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Four-terminal low-temperature measurements of the electrical transport of multiwall carbon nanotube de-
vices with low-resistance contacts reveal features that signify the presence of phase coherent transport. Sharp
resonances in the differential resistance as a function of dc bias are observed that are due to the interference of
electron paths that are directly transmitted through the nanotube and paths that are transmitted via resonant
states, the so-called Fano resonance. The metastability of these resonances indicates that the resonant states
most likely arise from potentials created by metastable defects in the device. Correlations between the nano-
tube conductance and the simultaneously measured conductance of the contacts hint that the defects may be
located at the contacts, although the nonlocality introduced by the long-range phase coherence makes an
absolute determination of the location of the impurities by this technique impossible.
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Quantum transport in carbon nanotubes has attracted tre-
mendous attention due to the unique one-dimensional nature
of these materials. While there have been some indications of
ballistic transport in multiwalled carbon nanotubes
�MWNTs�,1,2 most experiments have shown typical manifes-
tations of phase coherent quantum transport in the diffusive
regime such as weak localization, conductance fluctuations
and h /2e-periodic Aharonov-Bohm oscillations.3–12 The
phase-coherence lengths inferred from these measurements
are short in comparison to those found in metals at low tem-
perature, ranging from a few tens of nanometers to a few
hundred nanometers. However, other experiments have
found magnetotransport behavior in MWNT devices that is
inconsistent with diffusive quantum transport.13 These results
have been interpreted as arising from the effect of the mag-
netic field on the band structure in the ballistic regime, al-
though this interpretation is not without controversy.14

In this paper, we give details of our experiments on quan-
tum interference effects in MWNT devices with low-
resistance contacts.15 The devices show classic signatures of
phase-coherent transport at low temperatures, including large
variations in the conductance with magnetic field and a mag-
netoconductance that is asymmetric in the magnetic field,
consistent with the Landauer-Büttiker theory of four-terminal
phase-coherent transport.16,17 However, the most striking as-
pect of the low-temperature transport properties of these de-
vices is the presence of peaks and valleys in the differential
conductance as a function of dc bias across the device. These
peaks and valleys grow in amplitude with decreasing tem-
perature and can change as a function of thermal cycling and
even as a function of time, suggesting that they are due to
metastable impurities or defects. A model based on Fano
resonances arising from the interference of electrons directly
transmitted through the nanotube and those transmitted via
resonant states arising from the defect or impurity potentials
in the nanotube device provides a qualitative explanation of
the data.

I. SAMPLE FABRICATION AND MEASUREMENT

The arc-grown MWNTs in these experiments were dis-
persed from a suspension in dimethyl-formamide on to an
oxidized Si wafer on which Au alignment marks had been
previously fabricated by electron-beam lithography. High-
resolution transmission electron micrographs �TEMs� of the
MWNTs show that they consist of about 20–50 concentric
tubes covered with a layer of amorphous carbon �Fig. 1�b��.
The MWNTs were typically 2–5 �m long and had diameters
in the range of 25–50 nm. The nanotubes were located with
respect to the alignment marks using a high-resolution field-
emission SEM in the low-voltage mode. Electrodes were pat-
terned by electron-beam lithography to connect selected car-
bon nanotubes to wirebonding pads. Metallic electrodes
�5 nm Ti/50 nm Au� were then evaporated on to the sub-
strate to connect the carbon nanotube to the wirebonding
pads. Either four or eight leads were patterned on to the
MWNT in order to enable four-terminal measurements of the
MWNT. Figure 1�a� shows a scanning electron micrograph
�SEM� of a MWNT device with eight contacts. The inset to
Fig. 1�a� shows an atomic force microscope �AFM� image of
the region of the same device containing the nanotube.

Prior to deposition of the metal, a short oxygen plasma
etch �1 or 10 seconds depending on the power used� was
performed in order to ensure good electrical contact between
the MWNT and the metallic electrode. Without this etch, the
electrode-MWNT contact resistance was typically in the
range of a few tens of kilohms to a few megohms at room
temperature, while with this etch, the contact resistance
dropped reproducibly to the range of a few hundred ohms to
a few kilohms. Our initial guess as to why the oxygen
plasma etch is so efficacious in reducing the contact resis-
tance was that the oxygen plasma etched away the amor-
phous carbon layer covering the MWNTs. However, TEM
images taken after the oxgyen plasma etch showed no reduc-
tion in the amorphous carbon layer. Figure 1�b� shows a
TEM image of a MWNT after a 10-second oxygen plasma
etch. Individual nanotube shells can clearly be seen, along
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with the amorphous carbon coating the entire MWNT. How-
ever, it should be noted that the amorphous carbon coating
could also be due to contamination from the TEM during
imaging. Another process by which the oxygen plasma etch
might improve the contact resistance is by the introduction of
defects on the nanotube surface, as has been suggested by
other groups.18 At this point, we are not sure why the oxygen
plasma reduces the contact resistance of the devices. It may
be that the oxygen plasma cleaning removes any residual
resist left on the carbon nanotube after the development pro-
cess, while the presence of metastability in the low-contact
resistance devices suggests that the reason may well have to
do with the introduction of defects near the nanotube-metal
contact.

The samples were measured in a 3He refrigerator and a
dilution refrigerator. The 3He refrigerator could be inserted
into a dewar with a two-axis magnet enabling magnetotrans-
port measurements with the field direction aligned along the
tube axis as well as perpendicular to the tube axis. The dilu-
tion refrigerator was equipped with a 12-T axial solenoid
applying a magnetic field oriented perpendicular to the axis
of the MWNTs. The four contacts to each MWNT allowed us

to make four-terminal resistance measurements using a
homemade ac resistance bridge operating in the frequency
range of 11–103 Hz. On samples with eight electrodes, like
the sample of Fig. 1, we could also make four-terminal mea-
surements of the contact resistance of the two inner contacts.
For differential resistance measurements as a function of dc
current bias, a homemade current source with an output im-
pedance greater than 1012 � was used to apply a dc current
in parallel to the ac current applied by the bridge. In perform-
ing the experiments, it turned out that the symmetry of the
differential resistance with respect to current bias was impor-
tant. Hence, great care was taken to null out any offset of the
current source. With our electronics, the offset could be
nulled to the level of 0.2 nA. Using two bridges operating at
different frequencies, we could also make simultaneous dif-
ferential resistance measurements on different parts of the
device: for example, the four-terminal resistance of the
MWNT and the four-terminal resistance of one contact could
be measured simultaneously as a function of dc current bias.

Special care was taken to minimize noise interference
from external sources, particularly in the experiments in the
dilution refrigerator. No cold filters were used, but � filters
with a cutoff frequency of 5 MHz were used to shield every
line entering the refrigerator. The signals from the refrigera-
tor were first amplified by battery-operated homemade am-
plifiers with gains on the order of 100–500. The amplifiers,
along with the resistance bridges and current sources were
placed in a �-metal shielded box close to the top of the
refrigerator in order to minimize interference from line-
frequency sources. Tests were performed to determine the
optimum ac current for the measurements: typical ac excita-
tions used were in the range of 0.2–1 nA in order to avoid
self-heating. The success of these measures can be seen in
the fact that most of the samples measured show strong tem-
perature dependences and no saturation even at the base tem-
perature �15 mK� of the dilution refrigerator.

For the differential resistance measurements on the
MWNT devices, the dc current was sent through the same
two electrodes as the small ac excitation current, and the
resulting ac voltage was measured across the two other me-
tallic electrodes. For example, referring to the electrodes la-
beled by numbers in the inset to Fig. 1�a�, the dc and the ac
current could be sent through electrodes 1 and 4, and the
resulting ac voltage measured across electrodes 2 and 3. Us-
ing the now standard notation for four-terminal measure-
ments, this gave the differential resistance R14,23=dV23/dI14
as a function of the dc current I. Similarly, the four-terminal
resistances of the two inner electrode-MWNT contacts in the
inset to Fig. 1�a� are denoted by dV61/dI23 and dV47/dI23.
For devices with only four electrodes, the contact resistance
was estimated from the measured differences between the
two-terminal and four-terminal measurements of the sample
and the known resistance of the metallic electrodes. In order
to facilitate comparison with theoretical models, we shall
plot the conductance G=1/R as a function of the dc bias
voltage Vdc across the device. This is obtained by numeri-
cally integrating the dV /dI vs I curves.

In experiments on our first devices, a gate voltage of order
1 V was applied to the substrate to look for variations in the
conductance. However, the conductance had no measurable

FIG. 1. �Color online� �a� SEM of a typical device, a single
MWNT with four contacts. Each contact connects to two electrodes,
giving eight electrodes for the device. This enables four-terminal
measurements of the contact resistance of the two inner contacts.
Inset: SEM image of the central region of the same device, showing
the MWNT. The numbers label the current and voltage contacts in
different probe configurations as discussed in the text. The size bar
is 200 nm. �b� TEM of a MWNT after a typical oxygen plasma etch.
The multiple shells of the MWNT as well as the coating of amor-
phous carbon that survives the etching process can be seen. The size
bar is 5 nm.
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dependence on this back gate voltage. This is consistent with
the observations of other groups that metallic MWNTs with
low-resistance contacts showed no appreciable gate voltage
dependence.5,6 Consequently, in all subsequent experimental
runs, the substrate was kept floating.

II. EXPERIMENTAL RESULTS

Figure 2 shows representative behavior of 4 devices out
of the more than 14 devices measured. The first column of
graphs shows the conductance G as a function of dc voltage
bias Vdc at two different temperatures; the second column
shows the measured zero-bias temperature dependence. The
graphs are arranged from top to bottom in order of decreas-
ing contact resistance, from approximately 1 k� per contact
for the top row to less than a hundred ohms per contact for
the bottom row. A clear evolution in G as a function of Vdc
can be observed. The device with the largest contact resis-
tance shows a conductance that increases monotonically with

increasing �Vdc�, with G at zero bias decreasing with decreas-
ing temperature. This is similar to the zero-bias anomalies
observed by other groups, where this behavior has been at-
tributed to Coulomb blockade effects or electron-electron ef-
fects in the tunneling regime. �The behavior of devices with
contact resistances larger than 1 k� is similar.� As we move
to devices with lower contact resistances, however, G�Vdc�
begins to show sharp peaks and valleys that have no particu-
lar symmetry with respect to Vdc=0; these features become
sharper as the temperature is lowered and appear to be more
numerous for devices with lower contact resistances. We
note that these features really become prominent only at di-
lution refrigerator temperatures, which may explain why
they have not been observed before in devices measured only
down to liquid helium temperatures. With regard to the tem-
perature dependence, devices with higher contact resistances
almost invariably show a zero-bias conductance that de-
creases with decreasing temperature, as can be seen in Figs.
2�b� and 2�d�. At first sight, the devices with lower contact
resistances appear to show a nonmonotonic temperature de-
pendence, with the conductance decreasing with decreasing
temperature at higher temperatures and increasing with de-
creasing temperature at lower temperatures �Figs. 2�f� and
2�h��. As we shall see later, however, for devices with low
contact resistances, whether the conductance decreases or in-
creases with decreasing temperature depends on whether a
maximum or minimum in the conductance occurs at zero
bias: if a maximum occurs, the conductance will increase
with decreasing temperature; if a minimum occurs, the con-
ductance will decrease with decreasing temperature.

In fact, the same device could show both types of behav-
ior on different cooldowns. Figure 3�a� shows the conduc-
tance of sample C of Fig. 2 as a function of temperature over
a limited range of Vdc on a three-axis plot. The major feature

FIG. 2. �Color online� Differential conductance G=1/ �dV /dI�
vs voltage Vdc at two temperatures �left column� and zero-bias con-
ductance vs temperature T for four different MWNT devices in
decreasing order of room temperature contact resistance. Each row
represents one sample. From top to bottom: �a�,�b� sample A: con-
tact resistance 1 k�; �c�,�d� sample B: contact resistance 900 �;
�e�,�f� sample C: contact resistance 300 �; �g�,�h� sample D: con-
tact resistance 100 �.

FIG. 3. �Color online� �a�,�b� Three-dimensional representation
of the differential conductance of sample C as a function of voltage
and temperature. Panel �a� is on the first cooldown, at 20 mK, and
�b� is on the second cooldown, at 16 mK, after warming the dilution
refrigerator to room temperature. �c� and �d� are the corresponding
zero-bias temperature dependences.
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in the data is the presence of a large conductance peak at
around Vdc=−25 �V that grows in amplitude with decreas-
ing temperature. Near zero bias, however, there is a local
minimum in conductance; since this minimum also grows in
amplitude with decreasing temperature, the zero-bias con-
ductance of the device decreases with decreasing tempera-
ture, as shown in Fig. 3�c�. Figures 3�b� and 3�d� show simi-
lar data on the same device taken after the refrigerator had
been warmed to room temperature and cooled back down
again. As can be seen, the conductance characteristics have
changed drastically. Where there was a maximum in the con-
ductance, there is now a minimum. Near zero bias, there is
now a maximum in conductance; consequently, the conduc-
tance increases with decreasing temperature, as shown in
Fig. 3�d�. Indeed, we found that for some devices, it was not
necessary to warm to room temperature to see a change in
the transport characteristics. In these devices, the conduc-
tance would frequently change on a time scale of a few hours
to a few days, which made obtaining consistent data over a
long period of time difficult. Figure 4, which shows the zero-
bias conductance of sample C as a function of time, shows
an example of this metastable behavior. The conductance
switches between two states on a time scale of minutes.
While most of our devices did not switch as frequently as
this, the majority of them showed changes in the conduc-
tance on thermal cycling.

The fluctuations in the conductance as a function of Vdc
and the time dependence of the conductance are strongly
reminiscent of conductance fluctuations in diffusive metallic
and semiconducting devices, where they are associated with
quantum interference of quasiparticles that are scattered by
impurities, defects, or surfaces.19,20 In the diffusive case,
changing Vdc is equivalent to changing the energy E of the
quasiparticles, which in turn changes the phase of the inter-
ference. The time dependence of the conductance can arise
from the movement of even a single impurity over a distance
greater than 1/kF, where kF is the Fermi wave vector of the
electrons.21–23 A shift of an impurity over this length scale
shifts the phases of quasiparticles scattering off that particu-
lar impurity by ��, which leads to a change in conductance
of order e2 /h in a fully coherent device. If the impurity is
metastable, i.e., if it moves between two positions as a func-
tion of time, the conductance will also show a corresponding
time dependence.

The phase of the interfering quasiparticles can also be
modified by applying a magnetic field. Figure 5�a� shows the

magnetoconductance of sample C as a function of the mag-
netic field. Large variations in the conductance as a function
of the magnetic field can be observed. On this field scale, the
conductance looks symmetric with respect to the magnetic
field B. A closer examination of the region near B=0, how-
ever, reveals that the magnetoconductance is asymmetric
with respect to the magnetic field, as expected for a four-
terminal measurement of a mesoscopic device, and indeed
obeys the the Landauer-Büttiker symmetry relations.16,17 Fig-
ure 5�b� shows the low-field magnetoconductances G14,23
and G67,58 measured simultaneously as a function of the
magnetic field B. Both traces are clearly asymmetric. Taking
the combinations �G14,23+G67,58� /2 and �G14,23−G67,58� /2,
as shown in Fig. 5�c�, gives curves that are essentially sym-
metric and antisymmetric with respect to B, as predicted by

FIG. 4. �Color online� Time dependence of the zero-bias con-
ductance of sample C, taken at 35 mK.

FIG. 5. �Color online� �a� Magnetoconductance of sample C at
25 mK. �b� Low-field magnetoconductance of the same device at
low fields with two different measurement configurations as noted.
G67,58 has been shifted up by 1 e2 /h for clarity. �c� The average of
the sum and difference of the two traces shown in �b�, demonstrat-
ing the symmetric and antisymmetric combinations obtained using
the Landauer-Büttiker relations. �d� Autocorrelation function of the
magnetoconductance data of �a�. The correlation field Bc is 1.05 T.
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the Landauer-Büttiker relations.24 It should be noted that the
fact that the amplitude of the conductance fluctuations in the
antisymmetric part of the magnetoconductance is large is an
indication that quasiparticle phase coherence extends from
the nanotube into the electrodes. Theoretically, this is be-
cause the antisymmetric contribution arises from the two-
coordinate Diffuson or Cooperon propagator, where one co-
ordinate of the propagator is in the part of the device
common to both the current and voltage paths, and one co-
ordinate is in a current or voltage lead.25

From this brief qualitative look at the data from our
MWNT devices, it would seem as if the results can be ex-
plained by the physics of quantum transport in a diffusive
system. However, a more probing qualitative examination
and a detailed quantitative analysis show several inconsisten-
cies. First, in looking at the G�Vdc� curves �Figs. 2�c�, 2�e�,
and 2�g��, it can be seen that the amplitude of the conduc-
tance fluctuations increases only in certain narrow ranges in
dc bias with decreasing temperature, rather than over the
whole range of Vdc. For example, in Fig. 2�c�, there is almost
no change in the conductance outside the range −2 mV
�Vdc�2 mV in going from 3.85 K to 0.275 K, while the
conductance within this voltage range shows large changes.
Similar behavior can be seen in the data of Figs. 2�e� and
2�g�. Now the amplitude of conductance fluctuations in dif-
fusive systems is expected to grow with decreasing tempera-
ture. However, the amplitude should grow over the entire
voltage range, which it clearly does not. �The energy scale
for fluctuations is determined by the Thouless energy.� Sec-
ond, it should be noted that the rms amplitude of the conduc-
tance fluctuations is larger than e2 /h: for example, the rms
amplitude of the conductance fluctuations in Fig. 5�a� as cal-
culated from the autocorrelation function is 1.3 e2 /h. In it-
self, a conductance fluctuation amplitude larger or compa-
rable to e2 /h is not unusual in diffusive samples, where the
phase coherence length L� is longer than the length L of the
device; in which case, the amplitude of the conductance fluc-
tuations scales as �e2 /h��L� /L�2.26 However, assuming that
the fluctuations seen in Fig. 5�a� are due to quantum inter-
ference in a diffusive sample, one can estimate L� from the
correlation field Bc of the magnetoconductance, L�

��h /e� / �BcW�, where W is the width of the wire.20 Bc is
determined by taking the autocorrelation function of the con-
ductance �G�B�G�B+�B��, being defined as the magnetic
field difference �B at which the autocorrelation falls to half
its �B=0 value. From the autocorrelation function of the
magnetoconductance data of Fig. 5�a�, shown in Fig. 5�d�,
Bc�1.05 T, giving L��80 nm with the estimated width W
of the MWNT being 50 nm. This is about a quarter of the
typical distance of 300 nm between the voltage probes of our
MWNT devices. Consequently, the maximum amplitude of
the conductance fluctuations should be e2 /h�L� /L�3/2

�0.14e2 /h or smaller, rather than �1.3e2 /h. �We note in
passing that the value of �0.14e2 /h is closer to the ampli-
tude of conductance fluctuations observed in diffusive
MWNTs by other groups.11,12� While this analysis shows that
quantum interference in a diffusive system is an unlikely
explanation for our results, we believe that quantum inter-

ference in a quasiballistic system in the presence of a few
impurities is quite likely, as we shall show shortly.

III. QUANTUM INTERFERENCE IN A QUASIBALLISTIC
SYSTEM: FANO RESONANCES

In searching for a model to explain the voltage-dependent
differential conductance of the MWNT devices, it is useful to
enunciate the specific characteristics of the data that any
model will need to describe. The most evident is the pres-
ence of sharp minima and maxima in the conductance at
specific values of voltage across the device, which leads us
to consider a resonance-type phenomenon. The model will
have to explain the presence of both minima and maxima in
conductance. Some devices show only one such minimum or
maximum �e.g., Fig. 2�c��, while other devices show many
minima and maxima �e.g., Fig. 2�g��. The minima and
maxima occur at all values of voltage, not just at Vdc=0, as
can be seen from Fig. 3. Finally, the peaks or dips are quite
often asymmetric with respect to the maximum or minimum
of conductance. These distinguishing characteristics rule out
some more conventional models such as the Kondo effect to
explain our data.27

The model that we believe best explains the data from our
MWNT devices is based on the interference between a qua-
siparticle path that is directly transmitted an appreciable dis-
tance along the MWNT and a path that is transmitted via a
resonant state with a well-defined energy E0, the so-called
Fano resonance.28 In what follows, we shall the notation of
Clerk et al. in their discussion of the Fano resonance as
applied to mesoscopic systems.29 The transmission amplitude
of the direct channel is written as td=	Tdei�, while the
energy-dependent transmission amplitude of the resonant
channel is given by tr�E�=zr� / �2�E−E0�+ i��. Here E is the
energy of the incoming quasiparticle. Without the factor zr,
this results in the usual expression for transmission Tr
through a resonant state of energy E0 and intrinsic width
� , ��2 / �4�E−E0�2+�2�. Similarly, the transmission of the
direct channel by itself is given simply by �td�2=Td, indepen-
dent of E. The interference between these two transmission
paths is taken into account by taking the sum of tr and td to
determine the total transmission coefficient, Tt= �td+ tr�2. �
determines the relative phase between the direct path and the
resonant path, while the ratio of Td to zr determines the rela-
tive amplitude of the two terms. The energy-dependent con-
ductance can be cast in the conventional Fano form28

GFano�E� =
2e2

h
Tt =

2e2

h
Td

�2�E − E0� + q��2

4�E − E0�2 + �2 , �1�

where q= i+zre
−i� /	Td is the complex Fano factor.

The conductance described by the equation above has all
the right characteristics to explain the structure we see in the
differential conductance of our devices. Since the energy of
the resonant state E0 is not necessarily 0, the resonance can
occur at finite values of the voltage Vdc. In the limit E	�,
there is no contribution to the transmission from the resonant
state, so the conductance reduces to G= �2e2 /h�Td, the con-
ductance of the direct channel alone, as one would expect off
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resonance. On resonance �E=E0�, the conductance depends
on the phase difference � between the direct and resonant
paths. For �=0 or �=� , Tt=Td+zr

2, which corresponds to
the incoherent transmission of the direct and resonant paths
in parallel. For �=−� /2, one obtains Tt= �	Td+zr�2, while
for �=� /2, one obtains Tt= �	Td−zr�2. Thus, depending on
�, one can get a minimum or a maximum in conductance
near resonance. In general, the resonance line shape de-
scribed by Eq. �1� is asymmetric with respect to the mini-
mum or maximum of the conductance. If Td and zr are of
order unity, one would expect changes in the conductance of
order of a few e2 /h, but only at voltages in the vicinity of the
resonance, as seen in the experiment. Multiple resonant
states would lead to multiple maxima or minima, as seen for
example in the data of Fig. 2�g�. Finally, if the resonant state
is caused by an impurity that results in a local perturbation in
the potential seen by quasiparticles in the MWNT device,
movement of the impurity would result in a change in the
phase difference � between the direct and resonant paths,
leading to a change in conductance of order of a few e2 /h as
a function of time, as seen in the time-dependent data of
Fig. 4.

Fano resonances in MWNT devices have been reported
by two other groups.30,31 Kim et al.30 measured the conduc-
tance of devices incorporating crossed MWNTs and ob-
served a Fano resonance in two of their devices. Since a
Fano resonance was never found in devices without a
MWNT cross, they associated the Fano resonance with the
presence of a MWNT cross, although the mechanism that
gave rise to a resonant state was not elucidated. Yi et al.31

measured the conductance of crosses consisting of metal
electrodes patterned across MWNT bundles. In two of these
devices, they observed a nonmonotonic behavior of the con-
ductance near zero bias, which they ascribed to a resonance
arising from interference between a Kondo resonance and
nonresonant channels. However, the nature of the Kondo
resonance and why it did not occur at the Fermi energy as
observed in the experiments was not made clear. More re-
cently, Fano resonances have been observed in single-walled
nanotubes32 �SWNTs�. In these experiments, it was specu-
lated that the interference might occur between two transport
channels in a single SWNT, or between transport channels on
different nanotubes in a SWNT bundle. In all these experi-
ments, the metastable behavior we observe was not reported.

In analyzing the differential conductance of our own de-
vices quantitatively, we shall concentrate on sample C whose
data is shown in Fig. 3�a� and 3�b�, since we have the most
comprehensive temperature dependence for this device.
Since only one peak or dip is prominent, these data are also
easier to analyze than the data of other devices, for example,
the device of Fig. 2�g�, where multiple resonances must be
fit. Even so, we still have the problem of subtracting the
background differential conductance, the part of the differen-
tial conductance not associated with the resonance. This
background is relatively temperature independent �see, for
example, Figs. 2�c�, 2�e�, and 2�g��. Nevertheless, there are
small changes in the background conductance with tempera-
ture that do occur, so that one cannot simply subtract the
differential conductance at higher temperatures to obtain the
temperature dependence of the resonance at lower tempera-

tures. Consequently, we have instead used a numerical tech-
nique to subtract the background at each temperature. This
technique involves cutting out from the differential conduc-
tance the data in the voltage range over which the resonance
occurs, taking the Fourier transform of the remaining curve,
filtering the Fourier transform to remove the high-frequency
components, and then reverse Fourier transforming to obtain
the background. The result of this process is shown as the
dashed lines for the conductance peak and dip represented by
the solid lines in Fig. 6. The numerical process employed
clearly involves some assumptions about how the back-
ground behaves, but we believe that the resulting slowly
varying background is a more realistic approximation than
simply assuming a flat background over the same voltage
range.

Perforce, the value of the conductance far off resonance
after the background subtraction process described above
would be 0, since we have also subtracted any off-resonance
contribution of the direct channel of the Fano resonance, the
contribution corresponding to Gd= �2e2 /h�Td. What is the
value of Td? The background conductance of this sample is
roughly 10 e2 /h. In the Landauer picture, we could ascribe
this conductance to five channels that are transmitted ballis-
tically, which of course is highly unlikely. More likely is a
larger number of channels that each have transmission coef-
ficients T less than unity. In truth, we do not really care how
many channels contribute to the background conductance;
we are more concerned with how many channels interfere
coherently with the resonant channel. However, we believe
that the total number of conducting channels is small; other-
wise, the fluctuations resulting from the interference of the
coherent channels would be swamped by the contribution of
the incoherent channels and, hence, would be much smaller
than we observe. This picture is consistent with the conclu-
sion by other groups that only the outer shells in a MWNT
contacted by external electrodes contribute to the
conductance.5

FIG. 6. �Color online� �a� Differential conductance data for
sample C on the first cooldown, taken at 20 mK. The dashed line
shows the background calculated from the Fourier transform, as
described in the text. �b� Similar curves for the conductance dip
observed on the second cooldown of sample C at 16 mK.
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Since only one resonance peak or dip is prominent in the
voltage range shown in Fig. 6, it is a safe assumption that
only one resonant state contributes. Now suppose only one
direct channel with transmission Td=1 interferes coherently
with the resonant state. We would then have to add an offset
of 2e2 /h to the background-subtracted curves. With this off-
set, however, the conductance of the dip at its minimum
would fall below zero, which is unphysical. Of course, the
conductance at the minimum is slightly sensitive to the sub-
traction process; however, we have explored a range of pa-
rameters such as the voltage range over which the resonance
is assumed to occur and the frequency cutoff in the Fourier
filter, but we still have the same problem. If we assume that
two channels interfere coherently with the resonant state,
each with a conductance of 2e2 /h, the conductance curve
should be offset by �4e2 /h�. In this case, the conductance at
the minimum of the dip no longer goes below 0. One could
also assume three or more channels interfering coherently
with the resonant state. We think this is less likely, however,
so in what follows, we will assume only two direct channels
interfering with the resonant state. This assumption also
agrees with the concept of only two channels being present
in a single metallic nanotube shell.

The open symbols in Fig. 7�a� show the resulting
background-subtracted data with an offset of 4e2 /h for both
the conductance peak and the conductance dip of Figs. 3�a�
and 3�b� at 20 mK and 16 mK, respectively, along with the

best fits to the Fano functional form, Eq. �1�. For the dip, the
magnitude of the complex Fano factor from the fit, �q�
=0.65, while the phase 
 of q is nearly � /2 �1.61�. This
value for 
 corresponds to a phase difference of about �
=� /2 �1.507� between the direct and resonant channels. Re-
membering that Td is 2 by the choice of our offset, the value
of �q� then should be 1−zr /	Td=0.3, assuming the amplitude
of the resonant channel zr=1. For the peak, �q�=1.50, 
 is
1.69 �again close to � /2�. In this case, � is closer to
−� /2�−1.2�, giving an expected amplitude of �q�−1
+zr /	Td=1.7. More exact calculations give numbers that are
closer to the fitted values obtained.

Figure 7�b� shows the fitted values of �q�, the linewidth �
and the phase 
 as a function of temperature for the conduc-
tance dip of Fig. 7�a�. 
 is essentially constant at
� /2�1.58±0.06� over the entire temperature range. Both �q�
and � increase with increasing temperature. Now the Fano
formula �Eq. �1�� is for zero temperature: at finite tempera-
ture, one would expect a thermal broadening of the form

G�V,T� =
 GFano�E��−
� f�E − eV�

�E
�dE , �2�

where f�E� is the Fermi function. At temperatures T	� /kB,
the effective linewidth of the resonance should be approxi-
mately 3.5 kB /T. At T=1 K, for example, the effective line-
width should be �300 �eV instead of the much smaller
value of �22 �eV that we obtain. For this reason, our at-
tempts to fit to the temperature-dependent equation, Eq. �2�,
were unsuccessful. It should be noted that Kim et al.30 also
found an effective linewidth � that was approximately a fac-
tor of 5 smaller than expected. However, their linewidth
scaled linearly with temperature, while ours shows a much
weaker temperature dependence of the form �T1/5. Kim et
al. suggested that the narrower linewidth observed in their
experiments might be due to the four-terminal nature of the
measurements. Although no further explanation was given in
their paper, we believe their idea is that the inner voltage
leads measure only a fraction of the total voltage applied
across the device by the current leads. However, we do not
think that this is the correct explanation for the narrower
linewidths observed in our experiments. If the transport of
the quasiparticles from one current lead to its corresponding
voltage lead is ballistic, then the voltage measured at the
voltage lead should be the same as the voltage applied at the
current lead. If it is not, then the voltage lead measures the
relevant voltage applied across the device. A straightforward
test of this hypothesis is to apply the current using the two
inner leads and measure the voltage with the two outer leads.
In this configuration, there is nominally no voltage drop be-
tween a current lead and its corresponding voltage lead along
the nanotube since the voltage lead draws no current. Our
measurements of devices using this configuration have
shown peaks with linewidths narrower than 3.5 kBT, so this
cannot be the origin of the narrow linewidths we observe.
This issue requires further study.

What is the origin of the resonant state that contributes to
the Fano resonance? The metastable nature of the conduc-
tance seen in some of our devices suggests that it might be

FIG. 7. �Color online� �a� Open symbols; data for the conduc-
tance peak and dip of Fig. 6 after the subtraction of the backgrounds
shown by the dashed curves in Fig. 6, with an offset of 4e2 /h
added. Solid lines, fits to the Fano formula, Eq. �1�. Fitting param-
eters for the dip are �q�=0.66, 
=1.61, and �=6.9 �eV, and are for
the conductance peak �q�=1.50, 
=1.69, and �=13.6 �eV. �b�
Temperature dependence of the fitting parameters � and �q� for the
conductance dip of �a�. The solid line is a fit to the data, giving �
=22.9�T0.21 �eV.
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due to impurities that perturb the potential seen by the qua-
siparticles, leading to bound states in some part of the
sample. Where are these impurities located? Due to the in-
herently nonlocal nature of phase-coherent transport, it is
hard to localize the position of the impurities. Bias-
dependent four-terminal measurements of the contact resis-
tance taken simultaneously with the four-terminal resistance
of the MWNT device also show sharp peaks and dips in the
conductance at exactly the same values of bias as the peaks
and dips seen in the MWNT resistance. Figure 8�a� shows
the conductance of the left inner contact and the MWNT
conductance taken simultaneously; Fig. 8�b� shows the con-
ductance of the right inner contact and the MWNT taken
simultaneously. In the former figure, there is an anticorrela-
tion of the conductance of the contact and the MWNT �the
correlation is −0.96�, while in the latter figure, there is a
correlation of the conductance with the conductance of the
MWNT �correlation 0.81�. Now, one might argue that the
anticorrelation seen in Fig. 8�a� clearly shows that the impu-
rity is located at the metal-MWNT interface of this contact;
however, this picture does not agree with the observation that
the conductance of the second contact also shows a strong
correlation with the conductance of the MWNT. A more
likely explanation is that all three conductances are sensitive
to the resonant state since the phase coherence extends
throughout this region of the MWNT and into the probes �as
the asymmetries seen in the magnetoconductance indicate�.
Thus, it is hard to tell exactly where the impurity or impuri-
ties are located. A similar situation occurs in the case of
time-dependent conductance fluctuations, where it is not pos-
sible to determine the position of a fluctuating impurity
within a phase-coherent region.23

As we noted earlier, quantum interference effects can be
modulated by a magnetic field. For Fano resonances, this has
been elegantly demonstrated using semiconducting quantum
dots embedded in Aharonov-Bohm interferometers, where
the Fano resonance could be modulated periodically by an
externally applied magnetic field.33 Although the interference
paths in our devices are not as clearly defined, we believe
that the large oscillations in the magnetoconductance ob-
served in our devices is due to an Aharonov-Bohm modula-
tion of the interference between the directly transmitted and
resonant channels contributing to the Fano resonance. First,
as we discussed earlier, the amplitude of the variations in the
conductance observed as a function of the magnetic field are
much larger than those expected from conductance fluctua-
tions in a diffusive conductor, given the phase-coherence

FIG. 8. �Color online� Simultaneous measurements of the four-
terminal conductance of the contacts of sample C and the MWNT
device itself at 25 mK. �a� MWNT conductance and the left contact
conductance �see Fig. 1�. �b� MWNT conductance and the right
contact conductance.

FIG. 9. �a� Magnetoconductance of sample C, at 25 mK. �b�
Autocorrelation function of the data in �a�, �G�B�G�B
+�B�� / �G�B�2�, after a sixth-order polynomial background has
been subtracted. �c� The PSD of the magnetoconductance data of
�a�, after a sixth-order polynomial background has been subtracted.
The arrows in �b� mark the period of magnetoconductance oscilla-
tions; the corresponding arrows in �c� mark the frequency.
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length estimated from the magnetoconductance data. Second,
superimposed on top of the background fluctuations of the
magnetoconductance are periodic oscillations. This can be
seen clearly by looking at the autocorrelation functions and
the Fourier transforms of the magnetoconductance. Figure 9
shows the magnetoconductance, autocorrelation function and
power spectral density �PSD� of the magnetoconductance of
sample C whose data have been shown already in Fig. 5, at
25 mK. In order to accentuate the periodic components, a
sixth-order polynomial background has been subtracted from
the data before performing the autocorrelation and Fourier
transforms. The largest peak in the PSD corresponds to the
large background oscillation with period of around 5.5 T. We
believe that this large-scale oscillation may be associated
with modifications in the density of states, as has been re-
ported by other groups.13 Clear peaks are also seen in the
autocorrelation function corresponding to oscillations with
smaller periods; the first three have been marked by arrows
in the plots and the peaks in the PSD corresponding to these
periods have been similarly tagged. �Note that other periods
are also seen.� At first sight, these oscillations appear to cor-
respond to different periods. Closer inspection reveals that
the period of peaks 2 and 3 are multiples of the period of
peak 1, which has a period of 0.8 T. Similar behavior is seen
in other samples. We believe that this period corresponds to a

modulation of the phase of the Fano resonance by the mag-
netic field. The period of 0.8 T corresponds to the penetration
of a single normal flux quantum h /e over length scale of
approximately 100 nm, given an estimated width of 50 nm of
the carbon nanotube. This is perhaps the extent of the poten-
tial perturbation caused by the impurity.

In summary, MWNT devices with low-resistance contacts
measured at millikelvin temperatures show a wealth of struc-
ture in their differential conductance as a function of the bias
applied across the device. This structure arises from Fano
resonances in the MWNT. The metastable nature of the dif-
ferential conductance suggests that the resonant states that
give rise to the Fano resonances are created by impurities
that can move as a function of thermal cycling and as a
function of time.
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