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We have developed an ab initio method to calculate the long-range dispersion coefficient for a molecule
adsorbing on a surface modeled by a biperiodic slab. The variations of the dynamic polarizabilities versus
imaginary frequencies of each system—considered separately—permit us to evaluate a C4 dispersion coeffi-
cient, via the Casimir-Polder formula. The polarizability of the molecule is computed by using the time-
dependent gauge-invariant variational method while the electric properties of the surface are calculated by
using the periodic ab initio linear combination of atomic orbitals density functional theory method imple-
mented in the CRYSTAL03 code. We have applied this method to the physisorption of the nitrogen molecule—in
its ground and lowest-lying triplet states—on the �001� surface of hexagonal boron nitride. The semi-infinite
crystal is simulated by slabs with different numbers of atomic layers.
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I. INTRODUCTION

Adsorption phenomena have been intensively studied for
many years, mostly due to their great practical importance in
many areas like environmental analysis, separation processes
and technological applications. Moreover, gas sorption is of
major importance to obtain a comprehensive characterization
of porous materials with respect to the specific surface area,
pore size distribution and porosity.

Despite the high level of research activity in this area, the
microscopic surface/adsorbate interactions remain difficult to
characterize. Physisorption phenomena result from two con-
tributions: van der Waals attractions which are reduced to
London interactions for nonpolar molecules and electronic
repulsion. In both experimental and theoretical approaches,
such effects are difficult to quantify, primarily due to the
weak nature of the binding forces between the adsorbate and
the material. Some empirical adsorption isotherm equations
can be used to determine the heat of adsorption but experi-
mental data are required to determine the parameters in these
models; thus this method is not predictive.

Over recent years, there has been increasing interest in
using computational simulation methods to study various
adsorbate-adsorbent systems, especially molecular dynamics,
Monte Carlo, and grand canonical Monte Carlo approaches.
Density functional theory �DFT� is another statistical me-
chanics model used to determine the heat of adsorption; it is
based on the idea that the grand free energy of an inhomo-
geneous fluid can be expressed as a functional of the density
profile in the pore. Nevertheless, all the above methods de-
pend to some extent on the use of empirical potential energy
functions to represent the gas/surface interactions. Many
models have been proposed for this purpose, such as Steele’s
10-4-3 potential.1,2 To gauge how realistic a given potential
may be, it could be of great benefit to develop an ab initio
approach able to predict such properties. Within this frame-
work, the most natural method is to compute the self-
consistent field electronic structure of a so-called supersys-

tem including the adsorbing molecule and the surface usually
modeled as a cluster. Only dynamically correlated ab initio
methods provide reliable descriptions of the mid- to long-
range interaction forces that play a significant role in the
physisorption. On the other hand, the calculated interaction
energies are small compared to the absolute errors usually
associated with such methods.

The aim of this work is to propose an alternative ab initio
approach to compute the attractive part of the interaction
potential. We have developed a method to evaluate the long-
range dispersion coefficient for a molecule—nitrogen—
adsorbing on a biperiodic system modeling the surface—
different slabs of hexagonal boron nitride. The dipole
polarizabilities of each system were calculated separately us-
ing time-dependent gauge-invariant �TDGI� variational
method3 for the molecule and the sum over states method for
the surface,4 respectively. The variations of these polarizabil-
ities versus imaginary frequencies permit us to evaluate a C4
dispersion coefficient, via the Casimir-Polder formula.5 The
originality of this method is to calculate the electric proper-
ties of the surface by a periodic ab initio linear combination
of atomic orbitals �LCAO� DFT method.6,7

To test the validity of this approach, we have applied this
method to the physisorption of the nitrogen molecule—in its
ground and low-lying triplet states—on different slabs of bo-
ron nitride. Among gas and vapors that may be adsorbed,
nitrogen remains universally preeminent.8 It is now possible
with commercial equipment and on-line data processing to
use nitrogen adsorption at 77 K both for routine quality con-
trol and for investigation of new porous materials. Consider-
ing the numerous applications of physisorption on activated
carbon—a microporous form of graphite—the ideal would
have been to take graphite as the adsorbate, but graphite is a
semimetal with a linear crossing of the � and �* bands at the
K point of the first Brillouin zone. Thus, the static polariz-
ability component parallel to the slab is infinite. Other devel-
opments necessary to evaluate the Casimir-Polder integral in
this case, will be presented in a further paper. So to test the
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reliability of our method, we consider nonconducting hex-
agonal boron nitride �h-BN� which is isoelectronic to graph-
ite and has the same layered structure �only with different
stacking�. In h-BN, the different electronegativities of boron
and nitrogen lift the degeneracy of the � bands at the K point
and lead to an experimental band gap of 5.8 eV.9 Moreover
h-BN has recently regained interest due to the synthesis of
BN nanotubes,10–12 which can be considered as cylinders
formed by rolling a single sheet of h-BN onto itself.

This paper is organized as follows. First we develop the
theory needed for an ab initio evaluation of a C4 dispersion
coefficient. Then results on the physisorption of N2 on �001�
hexagonal BN slabs and bulk are presented and discussed.
Finally, brief conclusions are given concerning this method.

II. THEORETICAL CONSIDERATIONS

The interaction potential between two electrically neutral
and nonpolar systems A and B can be written as a multipole
expansion in inverse power series of separation distance R.
The first term in the expansion represents the instantaneous
dipole-dipole interaction which is generally dominant. So the
higher terms �which contribute less than 10% to the total
dispersion energy� are often omitted when calculating disper-
sion energies.

At large distance R between the two systems located on
the z axis, we only consider the first term in the development
of the interaction Hamiltonian:

Ĥ� =
�̂A

x �̂B
x + �̂A

y �̂B
y − 2�̂A

z �̂B
z

R3 �1�

where �̂A
� and �̂B

� are the � and � components of the electric
dipole moment operator for the interacting systems A and B,
respectively. Note that the van der Waals coefficient ap-
proach is valid only if the interaction distances R satisfy the
Le Roy criteria,13 i.e., for distances at which exchange po-
tential can be neglected.

Our interest here is in studying the dispersion energy
when system B is a biperiodic system modeling the crystal
surface. In the following, B0 denotes the reference zero cell
and Bj is the general surface cell identified by the direct
lattice vector R j. As shown in Fig. 1, R j can also be written
as OO j, O and Oj being the centers of mass of the B0 and Bj
unit cells, respectively. If one regards the periodic system in
its entirety as a system B, the dipole moment operator �̂B can
be written as the sum of dipole moments per unit cell:

�̂B = �
l�B

qlr̂l = �
Rj

�
l�Bj

ql�r̂lj
+ R j�

= �
Rj

�̂B�R j� with �̂B�R j� = �
l�Bj

ql · r̂lj
�2�

since � jR j =0. ql and r̂l are the charge and the position vec-

tor from the point O in the reference frame �O, i, j, k� of any
particle l in the system B �nucleus or electron�. The position
of the lth particle in the unit cell Bj is given by the vector r̂lj
from point Oj.

Consequently, the interaction Hamiltonian Ĥ� of a mol-
ecule A and the surface B of a solid, modeled as a biperiodic
system is the sum of the interactions molecule A–unit cells
Bj:

Ĥ� = �
Rj

Ĥ��R j� . �3�

At this point, a so called A-Bj frame denoted as �I j ,J j ,K j� is
defined to take the Zj direction in the direction RAj

=OAOBj
,

OA being the center of mass of molecule A �cf. Fig. 1�. Using
this frame, the A-Bj interaction Hamiltonian can be written
as

Ĥ��R j� =
�̂A

Xj�̂B
Xj�R j� + �̂A

Yj�̂B
Yj�R j� − 2�̂A

Zj�̂B
Zj�R j�

RAj
3 , �4�

where �̂A
�j and �̂B

�j�R j� �� or �=X, Y, or Z� are the compo-
nents of the A and Bj dipole operators in the A-Bj frame,
respectively.

In the case of nonpolar systems, the first-order perturba-
tion energy is zero and the dispersion energy can be com-
puted as the second-order perturbation energy

EA-B = �
n,m�0

��A
0�B

0 ��Rj
Ĥ��R j���A

n�B
m���A

n�B
m��Rh

Ĥ��Rh���A
0�B

0�

�EA
n − EA

0� + �EB
m − EB

0�
�5�

FIG. 1. Geometry of the molecule–crystalline surface system.
The molecule �system A� is represented by a sphere. O and Oj are
the centers of mass of the reference and current unit cells, respec-
tively �OO j =R j, OAO j =RAj, OAO=R�.
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where the unperturbed wave functions �A
n�B

m are just the
antisymmetrized product of the states of each isolated sys-
tems and the ground state is denoted �A

0�B
0 . By introducing

the components of the dipole moments �̂A
� and �̂B

���R j� ��
=x, y, or z� in the reference frame �i, j, k�, the interaction
energy can be expressed as

EA-B = �
n,m�0

1

�EA
n − EA

0� + �EB
m − EB

0�� �
Rj,Rh

1

RAj
3 RAh

3

��
�,�

�
��,��

f jh
�������� j,� j,�h,�h�

��An
� �An

� �Bm
�� �R j��Bm

�� �Rh�� �6�

with �An
� = ��A

0 ��̂A
���A

n� and �Bm
�� �R j�= ��B

0 ��̂B
���R j���B

m�.
The f jh

�������� j ,� j ,�h ,�h� functions are products of
second-order spherical harmonic functions of the four angles

�defined in Fig. 1� � j, � j, �h, and �h. They have been tabu-
lated in Ref. 14.

At this point of the approach, it is necessary to express the
wave functions of the slab as Slater determinants consisting
of the crystalline orbitals �	�km�. According to the results of
Ayma et al.,4 in a periodic monodeterminantal approach, the
nonzero dipole moment integrals �Bm

�� �R j� are monoelec-
tronic integrals such as ��	�km��r̂����t�km�� where 	 and t
denote occupied and unoccupied crystalline orbitals, respec-
tively, the operator r̂�� �=x ,y ,z� being the current position of
the electron in the slab. Moreover, the corresponding transi-
tion energies are supposed to be equal to the difference
	
t�km�−
	�km�
 between the eigenvalues of �	�km� and
�t�km�. As a consequence, the expression of the interaction
energy EA-B can be written as the sum

EA-B
������ = C6

������ �
Rj,Rh

f jh
�������� j,� j,�h,�h�

RAj
3 RAh

3 , �7�

where

C6
������ = �

n�0
�
km

�
	,t

	��A
0 ��̂A

���A
n���A

n ��̂A
���A

0�
	��	�km��r̂����t�km����t�km��r̂����	�km��

�EA

n − EA
0� + 	
t�km� − 
	�km�


. �8�

C6
������ can be considered as the first van der Waals coeffi-

cient modeling the long-range interaction between the non-
polar molecule A and any unit cell Bj of the slab.

The sum in expression �7� can be considered as a geo-
metrical factor. The nondiagonal terms �j�h� cancel out.
Then, the sum over diagonal terms is evaluated by calculat-
ing the infinite sums over the lattice vectors R j as integrals
over the whole slab. The element of integration is

dSj = �RjdRjd� j = �R2 sin � j

cos3 � j
d� jd� j , �9�

where � is the number of atoms per surface unit and R is the
distance OAOB �see Fig. 1�. The resultant molecule-surface
attraction potential is given by EA-B=−C4 /R4.

The van der Waals coefficient C4 is computed as

C4 =
3�

32
�	3C6

xxxx + 3C6
yyyy + C6

xxyy + C6
yyxx + 4C6

xyxy + 4C6
xxzz

+ 4C6
yyzz + 4C6

zzxx + 4C6
zzyy + 8C6

zzzz
 . �10�

Its determination amounts to calculating the van der Waals

coefficients C6
������ to model the long-range interaction be-

tween the nonpolar molecule and any unit cell Bj of the slab.
When both systems A and B are in their ground state or in

excited states for which emission is forbidden, instead of

using expression �8�, the C6
������ coefficients can be evalu-

ated by performing the analytic integration involved in the
Casimir-Polder formula5

C6
������ =

3

�
�

0

�

�A
���i
��B

�����i
�d
 , �11�

where �A
���i
� and �B

�����i
� are the terms of the dipole
polarizability tensors of each system at imaginary frequen-
cies �i
� in the chosen framework �see Fig. 1�. This expres-
sion allows us to determine each polarizability tensor sepa-
rately: �A�i
� for the molecule and �B�i
� for the unit cell of
the biperiodic system. The great advantage of this method is
to model each isolated system using different methods.

Thus the procedure that we propose to calculate the C4

van der Waals coefficient includes three steps.
1. The polarizability tensor �A�i
� of the molecular sys-

tem A, is obtained through the time-dependent gauge-
invariant method3 which is a variation-perturbation proce-
dure including a “gauge factor” and taking into account the
electronic correlation.

2. For the slab, we used the uncoupled method developed
in our laboratory15,16 to compute �B�i
�. In this approach,
the commonly used sum-over-states �SOS� method has been
implemented, starting from the crystalline orbitals and the
related eigenvalues obtained via a periodic monodeterminan-
tal calculation. The infinite sum over all states is then re-
placed by a sum over occupied 	 and virtual t crystalline
orbitals and over km vectors on the first Brillouin zone with a
geometrical weight ��km�,
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�B
���i
� = 2�

km

��km��
t,	

��t�km��r���	�km����	�km��r���t�km��	
	�km� − 
t�km�

	
	�km� − 
t�km�
2 + 
2 . �12�

3. Finally, the C6
������ coefficients are computed by using

the method proposed by Rérat and Bussery-Honvault17 to
compute the van der Waals coefficient C6 between two atoms
or molecules in either their ground or excited states. The

continuous functions �A
���i
��B

�����i
� are fitted by using a
limited number of pseudo-transition-moments and pseudoen-
ergies for both A and B systems. Then the fitted transition
moments and energies are introduced in Eq. �8� to calculate

the C6
������ dispersion coefficient. This method allows one to

avoid the tedious numerical integration �step and higher limit
of integration� over 
 and a large number of calculations of

�A
���i
� and �B

�����i
�. However, use of the Casimir-Polder
formula, when available, is useful to confirm the results ob-

tained by the fit. At the end, the C6
������ coefficients are

introduced in expression �10� to calculate the C4 dispersion
coefficient.

III. RESULTS AND DISCUSSION

A. Dynamic polarizability of the nitrogen molecule in the

X̃„1�g
+
… and Ã„3�u

+
… states

In the first step, we have implemented the TDGI method
and computed the dynamic polarizability of nitrogen at

imaginary frequencies �i
�, for both the ground state X̃�1�g
+�

and the low-lying triplet state Ã�3�u
+�. In what follows, the

molecular axis is the z axis.
The initial state �A

0 of the nitrogen molecule—either the

ground state X̃�1�g
+� or the first triplet state Ã�3�u

+�—has
been computed using a multireference configuration interac-
tion �MRCI� method with the CIPSI variation-perturbation
algorithm.18–21 For both states, the calculations were carried
out at the equilibrium internuclear distance of the ground
state �2.0680 a.u.�, using the triple-� basis �p-VTZ� set due
to Sadlej22 which is specific for the molecular electric prop-
erties and includes 	5s ,3p ,2d
.

To our knowledge, these functions �A
zz�i
� and �A

xx�i
�
have not been reported for any electronic state of N2, except
for the static components of the ground state. Thus, to check
the validity of these calculations, we compared our results
with the data available in the literature. For the ground state,
the components of the static polarizability 	�A

zz�0�=14.6 a.u.,
�A

xx�0�=9.7 a.u.
 are in agreement with experimental data23

	�A
zz�0�=14.8±0.2 a.u., �A

xx�0�=10.2±0.1 a.u.
. In a previous
study,24 Mérawa et al. calculated the static TDGI polarizabil-
ity of 14 electron diatomic molecules—N2, BF, and CO—in
their ground states. As they used a basis set including f
atomic orbitals, for the nitrogen molecule, their results
	�A

zz�0�=14.9 a.u., �A
xx�0�=9.9 a.u.
 are closer to the experi-

mental data. The low-lying triplet state Ã�3�u
+� exhibits an

inversion of anisotropy for the static polarizability compo-
nents 	�A

xx�0�=13.04 a.u., �A
zz�0�=12.81 a.u.
. It might be

interesting to investigate the effect of such inversion on the
orientation of the molecule interacting with the surface. Un-
fortunately, the shape of the curves �A

zz�i
� and �A
xx�i
� �re-

ported in Fig. 2, for both electronic states studied� shows that
the anisotropy of the ground state is restored from 

=0.02 a.u. Note that the dynamic polarizability components
estimated for the ground state are higher than for the triplet
state. As a consequence, the van der Waals coefficients rela-
tive to the physisorption of N2 should be the highest for the
ground state.

To our knowledge, the only experimental data available to
check the validity of our calculations on the low-lying triplet

state are the two electronic vertical transitions X̃�1�g
+�

→ Ã�3�u
+� and X̃�1�g

+�→ B̃�3��. Our MRCI results �7.76 and

8.11 eV for X̃→ Ã and X̃→ B̃, respectively� are in good
agreement with the values reported by Nielsen et al.25 �7.8
and 8.1 eV�. Since the validity of the MRCI wave function
has been confirmed, the TDGI method is expected to give
accurate results for the ground and excited states of diatomic
systems.26 It is reasonable to think that the values of the
dynamic polarizability are in the right range for this excited
state.

B. The dynamic polarizability of the (001) surface of
hexagonal boron nitride

In the present approximation, the adsorption of molecules
on a surface is often regarded as adsorption on a single plane
S1. To check the validity of such an approximation, we study
the influence of the thickness of the slab on the dynamic
polarizability at imaginary frequency.

FIG. 2. �Color online� Dynamic polarizability components
�A

zz�i
� and �A
xx�i
� at imaginary frequency for two electronic states

of the nitrogen molecule, the ground state X̃�1�g
+� and lowest-lying

triplet state Ã�3�u
+�. The molecular axis is the z axis.
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1. Computational details

The surface properties investigated in the present work
are obtained by simulating the semi-infinite crystal by a slab
model. The influence of the thickness of the slab is evaluated
by considering eight systems �SN� with different numbers of
atomic layers �N=1–5,7 ,9 ,13� parallel to the �001� face of
the bulk. The resulting electric properties are compared to
those of the bulk. All the nine studied systems correspond to
unrelaxed slabs in which the experimental parameters of the
bulk27 have been maintained �a=2.504 Å and c=6.661 Å�.
All the periodic calculations were performed using
CRYSTAL03, an ab initio code for periodic systems, developed
by Dovesí and co-workers.6,7 The crystalline orbitals are ex-
panded in terms of localized atomic Gaussian basis set, in a
way similar to the LCAO method currently adopted for mol-
ecules. The eigenvalues equations are solved at the BLYP
and nonlocal GGA generalized gradient approximation
�GGA� levels. The GGA approach has been developed on the
Perdew-Wang functionals.28–30 The BLYP functional uses
Becke’s exchange31 and the Lee-Yang-Parr correlation
functionals.32 The number of k points in the first irreducible
Brillouin zone in which the Hamiltonian matrix is diagonal-
ized is 61 and 193 for the slabs and the bulk, respectively. All
electron atomic basis sets are adopted to describe the atoms
within the cell. The boron and nitrogen basis sets are of
6-21G* �Ref. 33� and 7-31G* �Ref. 34� type, respectively.
The exponents of the most diffuse sp and d shells have been
optimized considering the bulk experimental geometrical
structure 	��sp�=0.150 a.u. and ��d�=0.555 a.u. for the bo-
ron atom and ��sp�=0.406 a.u. and ��d�=0.764 a.u. for the
nitrogen atom
.

2. Static polarizability and dielectric constant of the h-BN bulk

The first step in these calculations is to determine the
conditions that lead to static values as close as possible to
experimental results. Indeed, the uncoupled SOS method is
well known to be not very accurate for the static polarizabil-
ities. However, it gives the right shape for the dynamic po-
larizability at imaginary frequency. Static polarizability val-
ues per unit cell of the bulk have been computed at the GGA
and BLYP levels. These two methods give very similar re-
sults that are given in Table I and compared to experimental
values. To our knowledge, the only experimental data avail-
able in the literature are the terms of the static dielectric
constant tensor 	�B

xx�0� perpendicular to the c axis and �B
zz�0�

parallel to the c axis
.35,36 Note that the value of the parallel
component remains dubious �2.2 for Rumyantsev et al.36 and
4.5 for Geick et al.35�. When the local field effect is ne-
glected or when the considered phase is dilute—which is not
the case for condensed matter—the dielectric constant �B�0�
is related to the static polarizability by37,38

�B
���0� =

�B
���0� − 1

4�n
, �13�

where n is the number of moieties per unit volume. Note
that, for semiconductors like Si,39 the correction to this ap-
proximation is estimated at less than 12%. The static polar-
izability components calculated by using relation �12� are too

small 	�B
xx�0�=24.9 a.u.
 compared to the order of magnitude

given by the experimental data 	64.1 �Ref. 35� or 76.7 �Ref.
36� a.u.
 via Eq. �13�. To understand this large difference,
which is not due to the local field effect alone, and even
correct it, the numerator and denominator contributions to
the polarizability calculation must be analyzed separately.
The denominator in Eq. �12� is related to the direct gap. For
h-BN, the energy gaps between the top of the valence band
and K, H, and M valleys of the conduction band are of the
same order of magnitude �Eg=4.0–5.8 eV�.36 At the GGA
level, the computed vertical transitions �4.41, 4.77, and
5.01 eV at the H, K, and M points, respectively� are in agree-
ment with the range proposed by Rumyantsev et al.36 For the
numerator contribution in Eq. �12�, according to the rule of
Thomas-Reiche-Kuhn, the sum over the oscillator strengths

f t	 =
2

3
��t�km��r��	�km����	�km��r��t�km��	
	�km� − 
t�km�


must be the number of electrons per unit cell �24 for h-BN�.
When calculated at both GGA and BLYP levels, this sum is
underestimated �19.3 for both methods�. However, even if
the correction factor applied on the transition moments to
obtain the correct number of electrons improves the static
polarizability values, they remain too small 	�B

xx�0�
=32.4 a.u.
. The other possibility to correct the numerator
contribution is to apply the hypervirial theorem40 and intro-
duce the velocity operator �V� in relation �12�, instead of
length �L�. In this case, the resulting values are in much
better agreement with the experimental data of Rumyantsev
et al.36 	error less than 6% and 2% for �B

zz�0� and �B
xx�0�,

respectively
, even if the sum on oscillator strengths is 18.4
instead of 24. Indeed, the error bars on the numerators �tran-
sition moments� and denominators �crystalline energies� are

TABLE I. Static polarizability components of bulk boron nitride
in a.u. 	�B

zz�0� and �B
xx�0�
 at the GGA and BLYP levels. The re-

ported values are relative to the unit cell �two BN moieties�. The
BLYP values are given in parentheses.

Our results

Operator

Component La Vb Ref. 36c Ref. 35d

�
n

fn 19.3
�19.4�

18.4
�18.4�

�B
zz�0� 24.5

�24.5�
24.7

�24.8�
60.2 23.3

�B
xx�0� 24.9

�24.9�
63.1

�62.3�
76.7 64.1

aPolarizability values computed using relation �11�.
bPolarizability values computed by integrating the hypervirial theo-
rem in relation �11�.
cFrom �B

xx�0�=4.95 and �B
zz�0�=4.10 using Eq. �12�.

dFrom �B
xx�0�=4.3 and �B

zz�0�=2.2 using Eq. �12�.
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compensated by introducing the velocity operator. In the fol-
lowing, we thus adopted these conditions to calculate the
dynamic polarizabilities of the SN slabs. Note that, whatever
the assumptions of the calculations, our results on the �B

zz�0�
component are 50% smaller than the data of Geick et al.35

This could be due to the basis set used in this work which is
not sufficiently extended in the z direction.

3. Static and dynamic polarizabilities of the SN slabs

The values of the static polarizability components calcu-
lated for the SN slabs are almost the same in both BLYP and
GGA methods. In the following, we only discuss the GGA
results. In Fig. 3, we report the variation of each static po-
larizability component per BN moiety versus the number of
layers N in the slabs. Due to the layered structure of h-BN,
for any slab, the value of the parallel component 	�B

xx�0�
 is
the same as for the bulk �31.6 a.u.�. The static perpendicular
component 	�B

zz�0�
 increases from 8.5 a.u. for S1 to 12.0 a.u.
for S13. Convergence within 5% of the bulk value �12.4 a.u.�
is reached at N=7 �11.8 a.u.�. Note that the value obtained
for S1 �8.5 a.u.� is relatively low compared to the bulk
�12.4 a.u.�. The basis set may be not extended enough to
correctly translate the deformation of the electronic cloud
perpendicular to the slab. In this case, the model of adsorp-
tion of molecules on BN should include several layers.

The �B
xx�i
� and �B

zz�i
� components per BN moiety com-
puted at the GGA level are reported in Figs. 4 and 5 respec-
tively, for the different SN slabs �N=1–13� and the bulk. For
the component parallel to the slab �see Fig. 4�, all the curves
are very close, due to the layered structure of h-BN. For the
perpendicular component, all the curves present the same
shape but are differentiated compared to the bulk �see Fig.
5�. When the number of layers increases, the corresponding
curves converge to the bulk.

C. The dispersion coefficient C4 for the physisorption of N2 on
the h-BN (001) surface

When considering the perpendicular approach of the N2
molecule �N-N molecular axis along the c axis� toward the

�001� BN surface �plane x0y�, the expression �10� of the van
der Waals coefficient C4 becomes

C4
pe =

3�

4
��C6

xxxx + C6
xxzz + C6

zzxx + C6
zzzz�

while, in the parallel approach with the N-N molecular axis
along the Ox direction,

C4
pa =

3�

8
��C6

xxxx + C6
xxzz + 3C6

zzxx + 3C6
zzzz�

with �=0.051 57 bohr−2.

For each N2 electronic state 	X̃�1�g
+� and Ã�3�u

+�
 and each
h-BN slab, the four C6

���� coefficients were computed by
using the fit with four pairs of transition moments and ener-
gies for A and B. As the variations of the �B

xx�i
� components
are the same whatever the number of layers in the slab, it is
sufficient to consider only the bulk case to compute the C6

xxxx

and C6
zzxx coefficients. As shown in Table II, the C6

xxxx and
C6

zzxx values we found for both S1 slab and the bulk are al-
most the same. On the other hand, Fig. 6 reports the variation
of both coefficients C6

xxzz and C6
zzzz according to the number

FIG. 3. �Color online� Static polarizability components �B
zz�0�

and �B
xx�0� of hexagonal boron nitride plotted as a function of the

number of atomic layers in the slab. The surface plane is the xOy
plane. The dotted line represents the static polarizability �B

zz�0� term
for the bulk �12.4 a.u. or bohr3�.

FIG. 4. �Color online� Dynamic polarizability 	�B
xx�i
�
 compo-

nent at imaginary frequency, parallel to the surface plane, for the
slabs and the bulk of hexagonal boron nitride.

FIG. 5. �Color online� Dynamic polarizability component
�B

zz�i
� at imaginary frequency, perpendicular to the surface plane,
for the slabs and the bulk of hexagonal boron nitride. The surface
plane is the xOy plane.
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of layers in the slab, for both the ground state X̃�1�g
+� and the

first triplet state Ã�3�u
+� of N2. The two coefficients �C6

xxzz

and C6
zzzz� vary as

C6
��1 −

A1

�N + 1�
−

A2

�N + 1�2 −
A3

�N + 1�3� ,

where C6
�, A1, A2, and A3 are constants set up by a least-

squares fit, in each case. The C6
� constants represent the

asymptotic behavior of the curves and should correspond to
the values of the coefficients C6

xxzz and C6
zzzz for an infinite

number of layers, i.e., the bulk. Indeed, the fitted values are
closed to those found for the h-BN bulk 	C6

xxzz=9.7 a.u. and

C6
zzzz=13.6 a.u. for the X̃�1�u

+� electronic state and C6
xxzz

=6.4 a.u. and C6
zzzz=10.6 a.u. for the Ã�3�u

+� one
.
The resulting dispersion coefficients C4

pe �N2 parallel to
the c axis� and C4

pa �N2 perpendicular to the c axis� are re-
ported in Table III, for both electronic states of N2. As ex-
pected, both C4

pa and C4
pe values are higher for the ground

state of N2. Moreover, at long distance, the parallel approach
of N2 to the BN crystalline surface is favored, for both

X̃�1�g
+� and Ã�3�u

+� states. Information on the interaction pa-
rameters on BN is sparse. To our knowledge, only a few
experimental studies41,42 were devoted to the physisorption
of N2 on boron nitride BN. The only attempt to represent the
interaction potential for a single molecule N2 �in its ground
state� on the BN substrate is based on a modified Lennard-
Jones form which accounts for the electronic distribution in
the BN surface.43 The resulting C6 van der Waals coefficient
�either 132 a.u. if using combination rules of homogeneous
atomic pairs or 91.6 a.u. if correcting the Lennard-Jones pa-
rameters by an effective bulk scale factor� does not directly
account for the anisotropies of the N2 and BN polarizabil-
ities. It corresponds to a sort of “isotropic” coefficient that
could be calculated from our theoretical data as

2

3
�4C6

xxxx + 2C6
xxzz + 2C6

zzxx + C6
zzzz� .

The resulting values �103.4 and 107.4 a.u. for the monolayer
slab and the bulk, respectively� are in better agreement with
the model accounting for the presence of the surrounding
solid.

IV. CONCLUSION

In this work, we have developed an ab initio method to
calculate the long-range dispersion coefficient for a molecule
adsorbing on a surface modeled by a biperiodical system. We
have applied this method to the physisorption of N2 on �001�
surface of hexagonal boron nitride. The most important point
is that the molecule and the surface are studied separately, in
contrast to direct ab initio calculations using the supersystem
approach. Thus, different computational methods may be
used to investigate the electronic properties of the molecule
and of the crystalline surface. This approach should give a
more reliable description of the physisorption phenomena at
dissociation than the supersystem method—the computed in-

TABLE II. van der Waals coefficients C6
xxxx and C6

zzxx �a.u.�
modeling the long-range interaction between N2 and any unit cell of
the S1 slab or bulk boron nitride. For N2, both the ground state

X̃�1�g
+� and low-lying triplet state Ã�3�u

+� have been considered.

X̃�1�g
+� Ã�3�u

+�

C6
xxxx C6

zzxx C6
xxxx C6

zzxx

S1 18.7 26.7 12.4 20.6

Bulk 18.6 26.7 12.4 20.6

TABLE III. C4 dispersion coefficient �in a.u.� for N2, either in

its ground state X̃�1�g
+� or in its low-lying triplet state Ã�3�u

+� ad-
sorbing on �001� different slabs SN of hexagonal boron nitride. �N is
the number of atomic layers in the slab, the bulk corresponding to N
infinite.� The exponents “pa” or “pe” mean that N2 is parallel or
perpendicular to the BN surface.

X̃�1�g
+� Ã�3�u

+�

N C4
pa C4

pe C4
pa C4

pe

1 8.49 7.81 6.39 4.65

2 8.78 8.07 6.60 4.71

3 8.86 8.15 6.67 4.74

4 8.92 8.19 6.71 4.75

5 8.94 8.22 6.73 4.76

7 8.98 8.25 6.76 4.77

9 9.00 8.27 6.77 4.77

13 9.02 8.29 6.79 4.78

Bulk 9.06 8.33 6.82 4.79

FIG. 6. �Color online� van der Waals coefficients C6
xxzz or C6

zzzz

relative to the interaction between the nitrogen molecule and any
unit cell of the h-BN crystalline surface plotted as a function of the
number of the atomic layers in the slab. Both the ground state

X̃�1�g
+� and low-lying triplet state Ã�3�u

+� of N2 are considered.
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teraction energy is of the same order as the error bars usually
associated with total energies. Moreover, in contrast to the
commonly adopted model, the boron and nitrogen atoms are
not considered as individual atoms in the evaluation of the
interaction potential. The C4 parameter accounts for the ef-
fect of the crystalline field on the BN entity. This method
also permits study of the physisorption of the molecule in
any excited state that does not emit. The application could be
an inversion of the orientation of the physisorbed molecule
in the excited state, respected to the ground state.

Actually, the limitation of this approach lies in the calcu-
lation of the polarizability components per unit cell of the
surface using the uncoupled sum over states method without
any local field correction. Moreover, the atomic basis set
used in LCAO DFT periodic calculations is not extended
enough to represent the deformation of the electronic cloud.
However, we adopt conditions �choice of operator, correction
on oscillator strengths, gap� that lead to static values of po-

larizability as close as possible to experimental results. When
these data are not available, coupled methods like the finite-
field perturbation method included in the CRYSTAL03

program44 can be used to obtain an accurate static dielectric
constant. In this work, we estimate the error on our C4 values
is about 10%, corresponding to the error on the estimation of
the static polarizability of the surface when using Eq. �3�
�i.e., when neglecting the local field effect�.

Study of the physisorption of N2 on BN has shown that, at
long range, the perpendicular approach of the N2 molecule
�in both the ground and the lowest-lying triplet states� to the
surface is less favorable than the parallel orientation. So the
adsorption of the excited state of N2 does not change the
orientation of the molecule, despite the inversion of aniso-
tropy of the static polarizability relative to the ground state.
Unlike graphite, information on the interaction parameters
on BN is sparse and our method provides relatively accurate
values.
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