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The Fermi liquid-Wigner crystal transition in a two-dimensional electronic system is revisited with a focus
on the nature of the fixed node approximation done in quantum Monte Carlo calculations. Recently, we
proposed �Phys. Rev. Lett. 94, 046801 �2005�� that for intermediate densities, a hybrid phase �with the
symmetry of the crystal but otherwise liquidlike properties� is more stable than both the liquid and the crystal
phase. Here we confirm this result both in the thermodynamic and continuum limit. The liquid-hybrid transition
takes place at rs

*=31.5±0.5. We find that the stability of the hybrid phase with respect to the crystal one is
tightly linked to its delocalized nature. We discuss the implications of our results for various transition sce-
narios �quantum hexatic phase, supersolid, multiple exchange, and microemulsions� as proposed in the
literature.
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I. INTRODUCTION

The competition between electrostatic and kinetic energy
in a two-dimensional electron gas is a problem which is
simple to formulate �what is the phase diagram of N elec-
trons on a surface S at zero temperature?� yet difficult to
tackle. One reason for this difficulty lies in the smallness of
the difference in energy between the different phases �the
Fermi liquid which is stable at high density when the kinetic
energy dominates1 and the electrostatically favored �Wigner�
triangular crystal, stable at low density2� compared to the
dominant electrostatic energy. In the region of interest in this
study, 20�rs�80 �the dimensionless parameter rs��S /N
controls the ratio of the electrostatic energy over the kinetic
energy� where there is a strong competition between the two
kinds of energy, the difference of energy between the two
phases is only of the order of 0.1% of the total energy so that
very accurate methods were needed to study this problem. To
illustrate the different energy scales, we plot in Fig. 1 the
energy of these two phases as a function of rs

=m*e2 / ��2���n� �e being the electronic charge, � the dielec-
tric constant, m* the effective mass, and n=N /S the elec-
tronic density�. At large distances, the physics is entirely
electrostatically controlled, and an important amount of en-
ergy is involved. Once we add a positive background to the
system and make it globally neutral, we arrive at the energies
plotted in the upper panel of Fig. 1; on the scale of the plot
the liquid and crystal are completely indistinguishable. If we
remove the Madelung energy �the excess electrostatic energy
of the uniform background with respect to the crystal�, we
still cannot distinguish between the two phases �see the
middle panel of Fig. 1�. It is only after we have removed the
zero point fluctuation energy of the crystal that the curves
become different and show a crossing at rs�37, where the
Wigner crystallization has been believed to occur3,4 �see the
lower panel of Fig. 1�. The scale of the lower panel of Fig. 1,
however, is almost three orders of magnitude smaller than
that of the upper panel.

In a seminal article in 1989, Tanatar and Ceperley3 used a
fixed-node quantum Monte Carlo �FN-QMC� technique5 to

locate the critical value rs�37±5, where the quantum melt-
ing of the Wigner crystal occurs. Their work was followed
by more precise numerics6 and a better description of the
liquid phase7,8 that included backflow corrections. On the
other hand there were indications that this scenario of a
�first-order� direct transition between the Wigner crystal and
the Fermi liquid phase might miss some of the physics. For
instance, the quantum melting of the bosonic Wigner
crystal9,10 is found �by similar QMC calculations� to occur at
rs�60 so that for 37�rs�60 the fermionic statistics �from
which all the difficulties of the QMC calculations come, as
we shall see� is crucial to stabilize the crystal. Also, the clas-
sical melting11–14 as a function of temperature does not occur
in a one step process. The system first loses its translational
order but retains some orientational order �hexatic phase14�
while at a higher temperature, any order disappears. The pos-
sibility of an intermediate quantum hexatic phase was put

FIG. 1. Quantum Monte Carlo energy as a function of rs for a
system of 56 electrons in 210�208 sites for the liquid phase
�squares�, solid phase �diamonds�, and hybrid phase �full circles�.
Upper panel: total energy, the three phases are indistinguishable.
Middle panel: total energy minus the Madelung �electrostatic� en-
ergy −c1 /rs with c1=2.2122. Lower panel: total energy minus the
Madelung energy and the energy of the crystal’s phonons c1/2rs

−3/2

with c1/2=1.624. The energies are given in mRy. For holes in a
GaAs heterostructure, a Rydberg corresponds roughly to 350 K ��
�13�0, m*�0.38me�.
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forward in Refs. 15,16. In fact, it was recently argued on
rather general grounds, that a direct first order transition is
simply impossible in this system17,18 but should occur
through a series of intermediate phases �including bubbles or
stripes of one phase in the other�. The possibility of a super-
solid phase analogous to the one proposed by Andreev and
Lifshitz19 has also been considered.20–22 All these
indications23 led us recently to revisit the melting of the
Wigner crystal in the framework of the FN-QMC calcula-
tions. We considered a third phase called hybrid phase �as it
had the symmetry of the crystal but is otherwise delocalized�
and showed that it was more stable than both the liquid and
crystal phases �full circles in the lower panel of Fig. 1� in the
intermediate density range24 giving strong support to the
more exotic scenarios.

To understand the status of our result, however, it is of
prime importance to understand the nature of the fixed-node
�FN� approximation involved in the FN-QMC technique. In
practice, the FN-QMC algorithm is fed with a wave function
called the guiding wave function �GWF� that has to be given
explicitly, and that should be as close as possible to the
ground state of the system. The FN-QMC algorithm projects
the GWF onto the �true� ground state of the system. How-
ever, to avoid the notorious sign problem that arises in QMC
simulations involving fermions, one approximation is intro-
duced; the projection is done with the constraint that the sign
of the wave function (nodal structure) remains unchanged at
every point of the Hilbert space. The method gives the best
wave function for a given structure of the nodes of the GWF
and is in this sense variational.25 The physical meaning of the
FN approximation is not completely obvious. Implicit in the
interpretation given above of the FN-QMC results is that a
GWF is associated to a phase �crystal, liquid, or hybrid� the
stability of which can therefore be studied. However, this
paradigm should not be taken too literally and will be made
more precise in this article.

After presenting our model and the FN-QMC method in
Sec. II, we perform FN-QMC calculations on a small system
of four electrons �Sec. III�. As this system can be studied
exactly, it is an interesting tool to study the nature of the FN
approximation. We find that in addition to the FN results at a
large imaginary �projection� time, important information is
embedded in the evolution of the results from the variational
calculation to the full FN-QMC results. In Sec. IV, we ex-
plain the construction of the hybrid GWF, and show that its
nodal structure corresponds to delocalized waves. Section V
is devoted to a characterization of the physics associated
with the hybrid GWF. This is done through a systematic
study of various physical quantities, and in particular of their
evolution between the variational and FN-QMC calculations.
We find that the success of the hybrid GWF with respect to
the crystal one is closely linked to its delocalized nature.
Section VI contains a detailed discussion of various technical
aspects �thermodynamic limit, lattice effects, mixed, and un-
biased estimates,…�. The chief result of Sec. VI is a precise
determination of the critical value rs

*=31.5±0.5. at which the
liquid-hybrid transition takes place �in both the continuum
and thermodynamic limits�. In Sec. VII, we discuss the im-
plications of our results to the scenarios proposed in the lit-
erature.

II. MODEL AND METHOD

A. System under consideration

The system under consideration consists of N spinless
electrons on a rectangular Lx�Ly grid with nearest-neighbor
hopping and long-range Coulomb repulsion. To avoid strong
finite-size effects on the electrostatic energy, the system is
repeated periodically and fills the whole two-dimensional
�2D� plane. In practice, we use periodic boundary conditions
for the hopping terms and the effective two-body interaction
is obtained from the bare Coulomb interaction using the
Ewald summation technique. The system Hamiltonian
reads26

H = − t �
�r�,r��	

cr�
†cr�� +

U

2 �
r��r��

V�r� − r���nr�nr�� + � , �1�

where the operator cr�
† �cr�� creates �destroys� an electron on

point r� with the standard anticommutation relation rules, the
sum ��r�,r��	 is done on the nearest-neighbor points on the grid
and t is the corresponding hopping amplitude. The density
operator reads nr�=cr�

†cr�. U is the effective strength of the two
body interaction V�r�� which reads

V�r�� = �
L�

1


r� + L� 

erfc�kc
r� + L� 
�

+
2�

LxLy
�
K� �0�

1


K� 

erfc�
K� 
/�2kc��cos�K� · r�� . �2�

In the previous equation, kc is a�n� �irrelevant� cutoff. The

vector L� takes discrete values L� = �nxLx ,nyLy� with nx and ny

integer numbers. The vector K� also takes discrete values, K�

= ��2� /Lx�nx , �2� /Ly�ny� and �nx ,ny�� �0,0�. The comple-

mentary error function is defined as erfc�r�= �2/����x
�e−t2dt.

In order to assure electrostatic neutrality we add a positive
continuum background

�/N = 4t + UṼ�0�� − 2U	��/kc − 2Ukc/�� , �3�

where 	=N / �LxLy� is the average number of electrons per

site and Ṽ�r��=V�r�� with the restriction that the sum over L�

does not includes the null vector.
The presence of the grid can be understood either as a

discretization of the continuum problem �and the nearest-
neighbor hopping corresponds to the discretized Laplacian�
or as a tight-binding approach to two-dimensional electron
systems, where each site corresponds to an atomic orbital. In
conventional 2D systems �say GaAs/GaAlAs heterostruc-
tures�, densities range from ns�1012 cm−2 down to ns
�1010 cm−2. Since the distance between nearest atoms is of
the order of a few Angstroms, this would lead to 	�10−4 to
	�10−2 electrons per site in our tight-binding picture. In this
study, we will study systems with 	=1/56, 	=1/224, and
	=1/780 close to realistic values.

The presence of the jellium �which is merely a constant
term and thus cannot affect the physics� allows us to make a
quantitative contact with the literature in the continuum limit
as 	→0. In this limit, the physics depends only on the rs
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parameter which reads, rs=U / �2t��	� while the Rydberg
unit of energy is Ry=U2 / �4t�. In the following, unless spe-
cifically stated, we shall measure all energies E in the unit of
2�N	t �i.e., the energy per particle in a unit of the Fermi
energy of the noninteracting problem�. With this normaliza-
tion, the energy of the system at rs=0 in the thermodynamic
N
1 and continuum 	�1 limit is E=1 so that results in
Rydberg can be obtained by multiplying the energies �in the
unit of 2�N	t� by 2/rs

2.
We have added a�n� �“infinitely”� small disorder �r�vr�nr� in

order to lift the degeneracies of the noninteracting problem
and allow the translational symmetry breaking of the crystal.
vr� are independent and uniformly distributed inside
�−W /2 , +W /2�. We chose W=10−3 corresponding to an ex-
tremely large ratio l /�F=96	t2 /W2�106 of the mean-free-
path l over the Fermi wavelength �F. The correction to the
energy due to the disorder is smaller than our statistical ac-
curacy and we explicitly checked that our result is insensitive
to the disorder presence.

The grid has been chosen to accommodate a�n� �almost�
triangular Wigner crystal without distortion. Hence we use
systems of N=Q�R electrons �R �R even� lines of Q par-
ticles� in Qdx�Rdy sites. The triangular crystal requires
dy /dx=�3/2�0.866. In this work, we focus on dy /dx
=14/16�0.875 and dy /dx=26/30�0.866 for which we find
that the distortion is negligible.

B. The Green function Monte Carlo method in the
fixed–node approximation

We aim to sample the ground state 
�0	 of H and its
corresponding ground-state energy E0 with the Green func-
tion Monte Carlo �GFMC� technique. The idea behind this
method is to project an initial �variational� guiding wave
function 
�G	 on the exact ground state 
�0	 by applying the
operator e−H in a stochastic way, with a large imaginary
time . In practice, one works in the many particle basis R
= �r�1 ,r�2 . . .r�N� and applies the function

GR�R = �R�R − ��G�R���HR�R − ��R�R��G
−1�R� , �4�

where �G�R�= �R 
�G	, � is a �small� time step, and � is an
unimportant offset of the energies �that should be roughly set
to the ground state energy of the system, here we took
� / �2�	t�=1−rs�. In the absence of the �G�R�, G is a dis-
cretized version of the operator e−H for a small �imaginary�
time step �. Upon applying n= /� times G on a vector
�G

2 �R�, the �G�R�� on the left of Eq. �4� are canceled by the
�G

−1�R� on the right so that one obtains

In = �
R�R

�Gn�R�R�G
2 �R� = ��G
e−�H−��n�
�G	 �5�

from which one can extract the ground state energy �as
In+1=e−�E0−���In when =n�→��.

The stochastic implementation of this scheme is based on
the Green function Monte Carlo for lattice Hamiltonians in-
troduced in Ref. 26 to which we refer for more details. The
algorithm to update the Slater determinants used in the cal-
culation of �G�R� /�G�R�� can be found in Ref. 27. By sam-

pling directly the time spent by the walkers at one point of
the Hilbert space using the algorithm described in Ref. 26 we
can use arbitrary small time steps � without any loss in com-
puting time and hence effectively work in continuum �imagi-
nary� time. Instead of using the standard branching tech-
nique, the control of the walkers population is done using a
fixed number of walkers and the reconfiguration algorithm
introduced by Sorella.28 This algorithm allows one to avoid
the bias introduced in the branching technique by artificially
controlling the walker population. Quantum averages of
physical quantities �¯	 are calculated using the forward
walking technique,28 and hence do not suffer from the bias of
mixed estimates.

So far the scheme is essentially exact. However, it suffers
from the usual “sign problem,” the sign of GR�R fluctuates so
that the statistical accuracy decreases exponentially with ,
and it is of little practical use. One way out of the sign
problem is the fixed-node approximation, where one forbids
the sign of the wave function to change upon applying G
�hence the name; the nodal surface where the wave function
changes of sign remains the same than the one of �G�R��.
The practical implementation of the fixed-node approxima-
tion on a grid is done25 by replacing H by an effective
Hamiltonian HFN that depends on the GWF. HR�R

FN is equal to
HR�R when GR�R�0. When GR�R�0, the link is cut HR�R

FN

=0 and is replaced by an effective potential HRR
FN=HRR

+�R���−GR�R��G�R��HR�R�G
−1�R�, where ��x� is the Heavi-

side function �this corresponds to replace the value of the
wave function on those sites R� by the surmise �G�R���. The
fixed-node approximation can be thought of as a “supervaria-
tional” technique, where the amplitude of the wave function
is optimized at every point of the Hilbert space while its sign
remain fixed. It can be proved indeed that the energies EFN
calculated with HFN are larger than the true ground-state en-
ergy E0 but smaller than the variational energy associated
with the guiding wave function.25 The fixed-node approxi-
mation in a lattice looks a priori more drastic than in the
continuum since we do impose the ratio of the wave function
across the nodal surface. However, for 	�1 the fraction of
“nodal” sites goes to zero and the technique becomes equiva-
lent to the fixed node diffusive Monte Carlo used in the
continuum.3

As an illustration, we present in Fig. 2 a typical trace
obtained for 32 particles at rs=40. EFN�=0� corresponds to
the variational energy ��G
H
�G	 / ��G 
�G	. After an initial
rapid decrease, the FN energy �per particle� EFN�� decreases
slowly as 1/ �see inset� and then saturates above an imagi-
nary time sat�1/ �	t�. The energy is estimated by further
averaging the result over  for �sat. In the rest of this
paper, unless explicitly stated, the obtained accuracy for
EFN�� is ±0.002 or better while the precision on quantities
other than the energy will be of the order of the size of the
symbols. This remarkable precision �here the relative accu-
racy is �10−5� should be contrasted with the fact that impor-
tant changes in the physics can lead to very tiny changes in
energy. For instance the condensation energy of a
superconductor29 �the difference of energy between the su-
perconducting and the normal state� is only a very small
fraction ��� /EF�2�10−6 �� is the superconducting gap, EF
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the Fermi energy� of the total energy �only electrons near the
Fermi surface form Cooper pairs�. The formation of a
Wigner crystal �localized in real space� from a Fermi liquid
�localized in momentum space� corresponds however, to a
complete reorganization of the system and the changes in
energy, though small �0.01, can be measured with the
GFMC technique.

C. Guiding wave functions

Central in the fixed-node technique is the choice of the
GWFs used in the calculations. Here, the guiding wave func-
tions have the general form of a Slater determinant multi-
plied by a Jastrow function,

�G�R� = Det��i�r� j�� � 
i�j

J�
r�i − r� j
� . �6�

The Jastrow part takes Coulomb interaction into account by
introducing the correlations between electrons. Since it has
no nodes, the FN results should not depend on its particular
form �as we explicitly checked�. We use modified Yukawa
functions,30

J�r� = exp�aA�rs�
r

�1 − e−B�rs�r/a�� , �7�

where a=1/��	 is the average distance between electrons.
A�rs� and B�rs� are �optimized� variational parameters. To
avoid the Coulomb singularity when two electrons get close
to each other, we impose the cusp condition5 that reads B
=�rs /A for the modified Yukawa.

The Slater determinant of one-body wave functions,
Det��i�r� j�� enforces the antisymmetric nature of the fermi-
onic wave function and is responsible for the nodal structure
of the GWF. The GWF used in the literature for the study of
the melting of the Wigner crystal3,6 are of two kind, adapted
to the two limits of very low �large� rs;

�i� For the liquid state the GWF �liq is constructed out of
plane waves �i�r� j��eik�i·r�j with a well-defined Fermi surface.
�liq is the exact ground state at rs=0.

�ii� For the crystal GWF �cry, localized orbitals �i�r� j�
�e−�r�j − u� i�

2/�2d0
2� are used. Here the u� i with i� �1¯N� stand

for the positions of the electrons in the classical crystal. �cry
provides the exact ground state in the continuum at large rs
with the variational parameter d0�a /rs

1/4. This GWF cap-
tures the two leading terms of the large rs expansion of the
energy �Madelung and zero point fluctuation energy� that
reads,

E = − c1rs/2 + c1/2
�rs/2 + ¯ �8�

with c1=2.2122 and c1/2=1.624.
In this paper, we will use the two previously mentioned

GWF, and a third �hybrid� one that somehow interpolates
between the crystal �real space� and the liquid �momentum
space�.

III. THE SIGN PROBLEM AND THE FIXED-NODE
APPROXIMATION

In this section, we come back to the sign problem, and
investigate the nature of the approximation involved in the
fixed-node approximation. One way to understand the sign
problem is to consider it as a frustration problem in Hilbert
space; we seek to solve the Schrödinger equation which for-
mally reads in R space,

�
R�

HRR��0�R�� = E0�0�R� . �9�

Two-body interactions and external potentials are diagonal in
the R space and HRR can always be considered to be positive
�by shifting H by a constant�. The off-diagonal elements
HRR� come from kinetic energy. They are positive for bosons
but are alternatively positive and negative for fermions as
shown schematically in Fig. 3. The bosonic case does not
suffer from any sign problem and �0

boson�R� can be found
efficiently. We now consider a fictitious Ising model, where
an Ising variable s�R�= ±1 is placed on each site R of the
Hilbert space and is coupled to its neighbors by a coupling
HRR� �which can be ferromagnetic or antiferromagnetic�. If
this fictitious model had no frustration, then its ground state
s0�R�= ±1 could be trivially found and one can easily verify
that �0

fermion�R�=s0�R��0
boson�R� would be the exact ground

state of the fermionic problem. Hence the sign problem
arises from the frustrated nature of Eq. �9�. From this point
of view, the fixed-node approximation consists in cutting
some links of this fictitious Ising model so that it is no longer
frustrated and admits s0�R�=sgn��G�R�� as its ground state.
The FN approximation does not have a simple physical
meaning and thus seems difficult to control.

FIG. 2. �Color online� Typical curve of EFN�� as a function of
. A system of 32 particles in 64�112 sites at rs=40 for a liquid
GWF with A=4.5. Here, 8.105 walkers were used, �=−39 and �
=10−5 / t. Inset: the same curve as a function of 1/. The dashed
lines are linear fits to guide the eye.

FIG. 3. A schematic view of Eq. �9�. The circles symbolize sites
R in Hilbert space and the full �dashed� lines positive �negative�
off-diagonal matrix elements HRR�. The corresponding lattice is
frustrated for fermions.
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In Fig. 4, we compare the FN results with the variational
�i.e., =0� results for a system of 30 particles at rs=35. The
calculations have been done for the �cry GWF so that we can
compare the influence of the two parameters d0 and A. While
d0 enters in the definition of the Slater determinant and hence
of the nodal structure, A defines the Jastrow part which does
not change sign and �in the limit 	�1� the FN results should
thus be insensitive to the choice of A. On the right panel of
Fig. 4, we see that it is indeed the case. The function EFN�A�
is flat at the precision of the calculation �±0.002 here� while
the variational energy EVAR�A� shows a pronounced mini-
mum at A�4. On the left panels of Fig. 4, we plot EFN and
EVAR as a function of d0. One would expect the two curves to
present a minimum at the same value of d0 �which is what is
usually assumed, the FN calculations being done in most
cases with parameters optimized at the variational level�.
However, one observes that for d0�0.8 �variational mini-
mum� the FN energy is flat upon increasing d0. Hence, the
nature of the approximation done in a fixed-node calculation
is not simply related to the original variational wave function
used for fixing the nodal surface, and the method can poten-
tially capture more physics than originally thought.

To gain further insight, we now discuss the instructive
example of four electrons in a 6�8 grid. This system is
small enough �the size of the Hilbert space is �2.105� so that
its ground state can be found exactly using the Lancsos al-
gorithm and compared with the result of a fixed-node calcu-
lation. We introduce the density ��r�� and density-density cor-
relation function g�r��,

��r�� =
1

N
�cr�

†cr�	 , �10�

g�r�� =
LxLy

N�N − 1��
h�

�c
r�+h�
†

c
h�
†
ch�cr�+h�	 , �11�

which measures, respectively, the average number of elec-
trons on site r� and the probability to find an electron on site

r� knowing that there is one particle on site 0� �both are nor-

malized to one�. From these two quantities, we define the
participation ratio

�2 = 1��LxLy�
r�

�2�r��� , �12�

which roughly measures the number of occupied sites in the
ground states ��2 interpolates from 1 to 	 as rs goes from 0 to
�� and the “rigidity” parameter g2,

g2 =
1

LxLy
�

r�
�g�r�� − 1�2. �13�

The comparison between the exact result and the FN calcu-
lation is presented in Fig. 5. In the inset of Fig. 5, we show
the exact g�r�� at rs=20. g�r�� has three well-defined maxima
at the positions of the classical Wigner crystal. Upon increas-
ing rs, the system gets more and more crystal-like and these
maxima become more pronounced which leads to an in-
crease of g2 �lower panel� and a decrease of �2 �middle
panel�. Figure 5 shows two regimes. For rs�30, the error on
the energy �upper panel� increases linearly while the two
other physical quantities �2 and g2 are in very good agree-
ment with the exact result. Hence the FN result, though cal-
culated with a liquid GWF made of plane waves, is well able
to reproduce the ground state of a system which �at rs=30� is
really crystal-like. Above rs�30 the error saturates to 0.007,
�2 is still in good agreement with the exact result, but the
error on g2 starts to increase significantly. At rs=70, the error
on the energy is only 0.01% of the total energy �E0�1−rs�
while the error on g2 is much larger �33%.

Hence the FN approximation provides a very good de-
scription of the ground state up to a rather large value of rs
�here around 30� even though the system is very crystal-like
and we started from a liquid GWF. It also provides a good

FIG. 4. Comparison between the fixed-node EFN �upper panels�
and variational EVAR �lower panels� energies as a function of d0

�left panels, d0 in unit of a� and A �right panel� for a system of 30
particles in 40�42 sites at rs=35 using the �cry GWF. Left panels:
A=4.5. Right panels: d0=0.76a.

FIG. 5. �Color online� Comparison between the fixed-node cal-
culation with a liquid GWF and the exact result for a system of four
particles in 8�6 sites. Upper panel: the difference between the FN
and exact energy. The lines are a guide to the eye. Middle panel: the
participation ratio per site �2 for the exact �empty circles� FN �full
diamonds� and variational �crosses� calculation. Lower panel: idem
for the rigidity parameter g2. Inset: the exact density-density corre-
lation function g�r�� at rs=20. g�r�� measures the probability to find a

particle on site r� knowing that one particle is on site 0� indicated by
the cross in the corner of the sample. The gray scale range from 0
�black� to 3 �white�.

ON THE QUANTUM MELTING OF THE… PHYSICAL REVIEW B 73, 075417 �2006�

075417-5



quantitative value of the energy even for higher values of rs,
where the FN approximation no longer accurately describes
the physics. Maybe even more importantly, Fig. 5 gives us a
clue on how to control the FN approximation; we find that
when the FN approximation starts to fail �rs�30�, the dif-
ference between the FN results and the variational results
starts to increase drastically. In addition, the FN results �here
for �2 and g2� lies in between the variational and the exact
results so that the fixed-nodal surface can be viewed as a
“wall” preventing the system from relaxing to the true
ground state. Hence some information on the nature of the
ground state can be extracted from the evolution of the
physical quantities between the variational and the FN esti-
mates �and not only from the study of the FN quantities
alone�. This idea will be put to application in Sec. V by
looking at how the physics in the various GWF is amplified
or washed out by the FN projection.

IV. CONSTRUCTION OF A HYBRID PHASE

The melting point of the Wigner crystal can be viewed as
the point above which the problem is well described in real
space �crystal with particles at given positions� and below
which the momentum space is to be used �liquid with a well-
defined Fermi surface�. Hence, the melting point itself is
somehow the point of “maximum uncertainty,” where the
problem is equally badly described in both momentum and
real space representation. In the standard scenario of a �first-
order� direct transition between the liquid and the crystal,
this point is nothing else than the point where the energy of
one state crosses the other one. Here, we consider another
scenario which interpolates between momentum and real
space. In order to do so, we considered in Ref. 24 a GWF, we
called a hybrid GWF aimed to provide such an interpolation.
As we have seen, we find that this hybrid GWF provides the
lowest energy in the intermediate region of rs.

The construction of the hybrid GWF �hyb is done in such
a way that the resulting �i�r� j� are the Bloch states of elec-
trons in a triangular crystal. First, an effective one-body
Hamiltonian Heff is constructed for an electron in an attrac-
tive periodic potential that has the symmetry of the classical
�triangular� Wigner crystal,

Heff = − t �
�r�,r��	

cr�
†cr�� − U*�

r�
W�r��nr�, �14�

where the one-body potential is W�r��=�i=1
N V�r�−u� i�. The sin-

gularity of W�r�� at the position of the classical crystal r�=u� i

has been removed by setting W�u� i��W�u� i+ �1,0�� �we
checked that other choices of W�r�� give consistent results�.
In a second step, Heff is numerically diagonalized using the
Lanczos algorithm. The N orbitals of lowest energy �i�r��
�1� i�N� are then used to construct the Slater determinant.
A priori U* is a variational parameter that allows for an
interpolation between �liq �at U*=0� and localized orbitals
leading to a GWF similar to �cry �at U*
1�.

In Fig. 6, we plot the energy as a function of U* for two
values of rs below �rs=15 upper panels� and above �rs=35
lower panels� the expected liquid-crystal transition �which is

found around rs�20–25 for this system of 30 particles in
40�42 sites�. At rs=15 the energy increases with U* indi-
cating that the free-plane-wave solution provides the best
nodal structure. The increase of the fixed-node energy �left
panels� is however 10 times smaller than the increase of the
variational energy and is only slightly above the statistical
resolution. At rs=35, the situation is completely changed,
and the FN energy shows a sharp drop around a particular
critical value U*=UC

* �0.2. This point corresponds, as we
shall see, to the value of U* above which the GWF has the
symmetry of the crystal. We find that the fixed-node energy
is completely flat above and below this threshold, indicating
that the drop in energy is really associated to the change of
symmetry.

More insight on the significance of the critical value UC
*

can be found by looking at the eigenenergies �i associated
with the orbitals �i�r��. The lowest values of these energies �i

�which have no physical meaning by themselves and are just
a convenient way to get information on the orbitals� are plot-
ted in the upper panel of Fig. 7 as a function of U*. At U*

=0 they form one unique band with a parabolic dispersion
�i�ki

2. At U*
1, the periodic potential is at the origin of a
more complex band structure, and the band of lowest energy
�which contains exactly N levels� detaches from the rest of
the spectrum and becomes narrower as U* increases. What is
important here is that the point where this band of lowest
energy separates from the rest of the level �see Fig. 7, upper
panel� corresponds exactly to the point where the energy has
a drop �see Fig. 7, lower panel�. Above this point, Bloch
theory tells us that the �i�r�� can be written in terms of the
Bloch waves of one band only;

�i�r�� = uk�i
�r��eik�i·r�, �15�

where uk�i
�r�� is a function with the periodicity of the crystal

and the momentum have their value within the first Brillouin
zone of the triangular lattice, i.e., a hexagonal Fermi surface.
In that sense, the hybrid GWF is liquidlike �made of plane
waves� with the triangular symmetry. However, since the
only thing that enters in the GWF is actually the determinant,

FIG. 6. The fixed-node energy �left panels� and variational en-
ergy �right panels� at rs=15 �upper panels� and rs=35 �lower pan-
els� as a function of U*. The system contains 30 particles in
40�42 sites and the calculations are done with the hybrid GWF.
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det��i�r���, it is equivalent to use �instead of Eq. �15�� linear
combinations of the Bloch waves, leading to the so-called
Wannier functions,

�i�r�� = F�r� − u� j� with F�r�� � �
i

uk�i
�r��eik�i·r�. �16�

Writing the �i�r�� in the form of Eq. �16�, the hybrid GWF
looks similar to the crystal one �for which F�r�� takes the
form of a Gaussian function�. The Wannier functions are not
uniquely defined �since uk�i

�r�� is defined up to an arbitrary
phase� and an important effort has been done in the literature
�in the context of ab initio electronic structure calculation
mostly� to define the maximally localized Wannier functions.
The fundamental result for us is31,32 that at U*=UC

* , F�r��
cannot decrease faster than algebrically with r� and is hence
a delocalized function over the sample. This is in sharp con-
trast with the crystal GWF for which the �i�r�� are strongly
localized around the classical positions u� i of the crystal. For
U*
UC

* , the lowest band becomes narrower, and an expo-
nentially localized Wannier function F�r���e−hr can be con-
structed. However, the point of interest for us is U*�UC

* ,
where the drop in energy occurs. In the rest of this paper, we
will stick to this value �i.e., U* is set to a value just above the
point where the splitting of the bands occurs� where the
Wannier functions are delocalized and hence completely dif-
ferent from the crystal GWF at a qualitative level. The Ja-
strow function for the hybrid GWF is taken to be the same as
the liquid one �We checked that taking the crystal Jastrow or
optimizing the Jastrow parameter A especially for the hybrid
GWF did not affect the results�.

V. CHARACTERIZATION OF THE HYBRID PHASE

As we have seen in the Introduction �as shown in the
lower panel of Fig. 1�, the hybrid GWF provides the lowest

energy for a rather large domain of rs. Having established
that, we now try to understand the physical origin of this
success and the nature of the corresponding phase. From the
construction of the hybrid GWF �a Slater determinant made
of a delocalized Wannier function�, we expect �at the varia-
tional level� something somewhere between the crystal �it
has its triangular symmetry� and the liquid �it is made of
delocalized one-body functions�. While the crystal aspect is
straightforward, the characterization of the liquid aspect is a
difficult task within the FN-QMC. Indeed, the FN-QMC
method mainly provides access to quantities �like ��r�� or
g�r��� which are diagonal in the real space representation, and
hence not very likely to characterize the liquid behavior.

In Ref. 24, we studied some physical quantities for the
three GWF with the implicit idea that these quantities would
characterize the phase associated with each GWF. Here we
follow a different approach. Following the insight we ob-
tained in Sec. III on a small system, we study how the physi-
cal quantities evolve between the variational value OVAR
= ��G
O
�G	 and the FN results OFN= ��0

FN
O
�0
FN	, as this

gives the general trend toward the true ground state of the
system. The different GWFs capture different physics, which
can be either amplified or washed out by the FN projection
procedure, giving hints on the true nature of the ground state.

In the right panel of Fig. 8 we plot the kinetic and inter-
action energies as a function of rs. The variational values of
the hybrid GWF are in the middle of those obtained with the
liquid and crystal GWF. Upon applying the FN projector
e−HFN

on the hybrid �and crystal� GWF, the value of the
kinetic energy decreases and converges to a value rather
close to the variational kinetic energy of the liquid. It is
important to note that these differences in �kinetic or inter-
action� energy are about 5 to 10 times bigger than the differ-
ences observed on the total energy. This decrease of the ki-
netic energy to an almost liquid value is a strong sign of the
delocalized nature of the ground state. As rs increased, how-
ever, this tendency also diminishes. This delocalization can
also be seen indirectly on the electronic density ��r��. An
example of ��r�� is shown in the upper panel of Fig. 9. At first
sight the density looks crystal-like �strong peaks forming a
triangular lattice�. However, the height of the peaks ��max as
shown in the lower left panel of Fig. 8� and the depth of the
valleys ��min as shown in the upper left panel of Fig. 8� show
not only that these peaks are not very pronounced �at rs
=32, the density at the peaks is only twice the average den-
sity while the “background” contains �min�35% of the elec-
trons� but also that the contrast tends to diminish from the
variational to the FN estimate �especially for the crystal
GWF�. Similar conclusions can be drawn from the density-
density correlation function g�r�� �a three-dimensional plot is
shown in Fig. 9. Figure 10 gives a cross section.� For rs
=35 �the upper panel of Fig. 10� the peaks of both the hybrid
and crystal results tend to be washed out after the FN pro-
jection. At rs=60, however �lower panel of Fig. 10� the ten-
dency is inversed and the hybrid result tends to get more
localized when going from variational to the FN results �the
same thing can be seen on �max, see the lower left panel of
Fig. 8�.

All the physical quantities discussed above indicate the
same tendency: at the variational level the hybrid GWF lies

FIG. 7. �Color online� Upper panel: the lowest energy levels �i

of the fictitious one-body problem Heff as a function of the varia-
tional parameter U* for a system of 72 particles in 96�168 sites.
The 72 first energies �“one full band” at large U*� are shown as
triangles while the higher values of �i are shown as squares. The
dashed lines correspond to the 72th and 73th values of �i. They
indicate the critical value Uc

*�0.12, where the band of lowest en-
ergy splits from the rest of the fictitious spectrum. Lower panel: the
variational energy as a function of U* for 2P2 particles in
16P�28P sites at rs=40 with A=4.5. P=3 �empty diamonds�,
P=4 �empty squares�, P=5 �full circles�, and P=6 �full diamonds�.
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somewhere between the liquid and the crystal results, and the
FN results get even closer to the liquid for not too large rs
�roughly rs�60�. At a basic level, the raw reason why the
hybrid GWF allows one to gain energy with respect to �the
previously used�, crystal GWF is therefore quite simple;
electrons in the crystal GWF are far too localized, and the
hybrid GWF helps to restore a better balance between kinetic
and electrostatic energy.

VI. TECHNICAL ASPECTS

In this section, we address various technical points. We
start with some reference values of the energy that can be
compared directly with the literature. We proceed with study-
ing the thermodynamic �N→�� and continuum �	→0�
limit. Then, we determine precisely the critical value rs

*

�31.5±0.5 at which the transition between the liquid and
the hybrid phase takes place. After discussing the status of
the mixed estimators, we end the section with showing that
in addition to a upper bound to the energy, a lower bound can
also be extracted from the FN-QMC datas.

Comparison with the literature. We start with a discussion
of an �almost� square system of 56 particles in
210�208 sites. This system is close to systems previously

FIG. 8. �Color online� Evolution from variational to FN results
for various physical quantities. �min�rs�=minr� ��r�� �upper left
panel�, �max�rs�=maxr� ��r�� �lower left panel�, Ec�rs� �upper right
panel�, and Eint�rs� �lower right panel, the Madelung energy −c1rs /2
has been substracted� for a system of 56 electrons in 56�56 sites.
The average was done on 5�105 walkers. The empty symbols
show the variational results while the full symbols show the FN
walking estimates at =16 for the hybrid �diamonds�, crystal
�square�, and liquid �circles� GWF. The arrows indicate the evolu-
tion from the variational to the FN estimate. �min and �max are
measured in a percentage of the average density.

FIG. 9. �Color online� Density ��r�� �upper panel� and density-
density correlations g�r�� �lower panel� at rs=35 for 56 electrons in
56�56 for the hybrid GWF as a function of r�= �x ,y�. The density is
plotted in percentage of the average density. Its minimum �maxi-
mum� correspond to 35% �230%� of the average density.

FIG. 10. �Color online� Cross section of g�r�� with r�= �x ,0� as a
function of x for 56 electrons in 56�56. The empty �full� symbols
are the variational �FN� results, respectively, for the hybrid �circles�,
crystal �diamonds�, and liquid �squares� GWF. The upper �lower�
panel corresponds to rs=35 �rs=60�. The arrows indicate the direc-
tion of the evolution from the variational to the FN estimate while
at rs=35 both the crystal and hybrid GWF tends to get delocalized,
at rs=60, the peaks of the hybrid GWF get more pronounced after
the FN projection.
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studied in the literature, and can hence serve as a reference.
The absolute values of the FN energies are given in Table I
together with the results of Refs. 3,6. The same data �without
Ref. 3� are represented in Fig. 11, where we plotted the zero-
point motion energy 2�EFN−c1rs /2� /rs

1/2 �which converges
toward c1/2 at rs
1� as a function of rs. We find a good
agreement with the more recent data of Ref. 6 while the
original data of Ref. 3 are about �0.015 higher �Ref. 3 and
Ref. 6 used the same numerical code in their calculations�.
The observed small differences can be due to the following
systematic errors: �i� too small �sat. Here we averaged
the results over 50��100 and some more energy �0.003�
can probably be gained by using higher values of . Increas-
ing  not only involves more computing time, but also using
more walkers to keep the exponential increase of the vari-
ance under control. �ii� Small residual effect of the lattice
�see Fig. 14 below�, �iii� shell effects �Refs. 3 and 6 used 57
particles �complete shell� for the liquid while we used the
same N=56 system for all three phases. This effect can ac-
count for a difference of energy of �0.004 at rs=40, see Fig.

12 below�, and �iv� a finite number of walkers.
Thermodynamic (N→�) limit. In Fig. 12 we examine the

finite N effect for the liquid GWF. Those can be already be
understood by looking at the finite N corrections to the en-
ergy at rs=0 �see Fig. 13 upper left panel�; one finds that the
�exact� kinetic energy Ec�rs=0,N�=1+�Ec�N� strongly os-
cillates with N for small values of N before saturating toward
1. These oscillations correspond to the filling of the various
shells of equal energies. Hence, following Ref. 3, we fit the
N dependence of the liquid energy with the form,

E�N� = E� + Ec�rs��Ec�N� − A�rs�/N . �17�

However, contrary to Ref. 3, we do not let the coefficient
Ec�rs� be a fitting parameter but rather fix it to the calculated
kinetic energy �for a given value of N, the finite N correc-
tions to Ec�rs� are irrelevant at the precision of the calcula-

TABLE I. Selected values of energy for the three GWF as well as values from the literature for comparison. The energies have been
averaged over 50/ t��100/ t and calculated with an average of 25 000 walkers. The statistical error is of the order of 1 in the last digit
for our data and is indicated in parentheses for the results of the literature. The parameter A has been optimized at the variational level and
is very well fitted by A�0.59rs

0.57 for the liquid and a little lower for the crystal while the liquid values have been used for the hybrid GWF.
U*=0.005 which corresponds to the splitting of the lowest band. The parameter d0 has also been optimized at the variational level and to a
very good approximation d0 /a��10/rs�1/4.

GWF N Lx�Ly rs=20 rs=30 rs=35 rs=40 rs=50 rs=60 rs=70 rs=75

Liquid 56 210�208 −18.499 −28.744 −33.906 −39.097 −49.532 −60.017

Crystal 56 210�208 −28.728 −33.904 −39.104 −49.558 −60.074 −70.634

Hybrid 56 210�208 U*=0.005 −28.734 −33.911 −39.113 −49.563 −60.080 −70.640

Liquid 57 Continuum Ref. 3 −28.722�4� −39.073�2� −75.788�8�
Crystal 56 Continuum Ref. 3 −28.700�2� −39.090�4� −49.526�4� −75.904�3�
Liquid 57 Continuum Ref. 6 −28.734�2� −39.092�3� −75.825�3�
Crystal 56 Continuum Ref. 6 −28.730�2� −39.102�2� −49.558�3� −75.918�3�

FIG. 11. Comparison with the results of the literature for a sys-
tem of 56 electrons in 210�208 sites. The plot shows the rescaled
energy 2�EFN−c1rs /2� /rs

1/2 which converges toward the zero point
motion c1/2 correction to the energy at high rs. The symbols corre-
spond to our calculation with the liquid GWF �full circles�, solid
GWF �full squares�, hybrid GWF �stars�, and to the calculation of
Ref. 6 for the liquid �empty circles, 57 particles� and solid �empty
squares�.

FIG. 12. Finite N effect on the fixed-node energy with the liquid
GWF at rs=40. Energy averaged over 25/ t��50/ t as a function
of the number N of particles with A=4.5 for a system of N=2P2

particles in 16P�28P sites �P=2¯9 diamonds�. The fit �solid
line� corresponds to E=−39.088+Ec

50�rs=40��Ec�N�−1.75/N,
where Ec

50�rs=40�=2.5 is the �fixed-node� kinetic energy for 50
particles and �Ec�N� is the exact finite size correction to the kinetic
energy computed at rs=0. Inset: the oscillatory correction Ec

50�rs

=40��Ec�N� has been subtracted from the energy which is plotted
as a function of 1/N. The solid line is a linear fit to the data E=
−39.088−1.75/N.
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tions�. Hence, we plot in the inset of Fig. 12 the liquid en-
ergy to which the Ec�rs��Ec�N� correction has been
substracted, and find a very good agreement with a 1/N re-
sidual error. The quality of the overall �two parameters� fit
can be found in Fig. 12 for up to 162 particles. In the lowest
left panel of Fig. 13, we have plotted the difference between
the FN and the variational energy as a function of 1/N
�circles for the liquid�. We find that this difference presents
some finite N effect about as strong as those of the FN en-
ergy alone �here EFN�−39.088+2.5�Ec�N�−1.75/N while
EVAR−EFN�0.143+0.8�Ec�N�+1.3/N�. The difference be-
tween the finite N behavior of the variational and FN result is
not very surprising since for those intermediate values of rs
�here rs=40�, the difference EVAR−EFN is about 10 times
larger than those effects. The same conclusion also holds for
the hybrid �diamond� and crystal �squares� GWF.

The finite N behavior of the crystal and hybrid results are
much simpler. They do not present the same oscillatory be-
havior but rather converge smoothly toward the N
1 value
�as shown in the upper right panel of Fig. 13�. A good fit is
obtained by plotting the FN energies as a function of 1/N3/2

�which is the expected finite effect for the crystal at large rs�.
We find that the difference between the crystal and hybrid
slightly increases as N gets bigger. �The respective fits are
EFN=−39.108−10.1/N3/2 for the crystal GWF and EFN
=−39.116−7.8/N3/2 for the hybrid.� We repeated the same
procedure at rs=50 �up to 98 particles only� and arrive at a
similar result �EFN=−49.56−13.8/N3/2 for the crystal GWF
and EFN=−49.567−12.2/N3/2 for the hybrid.�

Continuum (	→0) limit. The presence of the underlying
lattice can induce a correction to the continuum result. This
effect is a small correction however, and should not be

mixed-up with the much larger effects that can take place33,34

at much higher values of rs. In addition, contrary to the finite
N effect which one would like to avoid �since we make use
of Ewald resummation, we do not look at mesoscopic
samples in this study�, there is an underlying lattice in real
�semiconductor based� samples. In the lower panel of Fig.
14, we plot the energy as a function of the inverse of the
surface of the sample for a fixed number of particles. We find
indeed a 1/ �LxLy� correction to the energy. However, �the
upper panel in Fig. 14�, this correction is almost GWF inde-
pendent so that the relative stability of the phases is unaf-
fected by the lattice for the 	=1/224 and 	=1/780 samples.
For the latter, the correction is almost negligible and we have
a quantitative good agreement with the continuum model for
the absolute values of the energy �see Fig. 11�.

Critical value of rs. We now determine precisely the criti-
cal value rs

* at which the liquid-hybrid transition takes place
�Fig. 15�. In the left panel of Fig. 15, we plot the energy of
the hybrid and liquid phases as a function of rs for various
�rather small� values of . For each of them we extract the
crossing point rs

*�� which is plotted in the upper right panel
of Fig. 15. We find that rs

*�� saturates for rather small values
of �2/ t indicating that the gain in energy obtained by
increasing  further �sat�25/ t for this system� is almost
GWF independent. The obtained rs

* is plotted in the lower
part of the right panel as a function of the number of particles
for several filling factors. At large N, rs

* converges toward
rs

*=31.5±0.5.
Variational, mixed, and fixed-node estimates. For a given

observable O, three different estimates can be constructed.
The variational OVAR= ��G
O
�G	 and the fixed-node
�forward walking� estimates OFN= ��0

FN
O
�0
FN	

= ��G
e−HFN/2Oe−HFN/2
�G	 have been used throughout this
paper. An intermediate one, the mixed estimate OMX

= ��G
O
�0
FN	= ��G
Oe−HFN
�G	 is easy to compute and

hence very common in QMC calculations. For most applica-

FIG. 13. The finite N effect in a system of N=2P2 particles in
16P�28P sites. Upper left panel, exact finite size correction
�Ec�N� to the liquid kinetic energy at rs=0. This curve is used to
remove the oscillatory dependance of the liquid energy due to the
shell structure. Lower left panel, difference between the variational
and fixed-node energy EVAR–EFN as a function of 1/N for the liq-
uid �circle, A=4.5�, hybrid �diamonds, U*=0.12, A=4.5�, and crys-
tal �square, d0 /a=0.74, A=4�. The linear fits �solid lines� are, re-
spectively, y=0.143+1.3/N, y=0.13+1.3/N, and y=0.075+1.3/N.
A better fit is obtained for the liquid using �dashed line� y=0.143
+1.3/N+0.8�Ec�N�. Right panels, FN energy for the crystal
�squares� and hybrid �diamonds, U*=0.12� as a function of N �up-
per right panel� and 1/N3/2 �lower right panel�. The fits �solid lines�
are, respectively, y=−39.108−10.1/N3/2 and y=−39.116−7.8/N3/2.

FIG. 14. The effect of dilution on the fixed-node energy for a
system of 30 particles in 40P�42P sites �P=1, 2, 3, and 4� at rs

=35. Lower panel, the energy of the liquid GWF �circles� and solid
GWF �squares, d0=0.82� as a function of the inverse volume
1/ �LxLy�. The lines serve as a guide to the eye. Upper panel, the
difference of energy between the liquid and the solid GWF as a
function of 1/ �LxLy�.
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tions, 
�G	 is a reasonable approximation of the ground state

�0

FN	 so that the mixed results OMX can be extrapolated
toward the FN result using the �first-order correction� for-
mula OFN�2OMX−OVAR. The mixed estimate is much
easier to obtain than the FN estimate, since the latter requires
one to apply e−HFN/2 after the measurement has been made,
and the deaths and births involved in the reconfiguration pro-
cess considerably decrease the statistics. However, in the
range of rs studied in this paper, we find important differ-
ences between the different estimates so that it is necessary
to use the FN estimates. To illustrate this point, we plot in
Fig. 16 OFN�� �left panels� and OMX�� �right panels� for
the kinetic energy Ec �upper panels, Ec�1 at rs=0� and the
interaction energy Eint �lower panels�. For the case consid-
ered in Fig. 16, the mixed estimate is a very poor estimate of
the true �FN� estimate. Indeed, we have Ec

VAR�2.01,
Ec

MX�=8��1.97, and Ec
FN�=8��2.01 so that the interpo-

lation from the mixed estimate would be very bad.
Lower bound to the total energy. The evolution of the

kinetic and interaction energy with  can be put to further
use; we find that Ec

liq���Ec
hyb���Ec

cry�� while Eint
cry��

�Eint
hyb���Eint

liq�� �consistent with the interpretation that
the hybrid phase is intermediate between the liquid and the
crystal�. As both Ec

liq�� and Eint
cry�� increases with , �and

since by construction the liquid and crystal GWF favor, re-
spectively, the kinetic and interaction energy�, we conjecture
that they form true lower bounds of the kinetic and interac-
tion energies of the true ground state of the system. Hence, in
addition to an upper bound of the total energy, we can also
construct a lower bound,

Ec
liq + Eint

cry � E0 � EFN
hyb, �18�

which for the case of Fig. 16 gives −23.73�E0�−23.67
with a precision of 0.3%. This lower bound is of interest to
us, as it allows one to estimate that the gain in energy pro-
vided by the hybrid GWF �with respect to the crystal and
liquid one� is a significant fraction of the distance to the
lower bond.

VII. DISCUSSION

We conclude this paper with a discussion of several topics
linked with the present study. Indeed, once we have estab-
lished that for intermediate rs, the system behaves neither as
liquid nor as crystal, the need to discriminate between the
various possible candidates for the intermediate phase re-
mains. Below follows a short discussion of some of those
proposals. To go beyond and establish, for instance, the pres-
ence or the absence of orientational and translational order,
one would need a finite-size study of the correlations func-
tions and one way or another to release the fixed-node con-
straint. These much needed extensions should be the subject
of future works.

Spin of the electrons. We restricted the present study to
fully spin-polarized electrons. Indeed, as the interaction en-
ergy gets bigger, the system can minimize its interaction en-
ergy by antisymmetrizing the orbital part of its wave func-
tion, and it was found �for instance in Refs. 6 and 7� that
above rs�20 �which is the range of our study� the polarized
liquid is more stable than the unpolarized one. A strong in-
plane magnetic field would also polarize the system at a
smaller value of rs.

Multiple exchange. At high rs when the crystal is well
established, a multiple exchange �of two, three, or more par-
ticles� can take place,35 leading to an effective interaction
between the electronic spins. Recently these exchange inter-
actions were estimated using the �finite temperature� path
integral QMC technique.10,36 The authors proposed that the
melting of the crystal is actually due to a divergence of a
multispin exchange. In those calculations, some sort of FN
approximation was used below rs�60 to stabilize the crys-
tal. Summing up the exchange energies calculated in,10 we
find �in our unit� Eex�0.001 at rs=50 �where the calculation
is most robust�. This energy is relatively small and cannot
account for the difference observed between the hybrid and
crystal GWF results. The difference between these path inte-

FIG. 15. Determination of the critical value rs
*. Left panel, en-

ergy of the liquid �full symbols� and hybrid �empty symbols� as a
function of rs for =0, 1 , 2 , 3, and 5/ t �top to bottom� with their
corresponding linear fits. The system contains 128 electrons in
128�224 sites and −c1rs /2+c1/2rs

1/2 /2 has been substracted to the
energy. Upper right panel, resulting rs

* �crossing points of the left
panel� as a function of . Lower right panel rs

* �at →�� as a
function of N for a filling factor of 	=1/56 �empty circles�, 	
=1/224 �full squares�, and 	=1/780 �empty diamonds�.

FIG. 16. A comparison of the different estimates of the kinetic
and interaction energies for a system of 30 particles in 40�42 sites
at rs=25. Left panels, FN estimate for the liquid �diamonds�, crystal
�squares�, and hybrid �circles� GWF. Right panels, mixed estimate
for the liquid phase. Upper panels: the kinetic energy Ec��. Lower
panels: the interaction energy Eint��.
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gral calculations and those presented in this paper lies in the
FN approximation �the one used in Ref. 10 seems to stabilize
a well-localized crystal� and the use of a rather large tem-
perature T�0.08 �which is roughly three times bigger than
the energy difference between the crystal and the liquid at
rs=50 and 100 times bigger than the calculated exchange
energies�.

Hexatic and supersolid phase. Among the proposed inter-
mediate phases is the presence of a hexatic quantum phase in
between the liquid and the crystal.15,16 Such a phase would
have orientational order, but no translational order. The hy-
brid GWF is made of Bloch waves that have, by construc-
tion, a hexagonal Fermi surface �one full band corresponds
to the momentum in the first Brillouin zone of the triangular
crystal�. However, we have also explicitly broken the trans-
lational symmetry so that, at the variational level, the hybrid
GWF certainly does not correspond to a hexatic phase. Upon
applying the FN projection operator, the translational sym-
metry tends to be restored �see the left panels of Fig. 8, for
instance� so that the present calculations cannot rule out the
possibility of a quantum hexatic phase. Another proposition
is the presence of a supersolid phase,20–22 i.e., the quantum
coexistence of a liquid �of delocalized defects for instance�
with the crystal. Qualitatively, the hybrid phase is in agree-
ment with the idea of the supersolid phase as discussed in
Ref. 37. In the supersolid phase described in Ref. 19 how-
ever, one expects the number of electrons in the crystal to be
smaller than the total number of electrons. We tried to con-
struct such a GWF without success.

Bubbles and stripes. Around the melting point of a clas-
sical liquid-solid phase transition, the system gains some en-
ergy by being in a coexistence of the two phases. In the
present system such a macroscopic phase separation is not
possible since it would lead to a macroscopic dipole. Spivak
and Kivelson recently proposed that a series of microemul-
sion phases �bubbles/stripes of solid/liquid in the liquid/
solid� can however, take place.17,18 If they exist, these micro-
emulsions take place between the two values of densities ns
and nl �in electrons per bohr radius squared� that come out of
the Maxwell construction, �nEsol�ns�=�nEliq�nl�= �Eliq�nl�
−Esol�ns�� / �nl−ns� �energies in Rydberg�. Solving for ns and
nl using the FN energies, we find that the �maximum� range
of rs, where these microemulsions could occur is 
rs−rs

*

��rs with �rs�0.04 �rs

* is the transition point. To a good
approximation, �rs�rs

*� /c1, where the change of slope �
�0.003, defined as Eliq�Esol+��rs−rs

*� around the transi-
tion can be extracted from Fig. 1 or Fig. 15�. The argument
was originally developed for the liquid/crystal transition but
holds equally well for the liquid/hybrid transition described
in this paper �a direct liquid/crystal transition would lead to
�rs�0.06�. The maximum gain of energy given by the Max-
well construction �which uses the energies calculated for
neutral phases, hence only a fraction of this energy can pos-
sibly be gained by microemulsions� is �E�2�2 / �c1rs

*�
�0.2 �Ry ��10−4 in our units�.

Metal insulator transition. About 10 years ago, an interest
in two-dimensional systems arose from the work of
Kravchenko et al.38 who reported on an unexpected metal-
insulator transition. It was followed by an important body of

literature but the origin of this transition is still under
debate.39–41 The problem involves understanding the role of
disorder in the system and lies outside the scope of this pa-
per. Indeed the effect of disorder is a complicated issue and
depends not only on the strength of the disorder but also on
the typical length scale on which the potential varies. For
instance, the component of the disorder varying on the scale
of the interelectron distance is likely to pin and stabilize a
crystal �or glassy� phase. A disordered potential varying on a
larger length scale however, will favor fluctuations of the
density and hence phase separation. In actual samples, long
length scale fluctuations have been observed using local
compressibility measurements.42

A natural question for us is whether puddles of hybrid/
crystal phase are actually present in the experiments. As the
mobility of the two-dimensional systems improved in the
past years, so had the critical value of rs, where the transition
is observed. In whole GaAs devices it goes from �Refs. 42
and 43� rs=20–25 to �Refs. 44 and 45� rs�55–60 in the
cleanest samples, i.e., well above rs

*=31.5. At rs=60, the
difference of energy between the liquid and the crystal phase
is roughly 0.03 mRy per particle �see the lower panel of Fig.
1� so that the melting temperature of the crystal should be
slightly larger �the crystal should be stabilized by its spin
entropy through the Pomeranchuk effect20� which translates
into temperatures of a few tens of mK. Those temperatures
are therefore within the possibilities of a good dilution fridge
though slightly below the temperatures that are usually stud-
ied.

Conclusion: How liquid is the hybrid phase? To summa-
rize the main message of this paper, we find that in these
intermediate regions of densities, where little of the physics
is known, the fixed-node quantum Monte Carlo technique
should be viewed as a probe. The freedom in the choice of
the GWF allows one to start with a GWF that captures some
sort of physics �as seen in the variational calculation� and the
evolution of the various �not only the energy� physical quan-
tities upon applying the fixed-node projection operator giv-
ing us insights on the physics of the true ground state. In
short, one introduces physics in a GWF and sees whether this
physics is stabilized or washed out by the FN-QMC algo-
rithm.

With this paradigm in mind, we followed the evolution
�from variational to FN� of the physical quantities available
within our algorithm. For 31.5�rs�60, we found that all
show the same tendency to delocalization. The success of the
hybrid GWF, with respect to the crystal one, is associated to
its �much more� delocalized nature that allow a better bal-
ance between kinetic and electrostatic energy. The success of
the hybrid GWF with respect to the liquid one, however, is
associated to the change in symmetry as the hybrid GWF is
constructed out of delocalized waves. We conclude that
while the nature of the ground state above rs

*=31.5 might
still not be fully elucidated, the fact that it is not a liquid, yet
not a localized crystal is now put on very firm ground. At
large rs the system eventually gets localized. At the present
we cannot say whether this occurs through a crossover or a
second transition.
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