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Electron density distribution in paramagnetic chromium: A y-ray diffraction study
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High-accuracy single-crystal structure factors, complete up to sin #/A=1.78 A~! have been measured from
paramagnetic chromium at 333 K using 316.5 keV v radiation. A detailed description of the electron density
distribution is derived in terms of a multipolar atomic deformation model. There is pronounced charge asphe-
ricity in the valence region arising from preferential occupancy of the #,, subshell. The 3d charge distribution
is contracted by 12.6% relative to the free atom, in accordance with magnetic synchrotron x ray and neutron
measurements. By contrast, the atomic crystal scattering factor deduced from +y-ray diffraction is found to be
in contradiction with earlier experimental and theoretical work. Achievement of a reliable Debye-Waller factor
is of vital importance in this context. There is no evidence for an anharmonic term in the atomic potential. Real
space and energetic features of the charge density topology are used to characterize the directed metallic bonds.

Special attention is paid to the form factor approximation in diffraction data analysis.
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I. INTRODUCTION

The ground state electron density is the fundamental in-
dependent variable of many-electron density-functional
theory.! Its spatial distribution in the unit cell, p(r), is experi-
mentally accessible from high-quality x-ray diffraction data.
The diffracted intensities are connected with the structure
factors, the Fourier components of p(r). The diffraction ex-
periments are demanding since extremely accurate measure-
ments are needed to move from standard crystal structure
determination towards addressing the rearrangement of the
electron density caused by crystal bonding. In the case of
chromium, a number of electron density related studies have
appeared in the literature, but these studies are either based
on reduced sets of low-order diffraction data or a quantitative
representation of the electron density is lacking. It is the
purpose of this paper to overcome these limitations, and to
deduce an accurate charge density of paramagnetic chro-
mium from an extended set of crystal structure factors by
employing y-ray Bragg diffraction.

With the use of 316.5 keV v radiation, the high-energy
diffraction case (photon energy >K-shell binding energy) is
fully realized making it possible to overcome a number of
experimental and theoretical difficulties in the process of de-
riving structure factors from the observed integrated intensi-
ties. It is important to realize that the improvement in accu-
racy is not only due to the high photon energy but is also
brought about by additional favorable experimental condi-
tions, such as the perfect space-time stability of the wide
homogeneous incident beam, or the absence of any optical
device providing a simple instrumental resolution. The
nuclear +y lines have a very narrow spectral spread of
AXN/N=107% so that multiple diffraction is suppressed. It is
worth noting that the photon energy used in this work is
much beyond 100 keV presently available with synchrotron
radiation sources.
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Studies of heavier element compounds such as Cr demand
a much higher accuracy than studies of organic systems,
since the heavier the element, the smaller the fraction of
scattering from the valence electrons relative to the core con-
tribution. Furthermore, the small unit cells encountered in
highly symmetric elemental solids lead to only few reflec-
tions in the low order region where valence scattering is
concentrated, calling again for an exceptional accuracy if
meaningful information is to be obtained. These handicaps
explain the rather limited number of available diffraction
data in the case of the transition metals which in view of
their importance clearly deserve more experimental atten-
tion.

The benefits offered by high-quality y-ray structure fac-
tors data sets have been exploited and realized during the
past years in a series of electron density studies on archetype
inorganic crystals.> Experimental charge densities from
simple inorganic materials has been the subject of a recent
review.? After presenting our results for Cr, a detailed critical
assessment of agreement and disagreement will be given
with earlier results, deduced from laboratory x ray, synchro-
tron X ray, electron and neutron diffraction work as well as
from ab initio band-structure calculations.

II. EXPERIMENTAL AND DATA REDUCTION

Paramagnetic chromium has a body-centered-cubic (bcc)

structure (space group Im3m; a=2.8857 A at 333 K),* in
which each atom is surrounded by eight nearest neighbors
along the cube diagonals and six next-nearest neighbors
along the cube axial directions.

The single crystal used in the present investigation was a
cube of dimensions 2.509 X 2.506 X 2.500 mm?>, purchased
from MaTecK/Jiilich (Germany). Double-crystal y-ray dif-
fraction with an angular resolution of 1.5” was used to mea-
sure diffraction profiles along three perpendicular directions.
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It turned out that the sample consisted of several crystallites,
each of them with an isotropic angular full width at half
maximum (FWHM) of around 70”".

The diffraction data have been collected on the y-ray dif-
fractometer installed at the Hahn-Meitner-Institut where the
most intense line of an '*’Ir source (7,,,=73.83d) with a
wavelength of 0.0392 A (316.5 keV) is used. The diffracted
v rays were recorded in w-step scan mode with an intrinsic
germanium detector. The data set, complete up to sin /A
=1.78 A~!, was collected at 333(1) K, well above the Néel
temperature, Ty=311 K, so that lowering of symmetry can
be excluded as a possible source of interference.

An absorption correction was carried out (u
=0.750 cm™!),’ resulting in a transmission range from 0.800
to 0.843. 314 diffraction data were measured corresponding
to 79 independent reflections with an unprecedented
counting-statistical overall precision of Zo(I)/=I=0.0038
for the averaged data. The absorption-weighted mean path
lengths through the sample varied between 2.251 mm and
2.487 mm. It was therefore considered necessary to process
each reflection with its individual path length in the calcula-
tion of the extinction correction, and to treat symmetrically
equivalent reflections separately. Data reduction was carried
out using the XTAL suite of crystallographic programs.®

The data were corrected for the contribution of inelastic
thermal diffuse scattering (TDS) from the acoustic modes to
the total intensity. The formalism of Skelton and Katz’ was
applied, using the elastic constants from Bolef and de Klerk®
and the instrumental parameters defining the sampled vol-
ume in reciprocal space: w-scan peak width=0.7°, full circu-
lar detector window=0.46°. The maximum TDS contribution
was 16%.

III. RESULTS

Structure refinements were performed with the program
system VALRAY,” minimizing x>=3w(|F,|>*~|F,|?)?, where
F, and F_ are the observed and calculated structure factors,
respectively. The observations were weighted by their
counting-statistical variances.

A. Independent-atom model (IAM)

Cr has the electronic ground state configuration 3d°4s
(7S3). Scattering factors were calculated from the Hartree-
Fock wave functions given in Clementi and Roetti.! The fit
parameters were the scale factor of the observed structure
factors, a secondary extinction parameter using the Becker-
Coppens formalism,'' and the mean square vibrational am-
plitude. In order to reduce the influence of charge-density
deformations in the outer shell, high-order refinements were
carried out, taking into account only reflections with
sin 9/A>0.7 A~ not affected by extinction. The resulting
scale factor was fixed in later refinements with improved
scattering models.

B. Multipole model

In the aspherical atom multipole model the electron den-
sity distribution is projected onto a small basis set of
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TABLE I. Quality of fit for the various scattering models based
on 314 observations; Np=number of adjustable parameters. In all
cases, the scale factor was fixed to the value obtained from a high-
order refinement (sin 6/x>0.7 A™1).

IAM Monopole Multipole
X 4797 2542 943
Np 2 3 4

nucleus-centered real spherical harmonic functions with the
local density rigidly following the motion of its associated
nucleus.'? The atomic density of Cr is represented by three
components of the core, 3d spherical valence and deformed
valence electrons

pCr(r) = pcore(r) + K3p3d(Kr) + PhexK3p3d(Kr)K4(r/r) .

For site symmetry m3m the lowest nonvanishing higher pole
is the Kubic harmonic K,(r/r) which is a linear combination
of yo and ygy,.

The core density is the unperturbed Hartree-Fock (HF)
electron density of the appropriate atomic orbitals. The
square of the radial part of the 3d canonical HF orbitals is
used to construct both the monopole and the hexadecapole.
The « parameter allows for expansion (k<1) or contraction
(k>1) of the radial function. A single x parameter is used
for both the spherical valence shell and the deformation
function. This constraint is necessary for the subsequent cal-
culation of 3d orbital occupancies (see Sec. IV B). Py, is a
variable hexadecapole population coefficient. The spherical
surface harmonics are expressed relative to a global Carte-
sian frame which is oriented parallel to the unit cell axes.
Several models were examined in the refinement process.

In Table I, the quality of fit is given for the reference
scattering models. Further variants will be discussed below.
The very high precision of the data is reflected by the large
value of x* for the IAM. A large improvement of fit is al-
ready obtained with a spherical atom model using the
valence-shell radial scaling parameter. The drastic reduction
in x* shows that the data strongly supports the multipole
model, also to be reflected by the very narrow confidence
limits on the fit parameters which are listed in Table II. Note
that the normalization condition for the aspherical density
function is such that the population coefficients correspond
to the local electrostatic moments in A units.

Since the diffuse 4s valence density contributes very little
to the scattering, its population cannot be reliably deter-

TABLE II. Mean square vibrational amplitude and multipole
model parameters of paramagnetic Cr at 333(1) K. Reliability fac-
tors for the 314 observations: R(F)=3|F,—F.|/2|F,|=0.0054,
WR(F?) =[Sw(F2-F2)2/SwF1]'2=0.0096.

U (A?) 0.00385(1)
K 1.126(2)
Phex (|e]A%) ~0.676(37)
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FIG. 1. Aspherical contributions to the static model density in
the (110) plane. The density range is from —1.11 to 0.74e A3,
Solid lines represent regions of excessive density, dashed lines de-
pleted regions in steps of 0.1e A=3. The zero contour is omitted.
The densities are truncated at +0.5¢ A=3,

mined, and is fixed to 1. Tentative omission of 4s resulted
only in a minor increase in x>.

Adjustment of the secondary extinction parameter gives a
Gaussian mosaic width (FWHM) of 67.3(5)", in perfect
agreement with the observed value, convincingly demon-
strating that extinction has been treated properly. The maxi-
mum reduction of |F,|* due to secondary extinction is 21%; a
reduction of more than 5% occurs for only three independent
reflections.

The positivity of experimental electron densities is not
guaranteed by the multipole model. The static model density,
with the Debye-Waller factor omitted, was therefore evalu-
ated in direct space; it proved to be positive everywhere in
the unit cell. Figure 1 shows the static model deformation
density (aspherical components only). The observed features
are very pronounced, exhibiting magnitudes up to 1.1e A3
The deformation map will be further discussed below.

Transition metal atoms require a multipole expansion at
least up to [=4. Inclusion of one more symmetry-allowed
term in the multipole expansion, y4, with a Slater-type radial
dependence, leads only to a marginal improvement of the
least-squares fit, and is regarded as insignificant.

C. Metallic bond characteristics

According to the atoms-in-molecules (AIM) theory devel-
oped by Bader,'? the interatomic interactions are character-
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ized by local properties at the bond critical saddle points,
of the electron density between two nuclei (two negative
perpendicular curvatures and one positive parallel to the
bond path). Shared-electron (covalent) interactions have
V2p(r,) <0, typical of charge concentration, whereas closed-
shell (ionic) interactions have V2p(r,) >0, typical of charge
depletion. Metallic systems are associated with a flat slowly
varying electron density throughout the valence region, and
the Laplacian is generally dominated by the positive curva-
ture along the bond path, V2p(r.)>0, though all three cur-
vature components may have a small magnitude possibly
leading to V2p(r,) close to zero (and therefore quite indeter-
minate). The smaller magnitude of V2p(r.) as compared to
the strong ionic bond reflects the greater tendency of the
charge density to remain in the internuclear region, away
from the atomic basins. A quantitative measure of the va-
lence electron density flatness is provided by the ratio r
= Pmin(T)/ Prmax (L), Where pin(r) is the absolute minimum of
the electron density and p,,,,(r.) the maximum density found
at a bond critical point.'"* The flatness index r separates met-
als (r— 1) from nonmetals (r— 0).

Further information about the bonding type is available
from the local electron energy densities [G(r.)=kinetic en-
ergy density, V(r.)=potential energy density, H(r.)=G(r,)
+V(r.)=total energy density] that can be calculated from
p(r.) and V?p(r,) using the approximation for G(r,) pro-
posed by Abramov! in combination with the local virial
theorem from which V(r,) can be estimated. For shared-
electron interaction, there is a predominance of the (nega-
tive) local potential energy, so that H(r.) <0, while for
closed-shell systems H(r.)=0 is observed.?

Table III summarizes the characteristics of the bond criti-
cal points of the static model electron density. There are
closed-shell type [V2p(r.) >0] bonds between first and sec-
ond neighbors with the distinguished features of a low elec-
tron density and a balance of the kinetic and potential energy
densities. The flatness index has the value r=0.595, quite
remote from the free-electron value of one. The kinetic en-
ergy per electron, G(r.)/p(r,), is found to be low (less than
one, in atomic units), a property the metallic and the covalent
bond have in common.

For a variety of fcc metals, Eberhart et al.'® noticed a
linear relationship between bulk modulus and V?p(r.), dem-
onstrating that macroscopic elastic behavior correlates with a
local property of the charge density. Taking the first neighbor
value from Table III [V?p(r.)=0.11 a.u., bulk modulus B
=1.901 X 10'? dyn/cm?], the respective proportionality is
confirmed also for chromium though it belongs to the differ-
ent topological bce familiy.

TABLE III. Characteristics of the bond critical points. \; denotes the curvature of p(r.) along the inter-
nuclear line (the two negative perpendicular curvatures are degenerate). Values of p in eA=3, values of
V2p(r,) and \; in eA=5. G, V, and G/p are given in atomic units.

r. p(r,) V2p(r.) N G(r,) V(r.) G(r)/p(r,)
Died 0.237 2.790(1) 4.03(1) 0.0301(2) -0.0312(4) 0.858
110 0.145 0.926(2) 1.00(1) 0.0112(3) -0.0127(6) 0.520
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IV. DISCUSSION

A. Vibrational parameter

The mean-square amplitude of atomic vibrations is con-
verted from the sample temperature (333 K) to room tem-
perature (295 K) using the linear dependence over the small
temperature range, U(295 K)=0.00341(1) A2 Neglect of the
TDS correction would have resulted in an artificial reduction
of U by 7%.

The vibrational parameter obtained in this work is consid-
erably smaller than the value reported by Ohba et al.!” in
their x-ray charge density study at 297K, U
=0.00407(2) A% The discrepancy is due to the reduced
monochromaticity of the graphite monochromated x-ray
beam.'8 It contains a bremsstrahlung component with a large
wavelength spread that is progressively truncated at higher
Bragg angles, inevitably resulting in distorted values for vi-
brational parameters that are systematically too large. The
spectral width of the 316.5 keV photon beam is AN/A
=10° and no monochromator is needed.

Several other experimental methods have been used in the
determination of the chromium vibrational parameter at am-
bient temperature. From measurement of x-ray high-order
powder reflections at two temperatures, U=0.00344(8) A2
was obtained.!” The values, 0.00337 A% and 0.00331 A2,
were calculated by Peljo®® from a lattice dynamical model
based on the results of inelastic neutron scattering measure-
ments by Shaw and Muhlestein?! and Feldman,?” respec-
tively. Refinement of an extended single crystal neutron dif-
fraction data set (sin O/A<15A"") gave U
=0.00337(4) A223 There is thus excellent agreement be-
tween the independent estimates of U.

The possible influence of anharmonic contributions to the

Debye-Waller factor has also been investigated. For m3m
point symmetry there can be no third-order modifications but
there is one isotropic and one anisotropic quartic term in the
Gram-Charlier expansion of the atomic probability density
function. Combined multipole-anharmonicity refinement
leads only to an insignificant improvement of fit. There is
thus no noticeable anharmonic component in the atomic po-
tential, and the harmonic approximation has to be considered
as adequate. Our result is supported by x-ray single crystal
diffraction'” but disagrees with an x-ray powder study.?’ Ac-
cording to this study, the independently-vibrating atom po-
tential should show an isotropic softening which would im-
ply a larger thermal displacement than in a harmonic
potential.  The  reported room-temperature  value,
0.00315(11) A2, is inconsistent with the values presented
above.

An adequate description of thermal motion is a necessary
condition for a meaningful extraction of charge density in-
formation from the diffraction data. Validation of the thermal
parameter is therefore an important issue lending support and
credibility to the further conclusions.

B. d orbital populations

The 3d electron density of a transition metal atom may be
described by spherical harmonic functions or, alternatively, it
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may be expressed in terms of the orbital components of its
atomic wave function. By equating the two descriptions of
the density, a set of linear equations is obtained from which
the orbital occupancies can be derived from the multipole
populations (/,,,,=4).2* With an octahedral environment, the
d orbitals split into doublet e, and triplet #,, orbitals. In a bce
metal, the #,, orbitals point towards the nearest neighbors
while e, is directed towards the second nearest neighbors.

From the refined multipole parameters follows 66.4(2)%
1, and 33.6(2)% e, for the 3d° configuration. The population
of the 1,, orbitals is thus significantly larger than 60%, the
value for a spherical charge distribution. The orbital occu-
pancies are clearly reflected in the deformation map (Fig. 1)
where the dominant features are electron buildup along
(111), pointing towards the nearest neighbors, and electron
depletion towards the second nearest neighbors. The experi-
mental charge asphericity of Cr metal displayed by Ohba et
al.'7 is quite different from Fig. 1: whereas charge accumu-
lation is qualitatively reproduced, the corresponding deple-
tion along (100) is practically missing. The number of d
electrons which contribute to the aspherical charge density is
given as Zazn(tzg)—%n(eg), with n indicating the number of
electrons having symmetry #,, or e,; the deduced value is
Z,=0.80(1).

In the bee metals there occur pairs of reflections such as
(330/411), (431/510) at identical values of sin §/\, which
would have the same intensity if the charge density were
spherically symmetric. From measurement of a couple of
such reflections, the 1,, population in Cr was estimated to be
67.0(2.3)%;% in an earlier study?® about 72% (no standard
deviation is given) was found. There is thus agreement on
the asphericity of the charge distribution, with the present
work providing a substantial advance in accuracy.

C. Form factors
1. X-ray form factor

For the radial scaling parameter, x, a very pronounced
deviation from the IAM is observed. The 3d° valence shell
exhibits a spatial contraction of 12.6%, which corresponds to
a form factor expansion relative to the free atom. The atomic
form factor fyy is related to the fitted structure factor F
through fi=Fpna/2, so that for a monatomic crystal the
static values are simply obtained by multiplication with the
inverse Debye-Waller factor. The structure factor contains a
contribution from nuclear Thomson scattering, fy
=(Ze)*/Mc?. For chromium, fy=0.0061 electron units,
which is accounted for. Absolute values of the atomic crystal
scattering factor for the first 16 diffraction vectors are listed
in Table IV, where also the numerical contributions of both
the core and valence electrons have been individually iden-
tified. Our experimentally derived values are now compared
with earlier x ray and electron diffraction measurements, per-
formed on an absolute scale.

Cooper’s?’?® work on a powder sample using Ag-Ka ra-
diation gave a scattering factor (corrected for anomalous dis-
persion) that for the first six reflections was about 5% lower
than the theoretical free-atom value. The observed values of
f at higher sin 8/\ are already too low due to an overesti-
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TABLE IV. Static scattering factors from the multipole model fit
for chromium in units of e/atom. f.,. and fy,ence denote the con-
tributions from the core and 3d° valence electrons, respectively. f is
the total contribution from all electrons. fiay is calculated from
Ref. 10, and fiheory is taken from Ref. 33.

hkl - sin /NA™) fere  fratence f Flhiam S fineory
110 0.2451 14.618 2475 17.093 1.021 1.049
200 0.3466 12.464 1407 13.871 1.020 1.036
211 0.4245 10983 0.925 11.908 1.024 1.021
220 0.4902 9931 0.609 10.540 1.022 1.014
310 0.5481 9.164 0355 9519 1.014 1.013
222 0.6004 8.588 0.302 8.890 1.020 1.008
321 0.6485 8.143  0.182 8325 1.015 1.007
400 0.6932 7.790  0.033 7.823 1.002 1.008
330 0.7353 7.502  0.072  7.574 1.011  1.005
411 0.7353 7.502  0.022 7.524 1.004 1.006
420 0.7751 7.260 0.009 7269 1.005 1.005
332 0.8129 7.051 0.036 7.087 1.010 1.004
422 0.8490 6.867 —-0.003 6.864 1.006 1.004
431 0.8837 6.701 -0.016 6.685 1.005 1.004
510 0.8837 6.701 -0.080 6.621 0.995 1.005
521 0.9493 6.408 -0.062 6.346 0.999 1.003

mated vibrational parameter [U=0.00374 A?].2® It seems
also possible that the sample suffered from some chemical
change, probably oxidation, since Hosoya? noticed a
gradual decrease with time of Cr powder intensities for mea-
surements in open air, which ceased for a protected sample.

Later, single-crystal experiments were performed on a
plate of 0.05 mm thickness.?® The integrated intensities of a
few low-order reflections, obtained at different spots from
the crystal surface, were plotted as a function of the square of
the reciprocal half-width, a relationship chosen because it
gave the best linear trend line. Extrapolation to infinite half-
width resulted in a crystal form factor, after correcting for
anomalous dispersion, up to 6% smaller than free-atom
theory, so that an expansion of the 3d charge distribution was
inferred. Contrary to Cooper’s data, however, the difference
between the two types of scattering factor diminishes with
increasing sin 6/N. The following objections may be raised
against the thin-plate technique: (i) the extrapolation proce-
dure lacks theoretical justification, and (ii) it is susceptible to
systematic errors arising from residual primary and second-
ary extinction, and surface irregularities which always de-
crease the measured intensity. In the context of secondary
extinction, the pitfalls of phenomenological extrapolation to
establish a zero-extinction limit have been revealed by one of
the authors.>

High-energy electron diffraction allows determination of
the scattering factor for a first-order reflection by exploiting a
dynamical scattering effect. Owing to destructive interfer-
ence, the intensity of the second-order reflection will show a
minimum at a particular electron accelerating voltage known
as the critical voltage. The first-order value is determined
from the measured voltage by many-beam calculations cov-
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FIG. 2. Static model valence density in the (110) plane. Con-
tours are drawn at intervals of 0.5¢ A=,

ering higher-order Fourier coefficients. Knowledge of the
Debye-Waller factor is essential. Furthermore, it is assumed
that the higher-order terms can be described in the
independent-atom approximation. From room temperature
measurements, two x-ray scattering factors have been deter-
mined, fj;y and f5q9, Which are 2.5% and 1% smaller than
those for free atoms.>'3> An important source of error ap-
pears to be in the second-order structure factors which are
definitely affected by bonding effects (see Table IV). Though
the precision of a critical-voltage experiment may be very
high, the accuracy in structure factor determination depends
upon other measured and calculated values.

A comprehensive band-structure calculation for paramag-
netic chromium was performed by Laurent et al.,*3 who em-
ployed the self-consistent linear combination of Gaussian or-
bitals method, and used the computed wave functions also to
determine the x-ray form factor, tabulated up to sin /A
=0.95 A~!. In Table 1V, it is shown that the three lowest-
order values are 5.0-2.2 % smaller than the model fit values,
while the deviation for the higher orders smoothly ap-
proaches 0.5% or less. The observed disagreement between
theory and experiment therefore cannot be attributed to an
inadequate experimental scaling factor. Rather, it is an indi-
cation that the d orbitals have a radial extension different
from the predicted one. The charge density is more concen-
trated around the nuclei.

A further ab initio calculation'” was based upon the aug-
mented plane wave method, and a valence electron density
map as well as the x-ray form factor have been reported. The
theoretical map compares very well with the present model
valence density which is depicted in Fig. 2. In the experi-
mental map, peaks of 7.75¢ A= are found on the (111) axes
at 0.20 A from the Cr nucleus. The corresponding theoretical
values are 5.8¢ A= and 0.23 A. At a deeper quantitative
level, however, the low order Fourier coefficients are again
smaller than the model fit values by up to 5.1%. As core and
valence contributions have been given individually, the
source of discrepancy between theory and experiment can be
identified unambiguously. There is perfect agreement con-
cerning the inner electrons, whereas the theoretical valence
form factors appear to be systematically reduced in the order
of 50%.
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The comparison has shown up difficulties and discrepan-
cies. The results from the literature share one common fea-
ture, that is, an apparent expansion of the valence charge
distribution is found. On the other hand, the y-ray data re-
quire an opposite behavior, namely, a large contraction of the
valence shell which supports the conjecture by O’Keeffe et
al?* that, as a general rule, the valence-electron density
should be contracted in monatomic crystals. This hypothesis
is based on measurements of the average electrostatic poten-
tial using electron-beam techniques, eventually contradicting
the often-reported expansion of the valence shell in crystal-
line silicon.

2. Magnetic form factor

Complementary information about the spatial extent of
the d electrons can be obtained from magnetic form factor
measurements. While in neutron diffraction only the total
magnetic moment is accessible, proportional to the sum L
+2S of the orbital and spin angular momentum, high-energy
magnetic x-ray diffraction is sensitive to the ordered spin
component only. Synchrotron radiation at 100 keV was used
to measure several points of the magnetic form factor.’> A
pure spin nature of the ordered-moment was inferred by
Moon et al.® from a neutron diffraction investigation of an-
tiferromagnetic chromium. Both the neutron and the x-ray
data are in excellent agreement, substantiating the presence
of a pure spin moment and the quenching of the orbital con-
tribution. The results could be well described by the spheri-
cal atomic form factor for the 3d*4s> configuration. Simi-
larly, polarized neutron studies of the field-induced magnetic
moment distribution have been interpreted in terms of
3d*4s%37 1t should be noted, however, that this configuration
represents an excited state. Its shape is practically indistin-
guishable from the ground state scattering factor (3d°4s')
with an associated expansion of 12.6% in scattering space
(see Table IV). The radial density contraction found in the
present paramagnetic study is thus quantitatively corrobo-
rated. The spherical contraction should be invariant with re-
spect to the magnetic phase, as has indeed been observed in
the case of the transition-metal monoxides.” It is important to
realize that interpretation of the magnetic form factors was
invariably based on literature values from 1961 (Table 4 in
Ref. 38), when an accurate ground state wave function for Cr
was not yet available, and for this reason, an absence of
solid-state effects has been incorrectly concluded.

3. Localized versus diffuse d electrons

The electron density analysis, discussed so far, is based on
a localized atomic model of the electron density in the crys-
tal. In simple metals, the valence electrons, originating from
s- and p-type orbitals, are itinerant and do not contribute to
the Bragg intensities, so that the scattering factors should be
smaller than those for free atoms. This is not the case with
transition metals, such as Cr (see Table III), where the bond-
ing involves d states which are much more localized, and
where the Fermi surface lacks any resemblance to the free-
electron sphere. Concerns expressed by Ohba er al.'” that for
a metallic state an accurate scale factor may not be obtain-
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able from neutral atom scattering factors are thus invalidated.

In a recent study® of metallic bonding in Cu (3d'%s"),
the 3d radial density was written as 3dcrysml=3d10‘”4s” to
account for partial delocalization, and it was found that a 3d
function from Cu*? and 4s from neutral atom produced by
far the best fit with the surprisingly large value at n
=1.27(6). An electron transfer from 3d to 4sp of this order is
at variance with the diamagnetism and the absence of any
aspherical charge deformation in Cu, so that a strong physi-
cal interpretation of n has to be abandoned. A more reserved
interpretation suggests the occurrence of a diffuse 3d density,
closely resembling 3d° due to the reduced screening effect of
the partially delocalized electrons.

Jiang et al.® proposed that this model of delocalization
should also be useful for the transition metals, and so we
have applied it to chromium. Writing 3dcrysml=3d5‘”4s” with
the 3d function from Cr*? yields n=0.92(12), and the same
quality of fit as the neutral atom model. The extra parameter
n thus turns out to be irrelevant, effectively mimicking the
electron count of the underlying d shell model. It should
further be pointed out that the 4s part in the 3d .y, radial
function acts as a formal electroneutrality constraint being
otherwise inconsequential in view of its vanishing scattering
contribution. No explanation can be offered why in the Cu
study the introduction of n leads to the amazing improve-
ment in R factor by an order of magnitude. To conclude,
there is no indication for a failure of the localized electron
model in chromium.

4. Relativistic form factors

The atomic form factors of the charge distribution are the
most important theoretical components used to analyze and
interpret the diffraction data. A better approximation to the
exact elastic (Rayleigh) scattering amplitudes than the ordi-
nary form factor f(g) is the modified relativistic form factor
g(g), introduced first by Franz,* which takes into account
electron binding effects.*! It is no longer the Fourier trans-
form of the charge distribution as in the classical form factor
approximation. For an atomic electron with wave function i,
it takes the form g(q)=[|y(r)|?e'f(r)dr, with f(r)=[1-|e
+|V(r)|]7!, where ¢ is the electron binding energy and V(r) is
the electrostatic potential (both in units of mc?). The choice
f(r)=1 corresponds to the form factor approximation. The
modified form factor is found by summing over all electrons
in the atom. Its size for g=0 is reduced from the atomic
number Z, the sum rule result for free electrons at rest, to
2(0)=Z~|Ey|/mc* where E, is the total ground-state binding
energy. The reduction is a consequence of the relativistic
mass increase of deeper core electrons which decreases their
response to the external electromagnetic field. For Cr, the
reduction in the effective number of electrons is 0.055. A
complete evaluation of total atom and K-shell values of g(g)
has been given by Schaupp et al.** for all elements. The
reduced K-shell values must not be confused with an appar-
ent radial core expansion. One should also not be misled by
the impression that the relevance of g(g) is restricted to high
energies. Rather, the relativistic reduction in scattering power
is independent of the energy of the scattered x rays.
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An important feature to be noted is that f(g) based on
nonrelativistic wave functions comes closer to g(g) than the
ordinary form factor obtained from relativistic wave func-
tions. For chromium at sin &/A=1 A~!, the relativistic cor-
rection A=g—f amounts to —0.03 and —0.06 e/atom when
referred to nonrelativistic and relativistic f(g), respectively,
which corresponds to a relative deviation of 0.5% and 1%.
The relativistic f(g) thus overestimates the effect of relativity
in the atom since the reduction from binding is neglected,
that is, relativity is included only incompletely.

It has been recommended to apply the relativistic correc-
tions to the experimental data,** and improved results have
seemingly arrived at.** In practice, such a procedure requires
independent information on scale and thermal parameters,
and even then, its feasibility is limited to monatomic struc-
tures. As having made clear above, A is not uniquely defined,
but only relative to a theoretical IAM reference f(g), and
therefore bears no direct relation to the measurements, so
that the transfer of a theoretical deficiency to the observa-
tional data must be considered with reservation. An accept-
able alternative is to include A in the scattering factor model,
acting as a real-valued x-ray dispersion term. This seems to
be a sufficiently good approximation since both quantities
are largely independent of sin §/\, being primarily due to the
inner electrons of the atom. The refined parameter values
obtained in this way were not statistically different from
those in Table II, as to be expected from an effect essentially
due to a 1.5% reduction of the K-shell nonrelativistic f(q).

Though deviations from the form factor approximation
pose an interpretative problem in high accuracy work, in
particular for heavier elements, its gravity should not be
overestimated. Note that the occurrence of a relativistic re-
duction is not confined to x-ray scattering but is shared in all
applications, e.g. electron diffraction, which rely on a simple
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Fourier transform relation between scattering amplitude and
target distribution, a framework which holds in nonrelativis-
tic scattering theories but not in relativity. Whereas a great
deal of effort has been invested over the years on improved
wave functions in the calculation of f(g), much less attention
has been paid to formalisms going beyond the form factor
approximation.

V. CONCLUDING REMARKS

An extended set of high-quality structure factors,
achieved by the use of 316.5 keV v radiation, has provided
the currently best possible representation of the electron dis-
tribution in Cr. Important findings include the following: (i)
validation of data quality and scale factor estimate by com-
parison with available values of the thermal vibrational pa-
rameter; (ii) anharmonic thermal motion is negligible; (iii)
the 3d-shell exhibits a spherical contraction of 12.6+0.2%;
(iv) excess occupation of the #,, orbitals towards the nearest
neighbors, accompanied by depletion of e, density towards
the second neighbors; (v) directional metallic bonding fea-
tures are quantitatively characterized in terms of electron
density properties; (vi) no indication for a failure of the lo-
calized 3d electron model is detected. Finally, it should be
emphasized that the high accuracy of the present method
serves as a sensitive and useful test of ab initio calculations,
with the revealed deviations underlining the need to improve
the level of accuracy in the theoretical predictions.
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