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We use a computational method based on the discrete-dipole approximation �DDA� to calculate the gradient
and nongradient contributions to optical forces on nanometer sized silver particles in water. We find that, due
to a contribution that is usually neglected, nongradient forces are often non-negligible. This result is not a
consequence of an approach to the dipole limit. We suggest that this method could provide useful input for a
more detailed understanding of the physics relevant to optical trapping and binding phenomena.
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I. INTRODUCTION

Exploitation of optical forces to trap and manipulate me-
soscopic matter has taken many forms. Experiments have
successfully demonstrated the potential to provide an impres-
sive level of noninvasive control with applications to, among
other areas, nanofabrication,1,2 biomolecular mechanics,3 and
microfluidics-based biological assay technology.4 Proposed
applications seem to be equally numerous and include opti-
cal force microscopy5 and spectroscopy,6 single molecule
Raman spectroscopy,7,8 and nanoparticle organization.9

Theoretical approaches to these phenomena have often
focused on the importance of the gradient force as the domi-
nant contribution to the total force.7,10–12 In the following, we
use a numerical method to compute explicitly the gradient
and nongradient contributions to the total optically induced
force on uncharged metallic particles in an external field. We
find that, due to a contribution that is typically neglected,
nongradient forces are often comparable to the gradient con-
tribution. The results discussed in Ref. 17 show that this is
not a consequence of an approach to the dipole limit for
small particles. This suggests the need for a more thorough
examination of the basic physics relevant to optical trapping
and its many applications.

II. THEORY AND NUMERICAL APPROACH

The time-averaged force on a dipole in a harmonic elec-
tromagnetic field �neglecting a term due to the particle
motion13� can be written as,

�F� =
1

4
Re�����E�2 +

k

2
Im���Re�E* � B�

+
1

2
Im���Im��E* · ��E� . �1�

A derivation is given elsewhere.14 It is assumed for conve-
nience that the complex polarizability � is a scalar and k
=� /c. A nearly identical expression has appeared in the lit-
erature recently.15,16 The first term is the gradient force. The
second term is the dissipative radiation-pressure force. The
last term is not explicitly named in the literature. It is worth

noting that, in the scenario depicted in Fig. 1�b�, the gradient
force acting on one of the particles is not conservative in the
event that the other particle is permitted to move. The work
done by the gradient force on a particle undergoing closed-
loop motion does not necessarily vanish if the other particle
is also in motion. Therefore, the interaction is not describable
by a scalar potential, even if the gradient contribution is
much larger than the others. In a single particle experiment,
or in the event that one of the particles is fixed �e.g., a sta-
tionary scanning probe tip�, the gradient force on the moving

FIG. 1. Illustration of the use of Eq. �1� to compute total forces
on particles. Forces on individual dipoles depicted in �a� are
summed to give the resultant forces on each sphere shown in �b�.
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particle is conservative, and Eq. �1� does provide a decom-
position of the force into its conservative and nonconserva-
tive contributions. The applicability of a scalar potential in
the case of nanoscale particles is often justified by appealing
to a size scaling argument.10–12 The size scaling of each of
the contributions in Eq. �1� is explored elsewhere.17

We now turn our attention to three previously published
expressions for the total optical force on a dipole in an elec-
tromagnetic field.15,16,18,19 The main reason for doing this is
to show that our method provides a unified framework for
studying gradient and nongradient contributions to the total
force. To this end, we show that the three formulations are
equivalent. We begin with an expression for the negative
gradient of the classical dipole-field interaction
Hamiltonian,18,20

�F� =
1

2�
i

ei�
j

Re	�E j
 �E j

�xi
�*� . �2�

Here, i and j indicate the Cartesian components or coordi-
nates �ei are Cartesian unit vectors�. Equation �2� has been
used as the basis for numerical studies of optical trapping by
evanescent waves at the surface of a refractive medium,21

optical binding of dielectric and absorbing spheres in an ex-
ternal field,12 and photonic force spectroscopy.6 As suggested
in Ref. 18, Eq. �2� may be rewritten as
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Using
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we finally arrive at

�F� =
1
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ei Re���
�

�xi
�E�2 +
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 �E

�xi
�� .

�6�

This expression has been published previously.18 The first
term is the gradient force, and the second is the scattering
force. We can show that the second and third terms in Eq. �1�
sum to give the scattering force. Using Faraday’s law and the
harmonic time dependence of the fields to recast the
radiation-pressure term, we have

k

2
Im��� Re�E* � B� =

Im���
2

Im�E* � � � E� . �7�

Summing this with the third term in Eq. �1� gives,

Frad−press + F�E*·��E =
Im���

2
Im��E* � � � E� + �E* · ��E� .

�8�

An elementary vector identity22 shows that

E* � � � E + �E* · ��E = �
i

ei
E* ·
�E

�xi
� . �9�

Combining Eqs. �8� and �9� gives

Frad−press + F�E*·��E =
Im���

2 �
i

ei Im
E* ·
�E

�xi
� . �10�

Comparing Eq. �10� with Eq. �6�, we see that the scattering
force can be decomposed into the sum of the radiation-
pressure term and the unnamed third term in Eq. �1�. Equa-
tions �1�, �2�, and �6� are equivalent expressions for the
force, so Eq. �1� provides a unified framework for analyzing
the nongradient components, which are usually dealt with by
other means, as mentioned earlier. In Ref. 15, a decomposi-
tion of the force on a nanoparticle �treated as a point dipole�
under nonplane wave illumination was performed. Reference
17 discusses some ramifications choosing a point dipole de-
scription of a mesoscopic particle.

To evaluate all three terms in Eq. �1�, self-consistent op-
tical scattering equations are solved in the discrete-dipole
approximation �DDA�23 using a publicly available code.24

Then, using a fast Fourier transform-based scheme, each
term is explicitly computed for every dipole used to repre-
sent the target particles.14 The approach is based on a previ-
ously developed method for computing the total force on
individual dipoles in a DDA calculation.25 The forces are
then summed over the set of dipoles comprising different
particles to find the net forces on each particle. Figure 1
illustrates the procedure. In Fig. 1�a�, the force on each di-
pole in the large sphere can be summed to approximate the
total force on the entire sphere, and the same can be done for
the small sphere. The resultant forces are depicted in Fig.
1�b�. In the case studies below, the targets are composed of
two silver particles immersed in water, and plane wave ex-
citation is assumed. The effect of water on the optical re-
sponse is accounted for using a modified dielectric constant
for the particle.24 The larger particle is roughly 100 times the
volume of the smaller particle. We chose to model a size
asymmetric target because this is the situation typically en-
countered in experiments demonstrating photoinduced for-
mation of silver nanoprisms.26–28 Damping and broadening,
known to occur in small particles due to surface scattering29

and nonlocal dielectric effects,30 are neglected. Local field
corrections31–33 are also ignored since the main objective is
to determine the relative sizes of the three terms in Eq. �1�
under different conditions. The computations on larger par-
ticles than those considered below yielded comparable re-
sults.

III. RESULTS AND DISCUSSION

A naïve appeal to Eq. �1� suggests that the gradient force
could dominate at wavelengths where Re���� Im���. How-
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ever, inspection of the force spectra for particles represented
by many dipoles reveals a more complicated relationship
among the three terms in Eq. �1�. The relative contributions
of the three terms depend on target geometry �e.g., particle
shape, relative position, and orientation� as well as external
field parameters �e.g., wavelength, incident direction, and
polarization�. Also, whereas absorption and scattering spec-
tra �not shown� were found to be quite insensitive to varia-
tions in some of these parameters �e.g., relative orientation of
particles, interparticle distance�, net forces and their contri-
butions displayed a nontrivial dependence on them.

Fig. 2 shows the results of force calculations on a two-
sphere target. The target-field geometry is shown in Fig. 2�a�.
Figure 2�b� shows contributions to the total force on the large

and small spheres. Evidently, the �E* ·��E force is compa-
rable to the gradient force over nearly the entire spectrum,
and for all intersphere separations examined. The radiation-
pressure contribution is negligible as argued elsewhere.7,10–12

The two non-negligible terms generally have opposite signs.
The net force is thereby determined by the approximate can-
cellation of two terms whose sizes are greater than the size of
the resultant force. We found this to be a surprisingly com-
mon, though not universal, feature of the force spectra, espe-
cially for spheres. Qualitative differences in the appearance
of the force spectra can occur as a function of distance; note
the sign changes in the gradient and �E* ·��E terms for the
large sphere �d=10.3 nm�. While the total forces along E on
the two spheres are equal and opposite, the gradient and
�E* ·��E forces are larger for the small sphere at small sepa-
rations. The situation is reversed at large separations so the
distance decay of these two terms is more rapid for the small
sphere than for the large sphere. The distance-dependence of
forces is not examined here in detail. However, the
asymptotic decay of the total force has been predicted to be
�d−4, as would be expected from a dipole-dipole
interaction.9 In this geometry, the total forces on the two
spheres result in an attractive interaction.

Figure 3 shows results for a large prolate ellipsoid �major
to minor axis ratio, R=3.2� and a small sphere with the ge-
ometry as in Fig. 3�a�. As in the previous example, gradient
and �E* ·��E contributions are opposite in sign over almost
the entire spectrum, for both prolate and sphere, and for all
interparticle distances considered. For the prolate, they are
usually of roughly equal magnitude. By contrast, for the
sphere, the gradient term dominates to the red of the long
wavelength resonance. The radiation-pressure component is
negligible. Again, qualitative differences in the gradient and
�E* ·��E force spectra occur as a function of the particle
separation. At the shortest distance, neither contribution to
the force on the prolate undergoes a sign change as a func-
tion of wavelength. As the interparticle separation increases,
multiple crossovers in both occur. Long wavelength extrema
decay more rapidly than short wavelength extrema with dis-
tance. The total force spectrum appearance changes far less
than its contributions. For the sphere, one sign inversion oc-
curs for the gradient and �E* ·��E contributions. As for the
prolate, long wavelength extrema decay more rapidly than
the short wavelength extrema. In contrast to the two sphere
case, the net interaction is weakly repulsive at short wave-
lengths. Notice that the long wavelength tails of the gradient
and net forces are attractive. This appears to be a generic
feature when the field is parallel to the interparticle axis. By
contrast, when the field is normal to this axis, the long wave-
length tail is repulsive, though an attractive interaction may
still appear at a resonance �see Fig. 4�. The distance depen-
dence of the gradient and �E* ·��E terms is much closer to
being the same for the prolate and sphere than was the case
for the two spheres.

The same prolate and sphere are considered in Fig. 4, but
with a different orientation than in Fig. 3. We note that op-
tical spectra �not shown� for this configuration are nearly

FIG. 2. �Color� Total force and contributions for a two sphere
target. The spheres have radii of A=5 nm and a=1.08 nm. �a� The
target and field geometry with key for �b�. �b� Decomposition of
forces along E for both spheres as a function of wavelength and
distance. Forces on the large sphere have been multiplied by M
=1,2 ,5 at d=10.3, 18.9, and 27.4 nm, respectively. Small sphere
multiplication factors are m=1,10,25.
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indistinguishable from those corresponding to Fig. 3. Far
field properties are dominated by the prolate, which is 100
times larger than the sphere. However, there are clear differ-
ences in the force spectra. Total force peaks for this geometry
are blue-shifted from Fig. 3, as well as being far weaker. As
alluded to earlier, while there is an attractive resonance, the
long wavelength tail is repulsive. The distance dependence is
far weaker in this case, which is due in part to the much
larger edge-to-edge distance despite having an equal center-
of-mass to center-of-mass distance. In contrast to the previ-
ous example, for the prolate, the distance-dependent decay of
the short wavelength resonance in gradient and �E* ·��E
contributions is similar to that of the long wavelength reso-
nance. Gradient and �E* ·��E terms also undergo a similar
distance decay, leading to relatively invariant total-force
spectra. For wavelengths to the red of 500 nm, the gradient
contribution is substantially larger than the �E* ·��E term for

both the prolate and sphere. Additional results with oblate
and sphere geometries �not shown� suggest that this may be
generic behavior in the near field.

When the target-field geometry is as shown in Fig. 5�a�,
the prolate total and gradient-force spectra appear essentially
independent of particle separation, though there are subtle
changes in the �E* ·��E contribution at short wavelengths. In
contrast to the previous examples, radiation-pressure is no
longer negligible for the sphere near its dipole resonance.
The long wavelength oscillation in the total-force spectrum
of the sphere closely follows the gradient contribution and
decays faster with distance than short wavelength features.
This is because the gradient contribution to the force on the
sphere is strongly influenced by the prolate. For the sphere,

FIG. 3. �Color� Total force and contributions for a prolate and
sphere. The prolate has an effective radius of �see Refs. 23 and 24�
A=5 nm and the sphere a=1.08 nm. The prolate major to minor
axis ratio is R=3.2. �a� The target and field geometry with key for
�b�. �b� Decomposition of forces along E for both particles as a
function of wavelength and distance. Magnification factors for pro-
late and sphere are M =1,15,50 at d=14.6, 21.0, and 27.4 nm.

FIG. 4. �Color� Total force and contributions for prolate and
sphere. �a� The target and field geometry with key for �b�. Note the
changes in the prolate-sphere orientation and polarization from Fig.
3. �b� Decomposition of forces along E�k for both particles as a
function of wavelength and distance. M =1 �prolate and sphere� at
d=14.6, 21.0, and 27.4 nm.
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the �E* ·��E term is relatively featureless in the long wave-
length part of the spectrum. The long wavelength tails of the
gradient and total forces are again repulsive. This is con-
firmed by transforming to the reduced mass-relative coordi-
nate system �results not shown�. Similar trends are evident
when the incident wave vector is inverted �Fig. 6�. Note that
the signs of the gradient and �E* ·��E contributions are gen-
erally inverted from Fig. 5, except for the sphere at the long
wavelength resonance. The coordinate transformation veri-
fies that, at the long wavelength resonance, the interaction is
now repulsive since the prolate is pushed away from the
sphere.

IV. CONCLUSION

The numerical examples presented above show that the
�E* ·��E contribution is frequently comparable to the gradi-
ent term in optical forces between the absorbing mesoscopic
particles in plane wave incident fields. They also show that
the total force on a particle can be determined by an intricate
interplay among all three terms in Eq. �1�, with highly non-
trivial wavelength and distance dependencies. The implica-
tions for optical trapping scenarios involving nonplane wave
incident fields can be explored with minor modifications to
the numerical method.14 A comprehensive theoretical treat-
ment of these phenomena has yet to be achieved. The com-
putational method demonstrated above promises to provide
detailed information that could be useful in the development
of such an understanding.

FIG. 5. �Color� Total force and contributions for prolate and
sphere. �a� The target and field geometry with key for �b�. Note the
change in direction of incidence from Fig. 4. �b� Decomposition of
forces along k for both particles as a function of wavelength and
distance. M =1 �prolate and sphere� at d=14.6, 23.1, and 31.6 nm.

FIG. 6. �Color� Total force and contributions for prolate and
sphere. �a� The target and field geometry with key for �b�. Note the
change in direction of incidence from Fig. 5. �b� Decomposition of
forces along −k for both particles as a function of wavelength and
distance. M =1 �prolate and sphere� at d=14.6, 23.1, and 31.6 nm.
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