of the mid-gap transmittance on the film
thickness. The long-range distortion leads to the exponential
behavior. This type of irregularity only changes the value of
the exponential factor. The short-range distortion can be the
reason of the nonexponential behavior; transmittance in this
case determines by the thin layer at the boundary where the
in-gap photons can turn into the out-gap ones due to the
scattering.

In the actual photonic structures the short-range distortion
can be associated with the beads of the standard size, which
dielectric permittivity is distinguished from the others. The
long-range disorder can be caused by the beads of the non-
standard size; distortion of the crystal lattice around such
beads relaxes on the large distance.

For the polycrystalline domain structure the influence of
the short-range disorder can be connected with light reflec-
tion at the domain boundaries �see, e.g., the right part of Fig.
1�. In such sense, this is close to the incoherent scattering,
which has been observed and explicitly discussed in Ref. 9.
We have shown that it does not cause broadening of the dip,
but results in significant increase of the midgap transmit-
tance.

The effect of polycrystallinity should depend not only on
the size and orientation of the domains, but also on structure
of the boundary between them; it is considerable at the sharp
boundary, but small at the smooth one. Indeed, exactly solv-
able models considered in Ref. 31 show that reflectivity of
smooth �in comparison with the light wavelength� bound-
aries is much less than that of the sharp ones.

The long-range disorder in the polycrystalline domain
structures can be associated with deviation of the effective
speed of light after its refraction into the domain of different
orientation. This is the effect that determines the width of the
dip.

Influence of disorder on the transmittance and reflectance
spectra has been also investigated in Refs. 8, 27, and 32–34.
It is established that light propagation becomes diffuse due to
scattering at the grain boundaries and point defects. Increase
of the midgap transparency due to disorder also has been
observed. Simulations of Ref. 8 shows that such increase can
not been explained merely by disorder. We suppose this dis-
agreement with our results is due to the difference between
our model of disorder and that of Ref. 8. Indeed, certain
difference in the exponential indexes can result in consider-
able difference in the exponential factors. In addition, the
authors of Ref. 8 have exploited the one-dimensional model
of disorder, which cannot take into consideration the mecha-
nism of short-range scattering discussed in Sec. VI A.

In conclusion, we suggested the envelope functions ap-
proach for the electric and magnetic fields of the light wave
in the disordered photonic crystals. We used this approxima-
tion to investigate the transmittance spectra of imperfect
photonic crystals. In particular, we studied the limits of the
short-range and long-range irregularity. We found that the
short-range disorder cause increase of the midgap transpar-
ency, whereas the long-range disorder results in broadening
of dips in the transparency spectra.

ACKNOWLEDGMENTS

L.B. appreciates support of the Russian Foundation for
Basic Research and the Program for Support of Scientific
Schools �Grant No. 4500.2006.2�. The work of V.S. has been
supported by the TOP NANO 21 Program �Swiss Commis-
sion for Technical Innovations, Project No. 5971.2 TNS�.
V.S. thanks Professor Y. Xia and Dr. J. McLellan �Depart-
ment of Chemistry, University of Seattle� for a kind intro-

LIGHT PROPAGATION IN AN IMPERFECT PHOTONIC… PHYSICAL REVIEW B 73, 085107 �2006�

085107-9



duction to the shear-flow crystallization method.

APPENDIX: SIMPLE MODEL OF PHOTONIC BAND
SPECTRUM

Let us suppose the following model of the photonic spec-
trum in the crystal:

�2 =
1

2
��1

2 + �2
2 ± ���1

2 − �2
2�2 + 4W2�2� , �A1�

where �1=S1k and �2=W−S2k are the photonic spectra
apart the gap, W=GS1 is the midgap frequency, and � is the
gap value; the wave vector G corresponds to the appropriate
edge of the Brillouin zone: G=2� /a0 for the X point �for
�100� boundary� and G=��3/a0 for the L point �for �111�
boundary�. From Eq. �A1� it follows

�1
2�2

2 − �2��1
2 + �2

2� + �4 − W2�2 = 0.

Assuming �1=W−qS1 and �2=W+qS2, where q=G−k
�G at the band edge, we can write

���2 − W2��S1
2 + S2

2� + 4W2S1S2�q2 − 2W��2 − W2��S1 − S2�q

− ���2 − W2�2 − W2�2� = 0.

The solutions of this equation are

q = ���2 − W2��S1 − S2� ± ���2 − W2�2�S1 − S2�2

+ 4S1S2���2 − W2�2 − W2�2��1/2�/�4WS1S2� .

The module ��2−W2��S1−S2� arises here after reducing of
k=G−q to the first Brillouin zone. In particular, for S1=S2
=S we obtain

q2 =
��2 − W2�2 − W2�2

2S2��2 + W2�
. �A2�

*Electronic address: brag@isp.nsc.ru
1 Y. Lu and Y. Xia, Adv. Mater. �Weinheim, Ger.� 13, 34 �2001�.
2 D. Amarie, N. Rawlinson, W. Schaich, B. Dragnea, and S. Jacob-

son, Nano Lett. 5, 1227 �2005�.
3 P. Sudeep, B. Ipe, K. Thomas, M. George, S. Barazzouk, S.

Hotchandani, and P. Kamat, Nano Lett. 2, 29 �2002�.
4 P. Esfandiari, G. Bernstein, P. Fay, W. Porod, B. Rakos, A.

Zarandy, B. Berland, L. Boloni, G. Boreman, B. Lail, B. Mona-
celli, and A. Weeks, Proc. SPIE 5783, 470 �2005�.

5 Y. Xia, J. A. Rogers, K. E. Paul, and G. M. Whitesides, Chem.
Rev. �Washington, D.C.� 99, 1823 �1999�; V. Shklover and H.
Hofmann, in Handbook of Semiconductor Nanostructures and
Nanodevices, edited by A. A. Balandin and K. L. Wang �Ameri-
can Scientific, Los Angeles, 2005�, Vol. 1.

6 S. G. Johnson and J. D. Joannopoulos, Opt. Express 8, 173
�2001�.

7 A. Moroz and C. Sommers, J. Phys.: Condens. Matter 11, 997
�1999�; K. Busch and S. John, Phys. Rev. E 58, 3896 �1998�; K.
M. Leung and Y. F. Liu, Phys. Rev. Lett. 65, 2646 �1990�; Ze
Zhang and Sashi Satpathy, ibid. 65, 2650 �1990�; K. M. Ho, C.
T. Chan, and C. M. Soukoulis, ibid. 65, 3152 �1990�; S. Satpa-
thy, Ze Zhang, and M. R. Salehpour, ibid. 64, 1239 �1990�; H.
S. Sözüer, J. W. Haus, and R. Inguva, Phys. Rev. B 45, 13962
�1992�.

8 Yu. A. Vlasov, M. A. Kaliteevski, and V. V. Nikolaev, Phys. Rev.
B 60, 1555 �1999�.

9 V. N. Astratov, A. M. Adawi, S. Fricker, M. S. Skolnick, D. M.
Whittaker, and P. N. Pusey, Phys. Rev. B 66, 165215 �2002�.

10 B. Gates, Y. Lu, Z. Y. Li, and Y. Xia, Appl. Phys. A: Mater. Sci.
Process. 76, 509 �2003�.

11 L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous
Media �Pergamon, New York, 1975�.

12 R. J. Spry and D. J. Kasan, Appl. Spectrosc. 40, 782 �1986�; S.
A. Asher, P. L. Flaugh, and G. Washinger, Spectroscopy �Am-
sterdam� 1, 26 �1986�; P. A. Rundquist, P. Photinos, S. Jagan-
nathan, and S. A. Asher, J. Chem. Phys. 91, 4932 �1989�.

13 O. Painter, K. Srinivasan, and P. E. Barclay, Phys. Rev. B 68,
035214 �2003�.

14 K. Busch, S. Mingaleev, A. Garcia-Martin, M. Schillinger, and D.
Hermann, J. Phys.: Condens. Matter 15, R1233 �2003�.

15 E. Istrate, M. Charbonneau-Lefort, and E. H. Sargent, Phys. Rev.
B 66, 075121 �2002�.

16 M. Charbonneau-Lefort, E. Istrate, M. Allard, J. Poon, and E. H.
Sargent, Phys. Rev. B 65, 125318 �2002�.

17 J. P. Albert, C. Jouanin, D. Cassagne, and D. Bertho, Phys. Rev. B
61, 4381 �2000�.

18 S. H. Park, B. Gates, and Y. Xia, Adv. Mater. �Weinheim, Ger.�
11, 462 �1999�.

19 V. Shklover, Chem. Mater. 17, 608 �2005�; V. Shklover, L. Bra-
ginsky, and H. Hofmann, Proc. SPIE 5814, 239 �2005�; V. Sh-
klover, L. Braginsky, and H. Hofmann, Mater. Sci. Eng., C 26,
142 �2006�.

20 R. Z. Vitlina, A. M. Dykhne, Sov. Phys. JETP 72, 983 �1991�; L.
Braginskii, I. Gilinskii, and S. Svitasheva, Sov. Phys. Dokl. 32,
297 �1987�.

21 C. M. de Sterke and J. E. Sipe, Phys. Rev. A 38, 5149 �1988�.
22 E. Pavarini, L. C. Andreani, C. Soci, M. Galli, F. Marabelli, and

D. Comoretto, Phys. Rev. B 72, 045102 �2005�.
23 A. A. Abrikosov, L. P. Gor’kov, and I. E. Dzyaloshinskii, Quan-

tum Field Theoretical Methods in Statistical Physics �Pergamon,
Oxford, 1965�.

24 F. G. Bass and I. M. Fuks, Wave Scattering from Statistically
Rough Surfaces �Pergamon Press, New York, 1979�.

25 F. López-Tejeira, T. Ochiai, K. Sakoda, and J. Sanchez-Dehesa,
Phys. Rev. B 65, 195110 �2002�.

26 E. L. Ivchenko and G. E. Pikus, Superlattices and Other Hetero-
structures �Springer-Verlang, Berlin, 1997�.

27 J. F. Galisteo-López, F. López-Tejeira, S. Rubio, C. López, and J.
Sanchez-Dehesa, Appl. Phys. Lett. 82, 4068 �2003�.

28 S. Björkert, C. Lopes, Åsa Andersson, and T. Martin, Proc. SPIE
5989, 292 �2005�.

29 V. N. Astratov, D. M. Whittaker, I. S. Culshaw, R. M. Stevenson,

L. BRAGINSKY AND V. SHKLOVER PHYSICAL REVIEW B 73, 085107 �2006�

085107-10



M. S. Skolnick, T. F. Krauss, and R. M. De La Rue, Phys. Rev.
B 60, R16255 �1999�.

30 D. M. Whittaker and I. S. Culshaw, Phys. Rev. B 60, 2610
�1999�.

31 A. B. Shvartsburg, P. Hecquet, and G. Petite, J. Opt. Soc. Am. A
14, 931 �1997�.

32 J. F. Galisteo-López, E. Palacios-Lidón, E. Castillo-Martínez, and

C. López, Phys. Rev. B 68, 115109 �2003�.
33 J. F. Bertone, P. Jiang, K. S. Hwang, D. M. Mittleman, and V. L.

Colvin, Phys. Rev. Lett. 83, 300 �1999�.
34 Y. A. Vlasov, V. N. Astratov, A. V. Baryshev, A. A. Kaplyanskii,

O. Z. Karimov, and M. F. Limonov, Phys. Rev. E 61, 5784
�2000�.

LIGHT PROPAGATION IN AN IMPERFECT PHOTONIC… PHYSICAL REVIEW B 73, 085107 �2006�

085107-11


