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We discuss shape �Pomeranchuk� instabilities of the Fermi surface of a two-dimensional Fermi system using
bosonization. We consider in detail the quantum critical behavior of the transition of a two-dimensional Fermi
fluid to a nematic state which breaks spontaneously the rotational invariance of the Fermi liquid. We show that
higher dimensional bosonization reproduces the quantum critical behavior expected from the Hertz-Millis
analysis, and verify that this theory has dynamic critical exponent z=3. Going beyond this framework, we
study the behavior of the fermion degrees of freedom directly, and show that at quantum criticality as well as
in the quantum nematic phase �except along a set of measure zero of symmetry-dictated directions� the
quasiparticles of the normal Fermi liquid are generally wiped out. Instead, they exhibit short-ranged spatial
correlations that decay faster than any power law, with the law �x�−1exp�−const �x�1/3� and we verify explicitly
the vanishing of the fermion residue utilizing this expression. In contrast, the fermion autocorrelation function
has the behavior �t�−1exp�−const � t�−2/3�. In this regime we also find that, at low frequency, the single-particle
fermion density of states behaves as N*���=N*�0�+B�2/3ln�+¯, where N*�0� is larger than the free Fermi
value, N�0�, and B is a constant. These results confirm the non-Fermi liquid nature of both the quantum critical
theory and of the nematic phase.
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I. INTRODUCTION

The behavior of interacting Fermi systems near continu-
ous quantum phase transitions is a central problem in the
physics of strongly correlated systems. Although much work
has been done on this subject, there are still many open and
as yet unresolved questions. At present the standard theory of
quantum phase transitions1–3 relies primarily on an analysis
on the effects of fluctuations perturbatively about the results
of Hartree-Fock theory. This analysis proceeds in almost
complete analogy with the theory of classical critical phe-
nomena about its upper critical dimension, and its straight-
forward extension to quantum phase transitions. In practice it
consists of an effective theory for a suitable order parameter
field while other degrees of freedom, including fermions, are
often integrated out at the outset.

In many cases of interest the systems are metallic and
have gapless fermionic excitations. In the standard approach,
their net effect is to introduce damping in the collective
modes associated with the order parameter field. In practice
this results in the introduction of dissipative terms in the
effective action. While much of this is certainly correct, this
approach implicitly assumes that the fermions are largely
unaffected by quantum criticality. Why this should be the
case is far from obvious.

The assumptions of the Landau theory of the Fermi
liquid4–6 are self-consistent and well justified within the Lan-
dau phase which has a sizable basin of stability, except in
one dimensional systems.7–16 However, there is no reason for
these assumptions to hold outside the Landau phase. How-
ever, there is also mounting evidence that these assumptions
may also not hold in a number of phases �and not just at

quantum critical points �QCPs��, including ferromagnetic
metals33 and nematic phases of Fermi fluids.19,20 The possi-
bility that quantum criticality may lead to non-Fermi liquid
behavior has been a focus of research in recent years, prima-
rily �but not only� in connection with the physics of the
“normal phase” of high temperature superconductors,3,21–23

and with heavy-fermion systems.24

The simplest example where the Landau assumptions on
the behavior of the quasiparticles are violated is the quantum
phase transition from a normal �Landau� Fermi liquid phase
to a nematic Fermi fluid.19 A nematic Fermi fluid is a uni-
form phase of a system of interacting fermions in which the
shape of the Fermi surface is distorted spontaneously, thus
breaking rotational invariance.25 This state is an example of
the fate of a Fermi liquid beyond a Pomeranchuk
instability.26 In this case, the Landau assumptions appear to
be violated throughout this phase, and not just at the quan-
tum critical point.19,20

The clearest experimental evidence to date of a nematic
Fermi fluid phase has been found in very clean two-
dimensional �2D� electron gases in magnetic fields in ultra-
clean samples.27,28 The striking resistivity anisotropies that
are observed in these experiments can be explained by the
onset of nematic order at low temperatures.29 It has also been
proposed that phases of this type may play a central role on
the physics of high temperature superconductors.30,31 This
charge-ordered state of a strongly correlated system of fer-
mions is the simplest example of an electronic liquid crystal
phase.30

The problem of the fate of the fermions at quantum criti-
cality, and in the “non-Fermi liquid” phases mentioned
above, so far has only been considered within perturbative
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corrections to Hartree-Fock random-phase approximation
�RPA� theory. Oganesyan et al.19 found that the quasiparti-
cles are wiped out as well-defined quantum states. This is
due to the large fluctuations of �overdamped� quadrupolar
collective modes. These authors found, within a Hartree-
Fock and RPA theory, an overdamped collective mode with
z=3 at the critical point. They also found that the fermion
self-energy acquires, at the quantum critical point, an imagi-
nary part with a frequency dependence following the law
�2/3. A similar behavior has been found in the case of the
Stoner transition and in the antiferromagnetic phase.17,33

Oganesyan and co-workers also found that this behavior
holds inside the nematic phase, except along a set of measure
zero of directions determined by the symmetry breaking.32

However, it seems quite likely that such leading order
behavior19,20 may actually signal the complete failure of the
Landau theory of the Fermi liquid. It is clear that to better
understand this problem a nonperturbative analysis of the
behavior of the fermions at the quantum phase transitions
�and beyond� is needed. Chubukov33 has given arguments
which, in the context of the ferromagnetic metallic transition,
suggest that this behavior may persist beyond the lowest or-
der in perturbation theory.

In this paper we will consider the nematic quantum phase
transition in Fermi fluids using the nonperturbative approach
of higher dimensional bosonization.10,12,15 We will not dis-
cuss the �important� lattice effects here. Bosonization is a
powerful tool to study the nonperturbative behavior of one-
dimensional gapless Fermi systems, the best understood fer-
mionic quantum critical systems.34 As is well known, the
kinematics of one-dimensional systems is so constrained that
the bosonic collective modes completely exhaust the spec-
trum of these fermionic systems, allowing even for a full
reconstruction of the fermionic operators entirely in terms of
bosons. A striking result in the one-dimensional system is
that the electron acquires a nontrivial anomalous dimension
and it is no longer the quasiparticle of these systems, even
for arbitrarily weak interactions. For these reasons one-
dimensional gapless Fermi systems have been termed “Lut-
tinger liquids.” The actual quasiparticles are nontrivial soli-
tons which are orthogonal to a bare electron.35

In dimensions higher than one the physics �and the kine-
matics� is quite different than in one dimension. Nevertheless
bosonization methods still yield the physics of the Landau
theory of the Fermi liquid correctly.10,12,15 Superficially this
may seem surprising since in dimensions higher than one
there are no longer strong kinematic constraints, and conse-
quently the bosonic collective modes cannot exhaust the
spectrum of an interacting Fermi system. Instead, except for
narrow regimes in which the collective modes are stable
quantum states, they exhibit Landau damping, reflecting their
decay into particle-hole pairs. It is a key check of the validity
of higher dimensional bosonization that it gets the physics of
Landau damping.13

One appealing feature of higher dimensional bosonization
is that it is actually a theory of the quantum fluctuations of
the shape of the Fermi surface. It is thus a natural approach
to study quantum phase transitions associated with Pomeran-
chuk instabilities, and in particular the nematic state.36 More
specifically, we focus on the nematic case for spinless fermi-

ons and compare with the work of Oganesyan and
co-workers19 based on RPA and Hartree-Fock. We find that
the physics of the bosonic collective modes is the same in
bosonization and in RPA, and thus our results agree with
those of Ref. 19 in the Landau phase, in the nematic phase,
and at the quantum critical point. Perhaps this is not so sur-
prising since at long wavelengths RPA becomes asymptoti-
cally exact and this is the regime in which bosonization is
correct �for a more thorough discussion, see Ref. 37�. In
particular we derive the effective action near the quantum
critical point and find that it does have a Hertz-Millis form
with dynamic critical exponent z=3, consistent with the find-
ings Oganesyan and co-workers,19 and by Nilsson and Castro
Neto,38 but in disagreement with the results of K. Yang.39

We further use bosonization methods to obtain the fer-
mion propagator. This result is well beyond the Hartree-
Fock/RPA theory and thus it allows us to study the fate of the
fermions nonperturbatively. We find striking violations of the
Landau assumptions for Fermi liquids. Thus, the equal-time
behavior of the fermion propagator at the quantum critical
point �at zero temperature� is found to fall off faster than any
power, decaying instead with a law 1/ �x � exp�−const �x�1/3�
as a function of distance. The same behavior is found in the
nematic phase except along symmetry-determined directions.
We also verify explicitely from this expression the vanishing
of the fermion residue as expected from this kind of behav-
ior. In contrast to the equal-time behavior, at quantum criti-
cality the fermion autocorrelation function behaves as
1/ �t � exp�−const � t�−2/3�, with a similar albeit anisotropic law
in the nematic phase as well. We also find that the low en-
ergy behavior of the one-particle density of states N*��� ex-
hibits an enhancement to a zero frequency value N*�0� which
we find to be larger than N�0�, its noninteracting value. At
finite but low frequency we further find that this one-particle
density of states behaves as N*���=N*�0�+B�2/3ln � �B is a
constant�, i.e., a cusp at �=0.

Thus, our bosonization results confirm that the nematic
phase of a Fermi fluid is a non-Fermi liquid. However, its
behavior is more complex than the predictions of the
Hartree-Fock/RPA theory. Recently Chubukov33 has exam-
ined the behavior of the fermion self-energy in perturbation
theory at the ferromagnetic quantum critical point and found
that the frequency dependence is not changed by higher or-
der corrections. Our results for the autocorrelation function
are consistent with his results, as well as with Refs. 19, 20,
and 40. However, we also find that the equal-time propagator
�the “one-particle density matrix”� has a very different be-
havior than what is predicted from these diagrammatic meth-
ods.

The paper is organized as follows: In Sec. II we derive a
theory of the nematic QCP via higher dimensional bosoniza-
tion. Here we present a theory of the quantum phase transi-
tion to the nematic Fermi fluid, Sec. II A, and show that it
reproduces the analog of Hertz-Millis theory for this prob-
lem. In particular we give a detailed analysis of the spectral
functions of the collective modes, Sec. II B, and derive the
effective action valid in the vicinity of the quantum phase
transition, Sec. II C. In Sec. III we use bosonization methods
to calculate the fermion propagator. Here we extract the full
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diagrammatic perturbation theory of the fermion Green func-
tion from bosonization, and use it to calculate the fermion
self-energy. Here we check that the bosonization formulas
reproduce correctly the non-Fermi liquid behavior found
within the Hartree-Fock/RPA theory.19 We then use the full
bosonized expression for the fermion propagator. Here we
find large violations to Fermi liquid theory both at quantum
criticality and in the nematic Fermi fluid phase. As an appli-
cation we give a calculation of the fermion one-particle den-
sity of states. Finally, in Sec. IV we draw our conclusions. To
help keep this paper self-contained, in Appendix A we give a
short review the extension of bosonization to D-dimensional
Fermi systems. �For a more in-depth review, see Ref. 16�. In
Appendix B we summarize details of the effective quadrupo-
lar interactions, including fermion screening and Landau
damping effects. In Appendix C we discuss the effects of the
�uncondensed� s-wave channel on the effective theory for the
nematic. The details of the calculation of the boson propaga-
tors are given in Appendix D.

II. THE NEMATIC QUANTUM PHASE TRANSITION AND
THE ORDER PARAMETER

In this section, we consider the boson theory, obtained via
an extension of bosonization to greater than one dimension,
near a nematic �Pomeranchuk� instability of a translationally
invariant fermion system. In the notation of Appendix A, we
take the following action for the bosons:

S0 =
N�0�

2 �
S
� d2xdt�− �t�SvS · ��S − �vS · ��S�2�

�2.1�

and forward scattering interactions

Sint =
N�0�

2 �
S,T
� d2xd2x�dt

�FS−T�x − x��vS · ��S�x�vT · ��T�x�� . �2.2�

Here, S labels the patch defined by coarse graining the Fermi
surface, and the density of quasiparticles in a patch may be
obtained from the boson field �S�x , t� via the relation
�nS�x , t�=N�0�vS ·��S�x , t�. FS−T�x−x�� is therefore the in-
teraction between particle-hole pairs in patches S and T.

We begin by analyzing our bosonized theory for a con-
stant field configuration and reproduce Pomeranchuk’s result.
Consider configurations such that �nS is constant in space
and time over some particular range of time T. The resulting
action is

Sshape = −
VT

N�0�
�1 + F0��m0

+�2

−
VT

2N�0� �
��0

N/2

�1 + F����m�
+�2 + �m�

−�2� , �2.3�

where we have expanded �nS as

�nS =� 2

N
�
�=0

N/2

�m�
+cos���S� + m�

−sin���S�� �2.4�

and introduced the Fermi liquid parameters via

FS−T =
1

N
F0 +

2

N
�
��0

F�cos � ��S − �T� . �2.5�

Hence, for arbitrary m�
±, we find that any F��−1 will desta-

bilize the Fermi liquid. The point F�=−1 we shall call the
Pomeranchuk �nematic for �=2� quantum critical point
�QCP�. Though Fermi liquid theory breaks down at this
point, Luttinger’s theorem is still obeyed.

It should also be noted that in the above analysis we could
have included interactions involving large angle scattering
�which may lead to charge density/spin density wave insta-
bilities�, corrections to the linearized dispersion, three- or
four-body interactions, and BCS processes in the bosonized
theory. However, except for BCS processes, these effects are
irrelevant in the Fermi liquid phase though some become
important near the nematic critical point to be discussed be-
low.

For simplicity, in the rest of this section, we shall special-
ize to the �=2 instability in two-spatial dimensions, the 2D
quantum nematic liquid crystal, though the results generalize
easily.

A. Saddle point expansion near the nematic QCP

To study the nematic QCP, originally considered by
Oganesyan et al.,19 we set all F� to zero for ��2. This is
reasonable since these other modes are not critical and their
effect is only to introduce finite renormalizations of the pa-
rameters in the effective theory of the critical �quadrupolar�
modes �see below�.

On the broken symmetry side �i.e., F2�−1�, the quadratic
action is no longer stable. So, in order to make the theory
consistent, we need �at least� a quartic term in the bosonized
action. Here, as a specific example, we consider the quartic
interaction that arises from corrections to the linearized dis-
persion in the bosonized form given in Ref. 36,

S4 =
�N�0�

4! �
S
� d2rdt�vS · ��S�4. �2.6�

This term can be found by a direct extension of our 	n ex-
pansion of �A12� to third order, noticing that it is an expo-
nential series in i�nS	n / �N�0�
vF�. An estimate of � may
therefore naturally be obtained from the equations of motion
of either the boson or fermion pictures. However, this is not
the only quartic contribution to the action since an eight-
fermion interaction term �that is quartic in densities� also
contributes at this level with a more general form similar to
the Fermi liquid interactions. Nevertheless, this will give us a
flavor of the broken symmetry phase.

Since this effective theory is no longer quadratic in the
bosonic fields, we will examine its behavior within a semi-
classical approximation, which means that we will first find
the extremal configuration and then expand our action about
it. Thus, we write

NONPERTURBATIVE BEHAVIOR OF THE QUANTUM… PHYSICAL REVIEW B 73, 085101 �2006�

085101-3



�nS = N�0�vS · �� = �nS
cl + �S, �2.7�

where �nS
cl is the solution of the classical equations of motion

at a uniform, mean field level

�nS
cl +

2

N
F2�0��

T

cos�2��S − �T���nT
cl +

�

3 ! N�0�2 ��nS
cl�3 = 0,

�2.8�

where as stated earlier, we set F��0�=0 for ��2. Because
the nonlinear term is cubic, we seek solutions of the type

�nS
cl =

1
�N

�
�=−N/2

+N/2

m�ei��S, �2.9�

where m��0 for �= 	±2, ±6, ±10, . . . 
. In terms of the m�’s,
the equation of motion becomes

m� + F2�m2��,2 + m−2��,−2� +
�

3 ! N�0�2N
�

�1,�2

m�1
m�2

m�−�1−�2

= 0. �2.10�

We first observe that for F2�−1, the only possible solution
is m�=0 for all �, as expected for the isotropic case. If F2
�−1, there exits a whole set of nontrivial solutions involv-
ing, in general, all harmonics �= 	±2, ±6, ±10, . . . 
 obeying
particle hole symmetry. Nevertheless, when we are near the
phase transition, i.e., F2−1, one can find the set of solu-
tions analytically with

m2m−2 =
1

2
��m2

+�2 + �m2
−�2� =

2

�
N�0�2N�1 + F2�0��

�2.11�

using the notation of �4� and for the higher harmonics

�m4k+2�2 � N�0�2N� 2

�
�1 + F2�0���2k+1

, �2.12�

so that in the limit F2→−1 we can neglect the higher har-
monics.

From this calculation, we conclude that near the F2=−1
nematic QCP, the Fermi surface takes the simple shape

�nS
cl = N�0��2�1 + F2�0��

�
cos�2�s − �� , �2.13�

where � picks out the major axis of the ellipse that is spon-
taneously chosen. Without loss of generality, from now on
we will set �=0. We also conclude that further away from
the critical point, the anharmonic quartic terms generically
introduce higher harmonics to this shape. From this point of
view, for example, the Fermi surface in the nematic phase
may become increasingly flatter away from the critical point
leading to an additional instability towards a smectic phase,
breaking translational order in one direction. However, this
phase transition cannot be seen within our forward scattering
only model and all that happens deeper into the phase here is
that the shape becomes more anharmonic. It should also be
noted that the other harmonics, �= 	0, ±4, ±8, . . . 
, appear
when particle-hole symmetry is broken, e.g., when a cubic

term in the action is introduced �S3�, corresponding to the
addition of quadratic terms to the fermion dispersion.

B. Theory of the quadrupole moment density

The next step beyond mean field theory is to formulate an
order parameter theory. To that end, in this section we are
interested in focusing on describing the behavior of the quad-
rupole moment density, m2

±�q ,��. Again, for our present pur-
poses we shall keep only F2�q�. However, in Appendix C we
show that by keeping also F0�q�, the additional effects of the
noncritical modes do not change our results in any essential
way.

Now, our goal here is to obtain an action entirely in terms
of m2

±. This can be easily accomplished by following Ref. 16
and using a Hubbard-Stratonovich transformation to aid the
diagonalization. In the end, however, both the auxiliary fields
and m�

± for ��2 shall be integrated out.
In momentum space, our free action can be written as

S0 =
1

2�
S
� d2qd�

�2��3 ��S
0�−1�q,���nS�q,���nS�− q,− �� ,

�2.14�

where

�S
0�q,�� = N�0�

vS · q

� − vS · q
= N�0�

cos �S

s − cos �S
�2.15�

is the density-density response function in the “small q” limit
of patch S with s=� /qvF. �Note: when needed, we regularize
the denominator by letting s→s+ i	 sign�s� according to the
usual time-ordering prescription.�

The interactions, described by the quadratic action Sint, cf.
Eq. �2.2�, become diagonal in the angular momentum basis,
i.e., in terms of the multipole densities m�

±�q ,��. In particu-
lar, the contribution to Sint from the �=2 �quadrupolar� den-
sities, is

Sint =
1

2
� d2qd�

�2��3 f2�q���m2
+�q,���2 + �m2

−�q,���2� ,

�2.16�

with f2�q� defined as usual in Fermi liquid theory through
F2�q�=N�0�f2�q�. The contributions from the other angular
momentum channels have a similar form �in terms of the
respective Landau parameters�.

To aid the diagonalization, we split up the free part of the
action, S0, using the Hubbard-Stratonovich transformation,

S0 = −
1

2�
S
� d2qd�

�2��3 ��S
0�q,���S�q,���S�− q,− ��

+ „�S�q,���nS�− q,− ���S�− q,− ���nS�q,��…�
�2.17�

and then switch over to the angular momentum basis,
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S0 = −
1

2 �
�=±

�
�,��

� d2qd�

�2��3 ����−��
0 + ���+��

0 ���
����

�

+ 2���−��,0 + ���+��,0����
�m�

��� �2.18�

In the large-N limit, we have

��
0 = N�0��

0

2� d�

2�

cos �

s − cos �
ei��. �2.19�

Here we have Fourier transformed with respect to
q̂= �cos � , sin ��, that is, �=�S−�.

Now, we will integrate out all the m�
± densities, except for

�=2. This can be easily done since S0 is a linear function of
these fields, while they are absent in Sint. This is so for this
model with only a quadrupolar interaction, i.e., we have set
their corresponding Fermi liquid parameters to zero. �In the
vicinity of the nematic transition it is straightforward to in-
clude the effects of the ��0 channels. Their net effect is to
give rise to simple renormalizations of the effective theory
we are about to derive. A detailed analysis is given Appendix
C.� The result is a delta function for the �� fields, allowing us
to also integrate them out with the net result to simply set
��

±=0 for all � except �=2. This gives us the following
simple expression for the effective free action:

S0 = −
1

2 �
�=±

� d2qd�

�2��3 ���0
0 + ��4

0���2
��2 + 2��2

�m2
���

�2.20�

and we now have an action entirely in terms of the quadru-
pole moment density.

The final step is to integrate out the �2
± fields. This is

easily accomplished and we obtain the Gaussian level of the
order parameter theory, including the effects of the interac-
tions Sint. The action of the effective theory is

S2�m2
+,m2

−� =
1

2
� d2qd�

�2��3  1

�2
+ �m2

+�2 +
1

�2
− �m2

−�2� ,

�2.21�

where �2
±�s ,q� is the dynamical correlation function �suscep-

tibility� of the quadrupolar densities

�2
±�s,q� =

�0
0�s� ± �4

0�s�
1 − f2�q�„�0

0�s� ± �4
0�s�…

�2.22�

and

�2�
0 = N�0�− ��,0 + K0�s��1 − K0�s�

1 + K0�s��
�� , �2.23�

with

K0�s� =
s

�s − 1�s + 1
. �2.24�

Naturally, this is just RPA quadrupolar susceptibility of Ref.
19.

We should stress that the effective action S2 of Eq. �2.21�
does not include the effects of the nonlinear interactions rep-

resented in S4, cf. Eq. �2.6�, which are crucial to stabilize the
nematic state past the nematic QCP �for F2�0��−1�. As we
discussed above, these nonlinear terms do mix the different
angular momentum channels. However, provided there is no
condensation for ��2 it is still possible to integrate out
these degrees of freedom, at least perturbatively. Thus, suf-
ficiently close to the nematic QCP, the effects of the higher
angular momentum channels will remain perturbatively
small.

Furthermore, should we have decided to integrate out the
density fields, m2

± in favor of the auxiliary fields �2
±, we

would have found the propagators of the ��
± fields to be the

RPA effective interaction

V 2
±�s,q� =

f2�q�
1 − f2�q���0

0�s� ± �4
0�s��

. �2.25�

The action of the ��
± fields is precisely that found by Ogane-

syan and co-workers19 also obtained through a Hubbard-
Stratonovich transformation but performed directly in the
fermion theory. We shall find that understanding this interac-
tion is the key to understanding the physics of the nematic
QCP.

C. Order parameter theory of the nematic QCP

The theory with the action given by Eqs. �2.1� and �2.2�
seemingly describes the quantum mechanics of a fluctuating
surface. This suggests that the effective degrees of freedom
ought to be long-lived bosonic modes of the fluctuations of
the shape of the Fermi surface. In other terms, this bosonized
theory would seem to be entirely described by stable collec-
tive modes. However, these bosonic excitations are not gen-
erally stable due to Landau damping effects, represented by
the branch cut singularities in �2.23�.19,41

We will examine this problem more closely. It is useful to
introduce the following quadrupole density spectral func-
tions:

S2
±�q,s� � − 2 sign �s�Im�2

±�q,s�

=−
2 sign �s�ImV 2

±�q,s�
f2�q�2 �

B2
±�q,s�

f2�q�2 , �2.26�

where B2
±�q ,s� denotes the spectral function of V 2

±�q ,s�, the
correlation function of the �2

± fields.
The analysis is greatly simplified upon recognizing that

V 2
±�q ,s� is a polynomial function of K0�s�. For �=2 the de-

nominator of V 2
+�q ,s� is a cubic function of K0, whereas for

V 2
−�q ,s� it is quadratic in K0. In Appendix B we show that

V 2
±�q ,s� have the partial fraction expansions

V 2
±�q,s� =

1

N�0���
Z�

±�q�

� �
±�q� − K0�s�

, �2.27�

where �=a ,b ,c for V 2
+, and �=a ,b for V 2

−. We can there-
fore view V 2

±�q ,s� as a sum of terms each of the form of the
RPA s-wave channel effective interaction, renormalized
by a residue Z�

± and with an effective interaction f�
±�q�

= �1−� �
±�q��−1. Details of these expansions are given in

Appendix B.
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Near the nematic QCP, where �F2�0�+1 � �1, upon defin-
ing the quantity �2�q�,

�2�q� =
1 + F2�q�

F2�q�
= 1 +

1

F2�0�
− �q2, �2.28�

the effective interactions V 2
±�q ,s� become simple and we

obtain

V 2
+�q,s� �

1

2N�0� 1
�2�q�

2 − K0�s�
−

1/4

s2 − 1/2� , �2.29�

V 2
−�q,s� �

1

4N�0�
1

s2 +
�2�q�

4

. �2.30�

Thus, near the critical point we find a propagating mode with
dispersion �q= �1/�2�qvF �a z=1 mode�, represented by the
pole in the second term for V 2

+ �see Eq. �2.29��, and another
one with dispersion �q= ���2�q� /2�qvF �a z=2 mode�, given
by the pole in V 2

− �see Eq. �2.30��. Furthermore, we also find
an overdamped mode, given by the pole in first term of V 2

+

�see Eq. �2.29��, with a dispersion relation of s=−i�2�q� /2,
and dynamic critical exponent z=3. For q sufficiently small,
and asymptotically close to the nematic quantum critical
point, we find that this overdamped mode dominates the
spectral function over the other two �propagating� modes.

In Fig. 1 we present a plot of the spectral function
S2

+�q ,s��B2
+�q ,s�=−2 sign �s�ImV 2

+�q ,s�. It shows that, as
the QCP is approached from the Fermi liquid side, there is a
large transfer of spectral weight in the quadrupolar spectral
function to the low frequency end of the spectrum, associ-
ated with the emergence of the overdamped z=3 mode. This
mode thus controls the quantum critical behavior.

Conversely, normal Fermi-liquid behavior is obtained if
�2�0� is finite so that z=1. On the other hand, if the over-
damped mode were to be absent, the dynamic critical behav-
ior would be controlled by propagating mode with z=2 dis-
cussed above. The trend is thus opposite to what one might
naively expect: the higher the z, the higher the effective di-
mension D+z, the stronger the divergence of the over-
damped mode. Recently, Yang39 proposed that the transition
to the quantum nematic state should have dynamic critical
exponent z=2. The analysis we just presented shows that this
is not the case.

As a result of the above analysis, we obtain the following
effective action for the quadrupole density near the nematic
QCP:

SQCP =
1

2N�0� � d2qd�

�2��3 ��2i�s� − 1 − F2�q���m2
+�2

+ �4s2 − 1 − F2�q���m2
−�2�

−
�

8N�0�3N
� d2xdt�m2

+2 + m2
−2�2. �2.31�

The order parameter field is

m2
+�q,�� =� 2

N
�

S

�nS�q,��cos 2��S − �� ,

m2
−�q,�� =� 2

N
�

S

�nS�q,��sin 2��S − �� , �2.32�

where, again, � is the direction of q=q�cos � , sin ��. This
action is therefore very similar to Hertz’s action for the fer-
romagnetic quantum phase transition in itinerant fermionic
systems,1 but here within the context of the formation of
nematic order �and similar actions may also be obtained for
higher ��. Recently, Nilsson and Castro Neto38 derived this
action using Fermi liquid theory methods.

Now, let us look on the broken symmetry side, in the
nematic phase. As in any theory with an O�2� symmetry,
here we will find that the order parameter will spontaneously
pick a direction. As a result, it is no longer useful to Fourier
transform with respect to � in Eq. �2.32�. Rotating back and
after the saddle point expansion about the classical configu-
ration �2.13�, we find the quadratic action on the nematic
side

SQCP
nematic =

1

2N�0� � d2qd�

�2��3 m2�q,�� · �2
−1 · m2�− q,− ��

�2.33�

where m2�q ,��= �m2
+�q ,�� ,m2

−�q ,��� and

�2
−1 = �i�s� − �q2 − �1 + F2�0����1 0

0 1
� + i�s�

��cos 4� sin 4�

sin 4� − cos 4�
� − �1 + F2�0���1 0

0 − 1
�

�2.34�

in the reference frame in which the nematic order parameter

FIG. 1. The �normalized� quadrupole density spectral function

S˜2
+�q ,s�=S2

+�q ,s� /N�0�, Eqs. �2.26� and �2.29� for q�0, very close
to the nematic quantum phase transition from the Fermi liquid
phase, F2�0�→−1+. As the QCP is approached, there is a large
increase of spectral weight in the z=3 overdamped quadrupolar
mode at very low frequency. Notice the delta function contribution
of the propagating mode with z=1 discussed in the text. The propa-
gating mode with z=2 gives a similar delta function contribution
�with smaller spectral weight� to S2

−�q ,s�.
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is diagonal, i.e., its principal axes, whose orientation is de-
termined spontaneously. The difference between this action
and the previous one discussed above for the symmetric
phase is the emergence of the last term which originates from
the nonlinear �quartic� term in the effective action. This term
ruins our ability to rotate � out of the action.

Noting that the off-diagonal terms are higher order in s,
we may write this in the simplified form

SQCP
nematic =

1

2N�0� � d2q

�2��2 � d�

2�
��2i�s�cos2�2�� − 2�1

+ F2�0�� − �q2��m2
+�2 + �2i�s�sin2�2�� − �q2��m2

−�2� .

�2.35�

We see that now m2
+ is the amplitude mode, which has

z=1, while m2
− is the nematic Goldstone mode which contin-

ues to have dynamic critical exponent z=3 even in the nem-
atic phase.19

The last point is to discuss how this affects the original
boson theory. If we bring back all the integrated out angular
momentum channels, we find that the free action on the bro-
ken symmetry side has

�̃S
0�q,�� = N�0�

vS · q

� − vS
˜ · q

, �2.36�

with a weakly renormalized Fermi velocity

vS
˜ = �1 + 4�1 + F2�0��cos2�2�S��vS. �2.37�

Hence, spontaneous symmetry breaking essentially produces
a Goldstone mode that continues the critical, z=3 behavior
into the nematic phase while leaving the rest of the theory
virtually untouched until deep into the broken symmetry
phase.

III. FERMIONS IN THE CRITICAL REGIME

In the past sections we discussed the behavior of the col-
lective modes near the nematic quantum phase transition.
Much of what we discussed in the previous section on the
behavior of the collective modes is indeed in complete agree-
ment with the RPA treatment of this theory.19 This should not
be a surprise since RPA is asymptotically exact at low ener-
gies and at low frequencies. This is also the reason while
bosonization works in the same regime.

We will now turn our attention to the behavior of the
fermionic degrees of freedom near the nematic QCP and in
the nematic phase. This is very different problem. In Ref. 19
the behavior of the fermion Green function was studied per-
turbatively and a startling non-Fermi liquid behavior was
found already at the lowest �“Fock”� order. However, this
very finding raises questions on the applicability of perturba-
tion theory for the fermion propagator. In this section we will
use bosonization methods to address this problem.

Here we will use bosonization to compute the fermion
propagator. Within this approach one has a theory for the
bosonized degrees of freedom and a set of operator identities
relating observables of the fermionic theory to those of the

bosonic theory. For a summary see Appendix A. There are
two important issues to keep in mind. One is that the
bosonized theory is exact for a fermionic theory with a lin-
earized dispersion and forward scattering interactions �i.e.,
those described by Landau parameters�. The other is that one
has, within this theory, an operator to represent the fermion.
Corrections to the linear dispersion as well as other �nonfor-
ward scattering� interactions are represented by nonlinear
terms in the action of the bosonized theory. The expressions
that we will derive below apply strictly speaking to the fixed
point theory, in which these perturbations are not included. It
turns out that corrections due to the nonlinearities of the
fermion dispersion and other such terms are irrelevant �both
in the Landau phase and at the quantum critical point�. As
such they will affect the results at high energies and at mo-
menta but their effects become negligible in the low energy
limit. Please note that one such operator, discussed in the
previous section, stabilizes the nematic phase, i.e., it is a
prototypical dangerous irrelevant operator.

The boson Green function may be found from our action
in a similar way as we found the above density-density cor-
relation functions, that is, using a Hubbard-Stratonovich ap-
proach. The result is

GB�S,T��x,t� = GB�S,T�
0 �x,t�

+ i� d2kd�

�2��3 GF�S�
0 �k,��VS,T�k,��GF�T�

0 �k,��

��ei�k·x−�t� − 1� , �3.1�

where GB�S,T�
0 is infrared divergent unless x �vS and S=T. On

the same patch, GB�S,S�
0 �x , t� is given by the standard expres-

sion

GB�S,S�
0 �x,t� = ��S�x,t��S�0,0�� − ��S�0,0�2�

= − ln� n̂S · x + ivFt + ia sign t

ia
� , �3.2�

where a is a short-distance cutoff. In Eq. �3.1� we have de-
noted by VS,T�q ,�� the effective interaction

VS,T�q,�� =
1

N�0� �
�,��

ei����S−��+����T−�������q,������− q,− ��� ,

�3.3�

which for the quadrupolar case, becomes simply

VS,T�q,�� = V 2
+�q,��cos 2��S − ��cos 2��T − ��

+ V 2
−�q,��sin 2��S − ��sin 2��T − �� ,

�3.4�

where the relative angle, �S−� appears here �see Eq. �2.18��.
We also have used in �3.1� the free fermion Green function

GF�S�
0 �q,�� =

1

� − vS · q + i	 sign ���
. �3.5�

We will now use the bosonized form of the fermion operator
�see Eq. �A20� of Appendix A� to give us the fermion Green
function of the form
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GF�x,t� = �
S,T

�− i

N
��T�S�x,t��T

†�0,0��eikS·x �3.6�

�
1

N
�

S

GF�S��x,t�eikS·x, �3.7�

for which we find the explicit expression

GF�S��x,t� = GF�S�
0 �x,t�expi� d2kd�

�2��3 GF�S�
0 �k,��VS,S�k,��

�GF�S�
0 �k,���ei�k·x−�t� − 1�� . �3.8�

This expression has many similarities with the bosonization
formulas usually obtained in one dimension. In particular,
the free-fermion prefactor also arises there. However, the
exponential factor, which in one dimension yields an anoma-
lous dimension for the fermion operator, plays a very differ-
ent role in dimensions higher than one.

A. Diagrammatic expansion for the bosonized theory

We will first show that the bosonized formula of Eq. �3.8�
is consistent with the perturbative results of Ref. 19. To do
that we will expand the exponential and Fourier transform to
momentum space to find its diagrammatic expansion. The
result will be a series of convolutions since in real space they
are products. The first order term is

�GF
�1��q,�� = i� d2kd�

�2��3 �GF�S�
0 �q − k,� − �� − GF�S�

0 �q,���

��GF�S�
0 �k,���2VS,S�k,�� , �3.9�

which does not look like it obeys the Feynman rules for the
perturbation theory of nonrelativistic fermions. However, we
may utilize the following identity:

�GF�S�
0 �q − k,� − �� − GF�S�

0 �q,���GF�S�
0 �k,��

= GF�S�
0 �q − k,� − ��GF�S�

0 �q,�� �3.10�

and use it again through

GF�S�
0 �q − k,� − �� = GF�S�

0 �q − k,� − �� − GF�S�
0 �q,��

+ GF�S�
0 �q,�� �3.11�

to obtain

�GF
�1��q,�� = i�GF�S�

0 �q,���2� d2kd�

�2��3 �GF�S�
0 �q − k,� − ��

+ GF�S�
0 �k,���VS,S�k,�� . �3.12�

The second term is actually the shift in the chemical poten-
tial, ��kF ,0�, and is zero by the effective particle-hole sym-
metry of this theory �with a linearized fermion dispersion�.
We therefore obtain

�GF
�1��q,�� = i�GF�S�

0 �q,���2� d2kd�

�2��3

�GF�S�
0 �q − k,� − ��VS,S�k,�� , �3.13�

which is the correct result since, as usual, the Hartree term
vanishes.

Using the same tricks and assumptions, the second-order
contribution can also be worked out �though it is much more
work�. The series to second order is shown in Fig. 2; please
keep in mind that the interaction, VS,S is the full bubble
summed RPA interaction. Higher dimensional bosonization
therefore keeps all diagrams in perturbation theory that con-
tain up to simple bubbles while neglecting more complicated
bubbles as is usual in the RPA �in the Landau theory of the
Fermi liquid, these irrelevant operators contribute subdomi-
nant potentially nonanalytic temperature and frequency de-
pendent terms to physical quantities18�.

Some time ago, Kopietz and Castilla42,43 used a somewhat
different �and in principle equivalent� form of bosonization
and discussed the effects of a quadratic term in the fermion
energy dispersion. However, instead of using an operator
identity �and thus not exploiting the nonperturbative charac-
ter of bosonization� they chose to make contact with pertur-
bation theory, and proceeded to propose a modified form for
the fermion propagator directly. It gave an exponential factor
similar to the one appearing here except the fermion Green
functions that appear in the exponential include the quadratic
terms in there energy dispersion. However, these Green func-
tions do not satisfy the criterion ��kF ,0�=0 so that in addi-
tion to the exponential, they include a preexponential factor
that is necessary, for example, to cancel the second term of
Eq. �3.12�. As a result, order-by-order in VS,S, one needs to
keep precisely the right preexponential factor to cancel the
additional terms. A calculation with their method can there-
fore only be carried out to a small finite order, and one can
no longer think of the exponential factor as separate from the
preexponential factor. In contrast, we have seen here that the
bosonized expressions, when treated consistently, yield exact
results which agree with those of perturbation theory order
by order, albeit only in the low energy limit, including the
singular behavior.

B. Perturbative results

Before computing the full nonperturbative form of the
fermion Green function, let us verify that our bosonized
theory, reproduces the perturbative results of Oganesyan et
al.19 near the nematic QCP. We shall be interested, therefore,
in the integral

FIG. 2. Bosonization’s Feynman diagram series.
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�S
�1��q,�� = i�

PS

d2kd�

�2��3 GF�S�
0 �q − k,� − ��VS,S�k,�� .

�3.14�

Here VSS�k ,�� is the effective interaction mediated by the
collective modes, cf. Eqs. �2.29�, �2.30�, and �3.4�. The main
contribution to the self-energy is due to the overdamped
Goldstone modes, as noted in Ref. 19. Thus we take a ge-
neric interaction of the form

VS,S�k,�� =
1/N�0�

��k� − K0�s�
, �3.15�

noting that cos2�2��S−���, which should appear as a coeffi-
cient in the nematic case, only introduces irrelevant contri-
butions to the integral and is therefore left out of this analy-
sis. Here, at the QCP, ��k�=−�k2 /2 but as a check we may
characterize the Fermi liquid phase by letting ��k�=�, a con-
stant.

Before computing �S
�1��q ,��, we should note that this ex-

pression gives the clearest definition of the patch. Given the
ultraviolet cutoff kF−� /2� �k � �kF+� /2, the patch is de-
fined so that in comparison to the original theory

��1��k = kS + q,�� � �S
�1��q,��, q � PS, �3.16�

and therefore the patch width is of order

� � �kF� , �3.17�

dictated by the curvature of the Fermi surface alluded to
earlier.

Now, to simplify our calculation, let us focus on the fer-
mion lifetime near the Fermi surface

2�S�q,�� = − 2 sign ���Im�S�q,�� . �3.18�

This can most easily be expressed in terms of the spectral
function, B2�q ,s�, derived from the imaginary part of
VS,S�q ,s� as in Eq. �2.26� and Eq. �3.4� �after setting the
angular factors to 1�,

2�S�q,�� = �
−�/2

�/2 dkt

2�
�

qn−���/vF

qn dkn

2�
B2�k,

� − vF�qn − kn�
kvF

� ,

�3.19�

where qn=vS ·q /vF. Here we note that this integral is domi-
nated by the contribution of the overdamped mode, which
enters in B2

+�q ,s�. �The other contributions, associated with
the propagating collective modes, only yield regular depen-
dences in the fermion frequency.� Setting qn→0 and looking
at the limit �→0 we obtain

�S��� =
1

2�2�
0

�/vF

dkn�
0

�

dktB2
+��kn

2 + kt
2,

kn

kt
� ,

�3.20�

using normal and tangential coordinates. From here, we first
integrate over the tangential momenta, look at small qn and
obtain the long wavelength behavior. We find that in the
Fermi Liquid phase ���k�=const�

�S��� �
1

N�0�
� �

vF
�2

�ln�/�vF� , �3.21�

while at the nematic QCP, using �=−�k2 /2,

�S��� �
1

N�0�
� �

�vF
�2/3

. �3.22�

In the Fermi liquid, the energy of the quasiparticle is propor-
tional to � and we classify them as long lived. However, at
the nematic QCP, one can show via Kramers-Kronig that the
real part of the self-energy also goes like ���2/3. Hence at the
nematic QCP, the lifetime of a quasiparticle is not well de-
fined and to try to understand it as a perturbation about a free
theory of long-lived quasiparticles is meaningless.

Thus, the bosonized theory reproduces the results found
earlier on perturbatively by Oganesyan and co-workers19

�see also Refs. 20 and 40�. It should be noted that the �2/3

law was also found to appear in the perturbative calculation
of the fermion self-energy in a model of holes interacting via
a forward scattering U�1� gauge interaction with a similar
form to �3.15� in the context of high temperature
superconductors,44,45 and in the perturbative treatment of the
quantum critical point in a ferromagnetic metal.33

C. Nonperturbative results

We now return to the nonperturbative bosonized expres-
sion for the fermion propagator of Eq. �3.8�, which we will
write as

GF�S��x,t� = ZS�x,t�GF�S�
0 �x,t� . �3.23�

In the Fermi liquid phase and at long distances and low
frequencies, the factor ZS approaches a constant value,
ZS=ZF�1, i.e., the quasiparticle residue of the Fermi liquid
state. Our goal here is to investigate the behavior of ZS�x , t�
near the nematic QCP and in the nematic phase. However,
given the complexity of the full analytic expression, in this
paper we will consider only on the equal-time, t=0, behavior
�sometimes called the “one-particle density matrix”� and the
equal-position, x=0, dynamical correlation function, and
only at zero temperature. We will discuss its full behavior
elsewhere.

1. The equal-time fermion propagator

As in the perturbative calculation, it is convenient to ex-
press ln Z as an integral over the spectral functions B2

±�q ,s�.
Once again, at the nematic QCP, the important contribution
is due to the overdamped collective mode in B2

+�q ,s�, and we
will neglect all other contributions. �This is an approximation
which gives the longtime behavior accurately. An expression
valid for all times also includes the contribution of B2

−�q ,s�.�
Since we have set t=0 here, the result is quite simple,

ln Z�xn,0� = �
0

�/2 dkn

2�
I2�kn��cos�knxn� − 1� , �3.24�

where
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I2�kn� = �
−�/2

�/2 dkt

2�
�

0

� d�

2�

B2
+�k,�/kvF�

�� + vFkn�2 . �3.25�

We find, both from a numerical computation and from an
analytic estimate, that

I2�kn� =
1

N�0�vF

f2�kn
���

�kn
���4/3

, �3.26�

where f2�kn
��� is a regular function of its argument. From

this analysis, we conclude after performing the final Fourier
transformation,

ZS�xn,0� = CPexp�−
b

N�0�vF
��� xn

���
1/3� , �3.27�

valid for �xn � ���. Here b=0.0658 and CP is a constant fac-
tor resulting from subdominant terms in I2�kn�. This sharp
decay of ZS�xn ,0�, faster than any power law, introduces a
scale �similar to a correlation length arising from a gap in the
spectrum� and dominates over the Fermi liquid behavior at
low energies. From the above expression, the correlation
length is of order �����kF

���3 which is much longer than
length of the interactions, ��.

Let us also compute the behavior of ZS on the nematic
phase by focusing on the effect of the Goldstone modes.
Recalling our discussion of the order parameter theory, we
replace �3.15� with

VS,S�k,�� =
sin2�2�S�

N�0�
1

− �k2/2 + i�s�sin2�2��
, �3.28�

which is the contribution from the Goldstone mode
�K0�s��−i �s � �. In the limit, kn→0, that is on the Fermi sur-
face, �→�S+� /2 and therefore, we simply have

VS,S�k,�� =
1

N�0��−
�k2

sin2�2�S�
− K0�s��−1

, �3.29�

so that the difference between this and the symmetric side is
simply that �→� / sin2�2�S�. Hence, we may directly write
down ZS

ZS�xn,0� = CP�S�exp�−
b�sin�2�S��4/3

N�0�vF
�� � xn

���
1/3� ,

�3.30�

where b is the same constant of Eq. �3.27�. In Eq. �3.30� we
have not included the subdominant contributions which be-
come the leading terms along the symmetry-dictated direc-
tions, the “nematic axes,” along which the angular factor
vanishes. Along the nematic axes the behavior of the equal-
time correlation function has a more Fermi liquid-like long
distance behavior as shown by Oganesyan et al., but due to
the introduction of patches, we cannot accurately capture this
behavior here.

Thus, we see that on the broken symmetry side, we
have special points at �S=n� /2 where the Goldstone mode
weakens and subdominant behavior takes over. At these
points, ZS=CP�S�=ZF�1 and the quasiparticles become long
lived. It is interesting to note that the angular dependence

shown here with a power of 4 /3 is similar to that of the
perturbative calculation using the same transformation of
�→� / sin2�2�S� on Eq. �3.22� and it agrees with the results
of Ref. 19.

2. The fermion residue

One simple calculation we can do with the above result
for ZS�xn ,0� is the fermion residue following Migdal:46

Zq = n�kF − q� − n�kF + q� �3.31�

=� d�

2�
�GF�kF − q,�� − GF�kF + q��ei	�, �3.32�

where the exponential factor tells us to close the contour in
the upper half plane. This expression may be written in terms
of the real-space, real-time fermion Green function, at time
t=−	. Inserting our expression for GF within Bosonization
and neglecting interpatch scattering �which should produce
analytic in q /� contributions here�, we obtain

Zqn
=

2

�
�

0

�

dxn
sin qnxn

xn
ZS�xn,0� . �3.33�

In the Fermi liquid phase, we find ZS�xn ,0�=Z�1 in the
long distance limit and this leads directly to Zqn

=Z when
qn→0 as expected.

At the nematic QCP and into the nematic phase away
from the nodal points discussed earlier, ZS�xn ,0� is short
ranged and we may expand to leading order in qn and obtain

Zqn
�

12

�
qn� �3.34�

with the correlation length �=�����kF /2�b�3. Thus the fer-
mion residue vanishes linearly similar to how it would in a
Fermi liquid at finite temperature where temperature makes
the correlations short ranged. It should be noted, however,
that because Zs�xn ,0� decays slower than e−�xn in the long
distance limit, this series expansion that we have used is
poorly defined at higher order with the coefficient of qn

2j+1

growing so rapidly that the Taylor expansion has zero radius
of convergence in the complex-qn plane. Thus Zqn

is not
analytic in qn and the Fermi surface may still be defined as a
singular point in n�k�. The same behavior occurs in the nem-
atic phase for generic momenta, except along the directions
of the nematic principal axes where a finite residue is ob-
tained.

3. The fermion autocorrelation function

This case turns out to be more complicated than the equal-
time expression and we present a full analysis in Appendix
D. By a simple integration by parts, we found that the double
pole of Eq. �3.25� may be reduced to a single pole and that
the integrals involved were less singular by a full power
�diverging like 1/kn

1/3, unlike Eq. �3.26�� but with logarithmic
corrections. From that analysis, we found the general form of
ZS to be
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ZS�0,t� = CPexp�− A�1 − i�3�
ln�vFt/���
�vFt/���2/3� . �3.35�

In contrast with our result for the equal-time correlation
function, Eq. �3.35� approaches a constant at long times.
However, it decays to that constant much more slowly than
in a Fermi liquid where we would expect the exponent 2 /3 to
become 2. As a result, the nonperturbative effects are here
less important and, consequently, this time dependence ap-
pears to exhibit the same power-law behavior as the lifetime
calculated perturbatively in Sec. III B.

The coefficient of the exponential was found to be
A�1/ �kF��� and deserves some attention. In a Fermi liquid,
we would find A�� /kF�1 and the time dependence would
present a small correction from the Fermi liquid behavior.
However, A need not be small if 1 /��kF���2, where � is
the patch width �cf. Eq. �3.17��. Due to the emergence of �
here, this limit occurs precisely where the Fermi-surface cur-
vature begins to matter, and where the interaction length
scale is still quite small �kF

−1�����−1�.
In the nematic phase, again letting �→� / sin2 2�S, we

find

ZS�0,t� = CP�S�exp�− A�1 − i�3�

��sin 2�S�4/3

ln�vFt
��

�sin 2�S��
�vFt/���2/3 � , �3.36�

so that the angular dependence is similar to that of the equal-
time behavior.

4. The one-particle density of states

We close this section with an application of these results
to the calculation of the one-particle density of states �DOS�
in both the Fermi liquid and the nematic phases, and at the
nematic �Pomeranchuk� quantum critical point.

The one-particle DOS is defined by the standard expres-
sion

N*��� = − sign���
1

�
Im GF�x,x;�� . �3.37�

In Fermi liquid phase, using ZS�0, t�=CF, a constant de-
pendent upon the Fermi liquid parameters that goes to 1 for
the noninteracting case, as expected we find

GF�x,x,�� = �
S

1

N
CF� dtGF�S�

0 �0,t�ei�t

= CF� dt
N�0�vF

− vFt + ia sign �t�
ei�t

= − i� sign ���CFN�0� , �3.38�

so that here, N*���=CFN�0� as expected. Note: CF is not the
fermion residue and may be greater than 1.

At the nematic QCP, we have instead

GF�x,x,�� = �
S

1

N
�

−�

�

dtCPei�t

�exp�− A�1 − i�3�
ln�vFt/���
�vFt/���2/3�GF�S�

0 �0,t� ,

�3.39�

so that N*���=CPN�0�I��̄� with

I��� =
2

�
Re�

0

� du

u
sin��̄u�exp�− A�1 − i�3�

ln u

u2/3� ,

�3.40�

with �̄=��� /vF, valid for ��vFmin	�−1/2 ,�
. Notice that
we have used throughout these expressions only the long
time limit of the exponential factor. At shorter times the be-
havior of the exponential should be dominated by high en-
ergy effects which are insensitive to whether the system is in
a Fermi liquid, a quantum critical point, or in a nematic
phase. Thus, the time integrals have an implicit short dis-
tance cutoff �which we have denoted by “0”�. In any event,
we are only interested in the low frequency behavior which
is dominated by the long time part of the integration range.

By inspection we see that the exponential factor ap-
proaches unity �quite rapidly� for large u�1. Thus, the main
effect of this factor is a correction to I��� away from its
value at zero frequency i.e., I�0�=1. The leading finite fre-
quency behavior, as �→0, is obtained by expanding the ex-
ponential factor in Eq. �3.40�

I��� = 1 −
2A

�
�

0

� du

u

sin �̄u

u2/3 ln u + ¯

= 1 + A
3�3

2�
��1/3�����

vF
�2/3

ln����
vF

� + ¯ ,

�3.41�

where the last line is accurate for ��� /vF�0.1. The ellipsis
in Eq. �3.41� represents subdominant contributions at low
frequencies, which vanish faster than �2/3ln � as �→0. As a
result, the �2/3 behavior of the inverse lifetime ���� calcu-
lated perturbatively, appears here as a cusp in the DOS �with
a logarithmic correction�. Unlike the lifetime, though, here A
depends on the product of the patch width cutoff �kF���
and �� while ���� depends only on the product of kF and
��.

Thus we find that the low frequency oneparticle density of
states has the form

N*��� = N*�0� + B�2/3ln � + ¯ , �3.42�

where N*�0�=CPN�0��N�0�, since we found the constant
CP�1 �see Eq. �D17��, and B=ACPN�0��3�3/2����1/3�
�see Eq. �D18��. Hence, the zero frequency value of the den-
sity of states is larger than the Fermi liquid value. As the
frequency increases, the one-particle density of states de-
creases from its zero frequency value according to the
�2/3ln � correction term. This is a cusp singularity at �=0. It
is important to stress that we obtained these expressions
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upon expanding the exponential factor in the autocorrelation
function. This is consistent since this factor asymptotically
�and rather rapidly� approaches 1 at long times. This also
implies that, in this regime, our results should be consistent
with the behavior of the fermion Green function found in
perturbation theory around Hartree-Fock/RPA.19,20,33,40

In the nematic phase, an angular average of Eq. �3.36�
enters our expression for N*���. In the long time limit, when
the argument of the exponential is much less than one, we
expect that for low frequencies

A → ��sin 2�S�4/3�A � 0.58A . �3.43�

Hence, in the nematic phase, the Goldstone modes continue
the critical behavior of this function in only a mildly weaker
form.

In summary, in this section we used bosonization to com-
pute the nonperturbative behavior of the fermion propagator
using the bosonized form of the fermion operator. We first
checked that the non-Fermi liquid behavior of the nematic
QCP and in the nematic phase, which were obtained earlier
using conventional diagrammatic �perturbative� methods,19,20

is recovered here upon expanding the bosonized expression
to leading order in VSS, i.e., a single boson exchange. How-
ever, upon a closer examination of the full bosonized result
we found that the equal-time fermion correlation function
has a much more singular behavior that could have been
predicted in perturbation theory. In contrast, the fermion au-
tocorrelation function �and hence the oneparticle density of
states� is seemingly consistent with the perturbative analysis
of the quantum critical behavior.

We note here that Chubukov33 has analyzed the quantum
critical behavior of ferromagnetic Fermi liquids and claims
that the �2/3 behavior, found at lowest order, persists to all
orders in perturbation theory. The results of this section for
the fermion autocorrelation function appear to agree with
those of Chubukov and co-workers. However our results for
the equal-time fermion correlator apparently disagree with
these results. Clearly, a more detailed analysis of the
bosonized expression for this propagator is warranted. We
will discuss this problem in a separate publication.

IV. CONCLUSION

In this paper, we have utilized the method of high dimen-
sional bosonization to study nonperturbatively the quantum
phase transition from a Landau Fermi liquid state to a nem-
atic phase, a nematic �Pomeranchuk� instability. For this pur-
pose, we have constructed an order parameter theory from
the boson theory by integrating out noncritical modes and
verified that this boson theory is equivalent to RPA. We then
turned to studying the bosonization form of the fermion
propagator and found its diagrammatic expansion, proving
the correctness and clarifying the arguments leading up to
that expression. This diagrammatic expansion keeps all dia-
grams up to the simple bubble in the spirit of RPA as applied
to the density-density propagator and shows, in specific, that
bosonization goes beyond the self-consistent Born approxi-
mation to include vertex corrections. We then found explic-
itly that bosonization reproduces the results of Hartree-Fock

with an RPA interaction by showing that the lifetime com-
puted in this limit also has an ���2/3 dependence as originally
found for the case of the nematic QCP by Oganesyan and
co-workers.19

Lastly, we calculated the fermion propagator nonperturba-
tively and found the dramatic effect of the overdamped criti-
cal mode that induces short-ranged spatial correlations that
decay nearly exponentially �1/ �x � �e−const �x�1/3, while the au-
tocorrelation function exhibits a milder non-Fermi liquid be-
havior of the form �1/ �t � �exp�−const � t�−2/3�. From this
short-ranged behavior of the equal time Green function, we
verify that the fermion residue vanishes at the critical point
and into the nematic phase except at four special points.
We also calculated the one-particle �fermion� density of
states N*���. We found the low frequency behavior N*���
=N*�0�+B�2/3ln � �with N*�0��N�0�� both at the quantum
critical point and into the nematic phase. Thus, the fermion
propagator exhibits unexpected behaviors which could not
have been anticipated by the existing perturbative
results.17,19,20,33,38 In a separate publication we will present a
more detailed analysis of the fermion spectral function in
both phases and at finite temperature.

Two recent papers, one by Yang39 and another by Nilsson
and Castro Neto,38 also study Pomeranchuk nematic insta-
bilities in two-dimensional Fermi systems. Yang also derives
an order parameter theory within high dimensional bosoniza-
tion. However, contrary to our results, concludes that the
critical mode has z=2 and is undamped. While we agree that
a z=2 propagating mode does exist at the critical point, we
find that the spectral function is completely dominated by the
overdamped z=3 mode. This effect is due to Landau damp-
ing, a consequence of the curvature of the Fermi surface, and
dominates the low energy behavior of the theory at the criti-
cal point. The reason for this disagreement is that in Ref. 39
the effects of Landau damping are ignored. We find that
these effects are crucial.

On the other hand, Nilsson and Castro Neto38 approach
the nematic quantum phase transition within the more tradi-
tional methods found in the Fermi liquid theory literature.
They first find an order parameter theory by constructing a
path integral, whose classical equations of motion give the
collisionless Boltzmann equation as in high dimensional
bosonization, and integrating out the noncritical modes.
Their results, however, agree with ours in all essential de-
tails, including the existence of a z=3 mode. They then cal-
culate the fermion lifetime using the Bethe-Salpeter equa-
tions and Fermi’s Golden rule, finding that  −1�	2/3, as in
�3.22�, and agree with us, in the perturbative regime, in con-
cluding that this represents both a breakdown of Fermi liquid
theory and perturbation theory.
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APPENDIX A: SUMMARY OF BOSONIZATION IN
D-DIMENSIONAL FERMI SYSTEMS

Consider the Fermi liquid theory of spinless fermions in-
teracting via a short but perhaps finite range forward scatter-
ing interaction living in a translationally invariant
D-dimensional world. This is a low energy theory and as
such, following Landau, we shall linearize the energy disper-
sion near the Fermi surface, though corrections to this may
be considered when necessary. To this end, let us build a
construction in which we linearize within N equally sized
patches approximating the Fermi surface. For this construc-
tion to be reasonable, our end result should be relatively
insensitive to the details belonging to this partitioning. Keep
in mind, however, that a remarkable property of Fermi liq-
uids is that they only require a few of the lowest angular
momentum Fermi liquid parameters to understand a wide
range of phenomena.

The number of patches, N, approximating the Fermi sur-
face will naturally be inversely proportional to its curvature.
As such, if the density, n→� then N→� and the construc-
tion becomes exact. An exact solution to leading order in N
of this linearized theory is therefore equivalent to the
asymptotic low energy limit as dictated by the renormaliza-
tion group. More specifically, the number of patches N and
the patch width ���kF�, where � is the energy cutoff, must
be related by the condition 2�kF=N�, required for the Fermi
system to a have a finite density of states and curvature �see
below�. Consequently, the number of patches N must scale as
N�2��kF /�. Clearly N→� in the infrared limit �→0.
Many of the results of this paper can be understood in light
of this basic reasoning.

Under our construction, the fermion annihilation operator
becomes

ĉ�x� = �
k

ĉk
eik·x

�LD
= �

S
�

q�PS

ĉkS+q
ei�kS+q�·x

�LD
= �

S

ĉS�x�
eikS·x

�N
,

�A1�

where S labels the patch, PS is the volume in k space around
the point kS and the new fermion operators, �S�x�, obey the
canonical commutation relations

	cS�x�,cT
†�x��
 = �S,T�

D�x − x�� . �A2�

It is also important to note the Fourier transform normaliza-
tions within the construction

�D�x − x�� = � t
D−1�xt − xt����xn − xn��

= �N �
�qt��

�
2

eiqt·�xt−xt��

L�D−1� �� �
�qn���

2

eiqn�xn−xn��

L � ,

�A3�

where we have introduced � to characterize the tangential
width of the patch �N� is the area of the Fermi surface� and
� as an ultraviolet cutoff about the Fermi surface.

Now, in terms of our fermion operators, the linearized
Hamiltonian is

:Ĥ ª = �
S
� dx�HS

0�x� + HS
Int�x�� , �A4�

where the free Hamiltonian density is

H0�x� =



2i
vS · �:��ĉS

†�x��ĉS�x� − ĉS
†�x� � ĉS�x�:� �A5�

and the forward scattering interactions are described by

HS
Int�x� = �

T
� dx�FS−T�x − x���n̂S�x��n̂T�x�� . �A6�

Here, the density fluctuations are defined by

�n̂S�x� � :n̂S�x�: = :ĉS
†�x�ĉS�x�: , �A7�

and throughout this description we have been using the usual
normal ordering procedure for any operator O

:O:�G� = 0 → O = :O:− �G�O�G� , �A8�

where we take the filled Fermi sea as our ground state

�G� = �
S

�
	q�PS�vS·q�0


ĉq,S
† �0. �A9�

It was shown by Haldane,10,11 Castro Neto and
Fradkin,12–14 and Houghton and Marston15,16 that this Hamil-
tonian can be entirely described in terms of the electron den-
sity operators, �n̂S�x� in the high density limit and it is qua-
dratic in these operators. A fermion operator may then be
constructed following well-known one-dimensional �1D�
bosonization techniques and so the theory can be solved ex-
actly. �This represented a major step forward since the intro-
duction of RPA by Bohm and Pines.4� Here we shall outline
the proof of this solution, but with the traditional approach of
point-splitting regularization, commonly used in the one-
dimensional case �see, for example Ref. 47�.

The expectation value of the density operator n̂S�x� in the
ground state of the Fermi sea is clearly divergent if we send
the density of fermions to infinity. As a result, in the high
density limit we are interested in, it is poorly defined. To
control this divergence, we introduce the point-split operator

n̂S
	�x� � ĉS

†�x + 	/2�ĉS�x − 	/2� = :n̂S
	�x�:− �G�n̂S

	�x��G� .

�A10�

Here, by short distance it is meant a length scale short com-
pared with the separation of all operators of interest but long
compared with physical short length scales, i.e., It should be
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noted that physically point-splitting can be thought of as a
means of �x � � �	 � ��−1.

The divergent part may be computed explicitly

�G�n̂S
	�x��G� =

N

LD�
qt

�
qn�0

e−iq·	

= � t
D−1�	t��

−�

0 dqn

2�
e−iqn	n+qn/�

=
i� t

D−1�	t�
2��	n + i�−1�

, �A11�

where we have implemented the ultraviolet cutoff, �, as a
soft cutoff e−�qn�/�. This is a highly anisotropic expression in
	. It vanishes if we first send 	n→0, looking along a tangen-
tial direction ��	t � ��−1→0� but diverges if we first send
	t→0 looking along 	n��−1→0. Therefore, to capture the
basic physics of the density operator we must choose the
latter limit as the definition of the point-split operator. Keep-
ing in mind that �t�0�=AF / �2��D−1=2�
vFN�0�, where AF

is the �D−1�-dimensional Fermi surface area and N�0� is the
density of states at the Fermi surface, we obtain

n̂S
	n�x� = −

iN�0� 
 vF

	n
+ �n̂S�x� +

i	n


vF
HS

0�x� + ¯

�A12�

to leading order in 	n��−1 and where we kept the expansion
of :n̂S

	n�x�: to first order noticing the useful emergence of the
free Hamiltonian density operator.

Now that we have a controlled definition of the density
operator, we proceed with computing its commutator,

�n̂S
	n�x�, n̂T

	n��x���

=
iN�0� 
 vF

	n + 	n�
�S,T� t

D−1�xt − xt�����xn − xn� − �	n + 	n��/2�

− ��xn − xn� + �	n + 	n��/2�� . �A13�

Expanding both sides of this equation in powers of 	n and
equating like powers gives us the following result:

��n̂S�x�,�n̂T�x��� = − i 
 N�0��S,TvS · ��D�x − x�� ,

�A14�

��n̂S�x�,HT
0�x��� = − i 
 vS · ��n̂S�x��D�x − x�� .

�A15�

Using these commutators, we may compute the equation of
motion for the Heisenberg operator �n̂S�x , t�,

�t�n̂S�x,t� + vS · ��n̂S�x,t� + vS

· ��
T
� dx�FS−T�x − x���n̂T�x�,t� = 0, �A16�

where FS−T=N�0�fS−T. This is the linearized collisionless
Boltzmann equation in operator form found by Castro Neto
and Fradkin in the context of a coherent state formalism.12

We also notice through this derivation that we may let

HS
0�x� =

1

2N�0�
�n̂S

2�x� �A17�

and obtain exactly the same answer. Hence, the Hamiltonian
may be expressed entirely in terms of the density operator
�n̂S�x�.

A natural consequence of �A14� is that the density opera-
tor may be expressed in terms of a chiral boson field,

�n̂S�x� = N�0�vS · ��̂S�x� , �A18�

with a canonically conjugate momentum

�̂S�x� = − N�0�vS · ��̂S�x� . �A19�

These chiral bosons are a direct extension of the right/left
chiral bosons in the context of 1D bosonization. Following
this extension then, we may express the fermion operator as
a vertex operator

�̂S�x� = �S�xt��N�0�vF�:e−i�̂S�x�/
: , �A20�

where �S�xt� is a set of Klein factors responsible for ensuring

that �̂S�x� obey the proper anticommutation relations within
the patch and on different patches. The relation between this
fermion operator and the original ĉS�x� operators will be
made precise in Sec. III A via direct comparison of the per-
turbation series in FS−T�x−x�� obtained in the bosonized

theory. �̂S�x�, therefore, is equivalent to ĉS�x� in the free case
and in the interacting case, it is this operator projected onto
the high-density subspace. Hence, this is an effective low

energy theory of a dense Fermi system and �̂S
†�x� can be

viewed as actually creating Landau quasiparticles in the
Fermi liquid phase.

The canonical structure of the bosonized theory also al-
lows us to directly write down a path integral formulation of
the problem, including interactions described by a set of
Landau parameters �for a derivation using coherent states,
see Ref. 12�. The action for the bosonized theory has the
general form

S =
N�0�

2 �
S
� d2xdt�− �t�SvS · ��S − �vS · ��S�2�

+
N�0�

2 �
S,T
� d2xd2x�dt

�FS−T�x − x��vS · ��S�x�vT · ��T�x�� . �A21�

This action is a quadratic form in the Bose fields. Here we
have not included higher order terms �such as those dis-
cussed in the body of the paper, in the context of the nematic
instability�. Such terms are generally present due to nonlin-
earities in the fermion dispersion relation, as well as many-
body effective interactions.36 We have also not included
“vertex operators” such as those associated with pairing
�BCS� interactions.12,16 We shall find it more convenient to
work within this path-integral formulation when constructing
a theory of the nematic quantum critical point.
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Before leaving our discussion of high dimensional
bosonization, we should make a final comment on its valid-
ity. As discussed in the main body of the paper, the boson
theory here completely recovers the random phase approxi-
mation �RPA� in the long wavelength limit. This should not
be surprising since, in the asymptotic low energy limit, both
RPA and bosonization saturate the f-sum rule and are �for-
mally� exact. This is a well-known established property of
bosonization, extensively discussed in the literature since the
1970’s.

APPENDIX B: Analysis of V 2
+ and V 2

−

Here we present the partial fraction expansion of the ef-
fective interactions V 2

+ and V 2
− and their behavior near quan-

tum criticality.

1. Partial fraction expansion of V 2
+
„q ,s…

In terms of the function K0�s� we may write V 2
+ as

V 2
+�q,s� =

1

N�0���2�q� − K0�s��1 + � 1−K0�s�
1+K0�s� �2��−1

=
1

2N�0� �1 + x�2

x3 −
�2

2 x2 + �1 − �2�q��x −
�2�q�

2
� , �B1�

where x=K0�s�. The denominator is thus a cubic polynomial
in K0�s� and solving for the poles, x=� �

+�q�, we find

� �
+�q� = �1

6
�2�q� +

�2�q�2 + 12�2�q� − 12

ein�/3h„�2�q�…

+ ein�/3h��2�q����n � 	− 1,1,3
 , �B2�

where

h�x� = �12�12 − 36x + 42x2 + 3x3 − x�x2 + 18x + 36��1/3,

�B3�

and we assign �= 	a ,b ,c
 to each of these three poles. The
partial fraction expansion is

V 2
+�q,s� =

1

N�0� �
�=a,b,c

Z�
+�q�

� �
+�q� − K0�s�

, �B4�

with residues

Za
+�q� =

1

2

�1 + � a
+�2

�� a
+ − � b

+��� a
+ − � c

+�
,

Zb
+�q� =

1

2

�1 + � b
+�2

�� b
+ − � a

+��� b
+ − � c

+�
,

Zc
+�q� =

1

2

�1 + � c
+�2

�� c
+ − � a

+��� c
+ − � b

+�
. �B5�

For ��2�q� � �1 these formulas simplify to

� a
+ � i, � b

+ � − i, � c
+ � �2/2, �B6�

Za
+ � i/2, Zb

+ � − i/2, Zc
+ � 1/2, �B7�

as a result we may write near the nematic QCP

V 2
+�q,s� �

1

2N�0�� 1

�2�q�
2

− K0�s�
−

1/4

s2 − 1/2� . �B8�

2. Partial fraction expansion of V 2
−
„q ,s…

We may write V 2
−�q ,s� as

V 2
−�q,s� =

1

N�0���2�q� − K0�s��1 − � 1−K0�s�
1+K0�s� �2��−1

=
1

�4 − �2�q��N�0� 1

�1 + x�2x2 − 2
�2�q�
4 − �2

x −
�2

4 − �2
� .

�B9�

The denominator is simply quadratic and we find poles at
x=� �

− with

� a
−�q� = −

��2�q�
��2�q� + 2

, � b
−�q� = −

��2�q�
��2�q� − 2

.

�B10�

Hence, we can now expand in partial fractions to obtain

V 2
−�q,s� =

1

N�0�
� Za

−�q�

� a
−�q� − K0�s�

+
Zb

−�q�

� b
−�q� − K0�s�

� ,

�B11�

with residues

Za
− =

1

4 − �2
 �1 + � a

−�2

� a
− − � b

− �, Zb
− =

1

4 − �2
 �1 + � b

−�2

� b
− − � a

− � .

�B12�

Again, these formulas simplify for ��2 � �1,

� a
− � −

��2

2
, � b

− �
��2

2
, �B13�

Za
− � −

1

4��2

, Zb
− �

1

4��2

. �B14�

Thus, near the nematic QCP we can write

V 2
−�q,s� �

1

4N�0�� 1

s2 +
�2�q�

4

� . �B15�

APPENDIX C: INCLUSION OF F0„q…

Here we calculate VS,T for the case when both F0
and F2 are present and we let F2 approach the nematic QCP
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�F2→−1�. We shall find, however, that the critical behavior
is utterly independent of F0! Now, let

FS−T�q� =
2

N
�F0 + F2�q�cos�2��S − �T��� . �C1�

Returning to the ��
� theory, whose correlators are the RPA

interaction VS,T, we find in this case

S� = −
1

2
� d2qd�

�2��2 ��+�q,�� · �V+�−1 · �+�− q,− ��

+ V 2
−��2

−�2� , �C2�

where �+= ��0
+ ,�2

+� and

�V+�−1 =�2��0
0 −

1

F0
� 2�2

0

2�2
0 �0

0 + �4
0 −

1

F2

� . �C3�

As a result, V 2
− is completely unaffected by the presence of

F0 due to the fact that there is no �0
− field and opposite

“signs” decouple.
Again, we may write this expression as a function of

x=K0�s� and taking the inverse, we find

V+ =
1

x3 + ax2 + bx + c
W�x� , �C4�

where

W�x� =
1

2�0 + �2 − 4

��− x3 + ��2/2�x2 − �1 − �2�x + �2/2 x�1 − x2�
x�1 − x2� �0�1 + x�2 �

�C5�

and

a =
�2 − �0��2

2�0 + �2 − 4
, b =

2�0 + �2 − 2�0�2

2�0 + �2 − 4
, c =

− �0�2

2�0 + �2 − 4
,

�C6�

with �0=1+1/F0 and �2=1+1/F2. Again we find that the
polynomial is cubic. Hence, the addition of F0 only compli-
cates the algebra, but not the general structure of the solu-
tion. We therefore continue as in Appendix B.

Solving the cubic equation in �C4� leads to an algebra-
ically complicated result. However, it simplifies near the
nematic QCP and we find to lowest order in �2,

� a
+ = i� �0

�0 − 2
, � b

+ = − i� �0

�0 − 2
, � c

+ = �2/2,

�C7�

which return to our previous result if we let F0→0 or
�0→�. Notice that, to lowest order � c

+ is independent of F0,
as it should since the s-wave mode is noncritical and this
“pole” precisely represents the critical behavior. Expanding
in partial fractions leads to the expression

V =
1

N�0� �
�=a,b,c

Z�
+

�� − K0�s�
, �C8�

with residue matrices

Za
+ =

i

2
� �0

�0 − 2�
1

�0��0 − 2�
�0 − 1

�0��0 − 2�
�0 − 1

�0��0 − 2�
1 +

i
��0��0 − 2�

� ,

Zb
+ =

− i

2
� �0

�0 − 2�
1

�0��0 − 2�
�0 − 1

�0��0 − 2�
�0 − 1

�0��0 − 2�
1 −

i
��0��0 − 2�

� ,

Zc
+ =

1

2
�0 0

0 1
� , �C9�

which again returns to the previous result if we let F0→0.
Notice that Zc

+ is independent of F0 to this order in �2. Con-
sequently, the critical behavior of the fermions, �3.27�, is
unaffected by the inclusion of a noncritical mode such as F0.

APPENDIX D: Equal-Position Boson Propagator

Here we are interested in the quantity

GB�S,S��0,t� = GB�S,S�
0 �0,t� + i� d2kd�

�2��3 GF�S�
0 �k,��VS,S�k,��

�GF�S�
0 �k,���e−i�t − 1� , �D1�

the equal position part of Eq. �3.1�. In particular, we focus on
the second term, labeling it ln ZS�0 , t�. We begin by writing
the interaction in terms of its spectral function:

VS,S�k,�� =� d��

2�

B�k,���
� − �� + i	� sign ��

, �D2�

where

B�k,�� = B2
+�k,��cos2�2��S − ��� + B2

−�k,��sin2�2��S − ���
�D3�

and � the direction of k. Note: in the appropriate scaling
within a patch, �→�S+� /2 so that the cosine factor scales
to 1 while the sine factor scales to 0 driving the B2

−�k ,��
contribution irrelevant �this has been checked explicitly�.

This allows us to do the � integration immediately and
rewrite our expression in a more physical form. The result is
�after letting 	�→0�,
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ln ZS�0, �t�� = �
−�/2

�/2 dkt

2�
�

−�/2

�/2 dkn

2�
�

0

� d�

2�
B�k,��R1�kn,�, �t��

+ �
−�/2

�/2 dkt

2�
�

0

�/2 dkn

2�
�

−�

� d�

2�
B�k,��R2�kn,�, �t�� ,

�D4�

which we have written directly in terms of the patch coordi-
nates. The residue of the single pole is

R1�kn,�, �t�� =
e−i��t� − 1

�� − vFkn + i	 sign ��2 �D5�

=
1

vF

d

dkn
 e−i��t� − 1

� − vFkn + i	 sign �
� , �D6�

and the residue of the double pole is

R2�kn,�, �t�� = −
1

vF

d

dkn
 e−ikn�t� − 1

� − vFkn + i	 sign �
� , �D7�

so that it is clear that an integration by parts removes the
double pole altogether, leaving us with an integral only over
a single pole. One can view this as a cancellation of the
double pole’s contribution to the integral and expect the re-
sult to be less singular than the equal-time case.

Using the symmetries of the spectral function, we may
rewrite Eq. �D4� as

ln ZS�0, �t�� = �
−�

� dkt

2�
�

0

� dkn

2�
�

0

� d�

2�
B�k,���R1�kn,�, �t��

+ R1�− kn,�, �t�� + R2�kn,�, �t�� − R2�kn,− �, �t��� .

�D8�

Performing the integration by parts, and a quick change of
variables allows us to separate the time dependence in terms
of the following integrals:

ln ZS�0, �t�� =
1

N�0�vF
��− 2�

0

�

d!�I!��− !� −
1

���
�I!�− !� + I!�

�1��− !���
+ �

0

�

dun�Iu��− un� + Iu��un� −
1

���
�Iu�− un� + Iu�un� + unIu��− un� + unIu��un���e−iun�t̄�

+ �
0

�

d!�I!��− !� − I!��!� −
1

���
�I!�− !� − I!�!� + I!�

�1��− !� − I!�
�1��!���e−i!�t̄�� , �D9�

where we have sent the cutoffs to infinity, keeping the lowest
order correction in � �having checked that higher orders are
non-singular�, and where the various integrals are

I!�!� =
1

4�3P�
0

�

dut�
0

�

dun
B�u,!�
! − un

, �D10�

I!��!� =
1

4�3P�
0

�

dut�
0

�

dun

d

dun
B�u,!�

! − un
, �D11�

I!�
�1��!� =

1

4�3P�
0

�

dut�
0

�

dun

un
d

dun
B�u,!�

! − un
, �D12�

Iu�un� =
1

4�3P�
0

�

dut�
0

�

d!
B�u,!�
! − un

, �D13�

Iu��un� =
1

4�3P�
0

�

dut�
0

�

d!

d

dun
B�u,!�

! − un
. �D14�

In this latest form of ln ZS, we have defined u=k��,
!=��� /vF, t̄=vFt /�� due to the form of the spectral func-
tion at a nematic instability

B�k,�� =
�kvF

�2 + �2vF
2k6/4

=
!u

!2 + u6/4
, �D15�

where we have only included the effects of the overdamped
mode since it is responsible for the leading singular behavior.
Here we have replaced the angular factor cos2�2�S� by a
constant of order unity. �This is consistent since we will be
interested in the angular-averaged fermion Green function
and the angular factor in the exponent vanishes only on a set
of measure zero.�

Table I shows the low frequency-long wavelength limit of
these integrals computed numerically. Two basic forms
emerge: a ln2�!� divergence and a !−1/3 power-law diver-
gence �with logarithmic corrections�, each form occurring at
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different scales. However, the ln2�!� contributions all vanish.
With these limits in mind, we perform the final integral and
obtain

ZS�0, �t�� = CP exp�− A�1 + �3i�
ln�b�t̄��

�t̄�2/3 � , �D16�

valid for �t̄ � �1. In this expression,

CP = exp� 1

N�0�vF
���0.0476 +

0.0391

���
+ ¯ �� � 1,

�D17�

A =
0.00724

N�0�vF��
�

1

kF��
, �D18�

b = − 4.95 + 1.51i , �D19�

where the numbers calculated for CP were also computed
numerically.
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