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We provide a quantitative description of the structure of edge states in split-gate quantum wires in the integer
quantum Hall regime. We develop an effective numerical approach based on the Green’s function technique for
the self-consistent solution of Schrödinger equation where electron and spin interactions are included within
the density functional theory in the local spin density approximation. We use the developed method to calculate
the subband structure and propagating states in the quantum wires in perpendicular magnetic field starting with
a geometrical layout of the wire. We discuss how the spin-resolved subband structure, the current densities, the
confining potentials, as well as the spin polarization of the electron and current densities evolve when an
applied magnetic field varies. We demonstrate that the exchange and correlation interactions dramatically affect
the magnetosubbands in quantum wires bringing qualitatively new features in comparison to a widely used
model of spinless electrons in Hartree approximation.
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I. INTRODUCTION

Transport properties of quantum dots, antidots, and re-
lated structures are affected by the nature of current-carrying
states in the leads connecting these structures to electron res-
ervoirs. In sufficiently high magnetic fields the current-
carrying states are the edge states propagating in a close
vicinity to the sample boundaries.1 Detailed information on
the structure of the edge states represents a key to the under-
standing of various features of the magnetotransport in the
quantum Hall regime.

A quantitative description of the edge states for the case
of the gate-induced confinement of the high-mobility two-
dimensional electron gas �2DEG� was given by Chklovskii et
al.,2 who provided an analytical solution for the positions
and widths of the compressible and incompressible strips
arising in the 2DEG due to the electrostatic screening. In the
compressible regions, the Landau bands are pinned at the
Fermi energy EF. This leads to a metallic behavior when the
electron density is redistributed �compressed� to keep the
electrostatic potential constant. In the incompressible re-
gions, where the Fermi energy lies in the Landau gaps, all
the levels below EF are completely filled and hence the elec-
tron density is constant �which is consistent with the behav-
ior of the incompressible liquid�.

A number of studies addressing the problem of electron-
electron interaction in quantum wires beyond the electro-
static treatment of the edge states of Chklovskii et al.2 have
been reported during the recent decade.3–14 The many-body
aspects of the problem have been included within
Thomas-Fermi,3 Hartree-Fock,4–6 screened Hartree-Fock,7

and the density functional theory.8,9 The full quantum-
mechanical calculations based on the self-consistent solution
of the Schrödinger equation have been done within the
Hartree10–13 and the density functional theory14 approxima-
tions.

Particular attention has been devoted to the investigation
of the spin polarization effects in edge states.4–8 For ex-
ample, Dempsey et al.5 have shown that for a sufficiently
smooth confining potential, spin degeneracy of the outermost

edge state is lifted and two spin channels become spatially
separated. The interest in the spin-related effects in quantum
wires is also motivated by significant current activity in
semiconductor spintronics that utilizes the spin degree of
freedom of an electron to add the additional functionality to
electronic devices. A number of proposed and investigated
devices for spintronics applications operates in the edge state
regime,15,16 which obviously requires a detailed knowledge
of the spatial dependence of the spin-resolved states in the
quantum wires. Edge states have also been proposed as one-
way channels for transporting quantum information.17 The
knowledge of the spin/charge structure of the current carry-
ing states is also essential for numerical simulation and mod-
eling of the magnetotransport in quantum dots and related
structures. �Note that such modeling is often done utilizing
single-electron wave functions in the leads disregarding the
spin/many-electron effects.18–20� In order to obtain such in-
formation on quantum-mechanical propagating states in
quantum wires, one has to solve the Schrödinger equation
incorporating the exchange interaction to account for the
spin effects. In should be noted that the studies reported so
far are often limited to some strictly integer filling factors,5,7

or utilize Thomas-Fermi-type approaches8 or a perturbative
technique,4,6 where the required information concerning the
quantum-mechanical wave functions is not available. More-
over, the quantum-mechanical effects associated with the fi-
nite extension of the wave function �not included in, e.g.,
Thomas-Fermi approach� can play a decisive role for the
quantitative description of the edge states. For example, Su-
zuki and Ando12 have demonstrated �in a model of spinless
electrons� that the predictions of Chklovskii et al. and
Thomas-Fermi models regarding the existence and the size
of the compressible/incompressible strips are in qualitative
disagreement with the self-consistent modeling based on the
Schrödinger equation in the regime when the estimated
width of the strips is smaller than the extend of the wave
functions.

The purpose of the present paper is twofold. First, we
perform a detailed self-consistent solution of the Schrödinger
equation incorporating spin/many-body effects in quantum
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wires. We discuss how the spin-resolved subband structure,
the current densities, the confining potentials, as well as the
spin polarization of the electron and current densities evolve
when an applied magnetic field varies. We demonstrate that
the exchange and correlation interactions dramatically affect
the magnetosubbands in quantum wires bringing qualita-
tively new features in comparison to a widely used model of
spinless electrons in Hartree approximation. In the present
study we limit ourselves to the regime when more than one
spin-resolved state can propagate in the wire, i.e., the filling
factor ��1. �The filling factor �=n /nB=2�lB

2n, where n is
the sheet electron density, nB=eB /h is the number of states
in each Landau level per unit area, and lB=�� /eB is the
magnetic length.�

Second, we present a detailed description of the devel-
oped method based on the Green’s function technique for the
calculation of the subband structure and propagating states in
the quantum wires in the magnetic field. This method is nu-
merically stable, and its efficiency is related to the fact that
calculations of the wave functions and wave vectors are re-
duced to the solution of the eigenvalue problem �as opposed
to the conventional methods that require less efficient proce-
dure of the root searching10,11,14�. The major advantage of the
present method is that it can be directly incorporated into
magnetotransport calculations because it provides the eigen-
states and wave vectors at the given energy, not at a given
wave vector �as the conventional methods do�. Besides, the
present method calculates the Green’s function of the wire,
which can be subsequently used in the recursive Green’s
function technique18,21 widely utilized for magnetotransport
calculations in lateral structures.

In order to incorporate the spin/many-body effects into
the Schrödinger equation we use the density functional
theory �DFT� in the local spin-density approximation
�LSDA�.22 The choice of the DFT is motivated, on one hand,
by its efficiency and simplicity in the practical implementa-
tion within usual self-consistent formulation introduced by
Kohn and Sham,23 and, on the other hand, by its success in
the reproduction of the electronic and spin properties of the
low-dimensional structures in comparison to the exact diago-
nalization and quantum Monte Carlo calculations, as well as
experiments �for a review, see Ref. 24�. For example, Fer-
coni and Vignale25 find that the accuracy of the DFT for the
energy and density of few-electron quantum dots yields the
accuracy better than 3% in comparison to the exact results.
An excellent agreement between DFT and the variational
Monte Carlo results for the chemical potential and the addi-
tion spectra of the rectangular quantum dot was reported by
Räsänen et al.26

Within the local spin density approximation the exchange
and correlation potentials are calculated using a parameter-
ization of the functional for the exchange and correlation
energy �xc. The latter is usually obtained on the basis of
quantum Monte Carlo calculations27,28 for the corresponding
infinite homogeneous system. In the present paper we use the
parameterization of Tanatar and Cerperly �TC�.27 This pa-
rameterization is valid for magnetic field when ��1, which
defines the range of applicability of our results. �Various pa-
rameterizations for �xc for strong fields ��1 as well as dif-
ferent interpolation schemes between the low and the strong

fields are reviewed in Refs. 24 and 29�. Note that the DFT
was used for the description of the spin polarization of the
edge states in quantum wires in the integer Hall regime
within the Thomas-Fermi approximation,8 as well as for the
treatment of spinless edge states in the Kohn-Sham scheme
based on the solution of the Schrödinger equation.14 The
density functional theory within the Thomas-Fermi approach
was also applied for the description of the edge channels in
the quantum wire in the fractional Hall regime, where the
parameterization of �xc incorporated the additional gaps that
open up at the fractional filling factors.9

The paper is organized as follows. In Sec. II we present a
formulation of the problem, where we define the geometry of
the system at hand and outline the self-consistent Kohn-
Sham scheme within the LSDA approximation. In Sec. III
we provide a detailed description of our method based on the
Green’s function technique, and Sec. IV presents the major
results and their discussion. The conclusions are given in
Sec. V, and the Appendix presents some technical details of
the calculations.

II. FORMULATION OF THE PROBLEM

We consider an infinitely long split-gate quantum wire in
a perpendicular magnetic field. A schematic layout of the
device is illustrated in Fig. 1�a�. The distance between gates
is a, the distance from the surface to the electron gas is b �we
disregard the spatial extension of the electron wave function
in the z direction�. The donor layer with the donor density �d
has the width d and is situated at the distance c from the
surface. The external electrostatic confinement potential can
be written in the form

Vconf�y� = Vg�y� + Vd + VSchottky, �1�

where Vg�y� and Vd are, respectively, potentials due to the
gates30 and the donor layer,31 and VSchottky is the Schottky
barrier,

Vg = �V0��1 −
1

�
�arctan

a + y

b
+ arctan

a − y

b
�� , �2�

Vd = −
e2

	0	r
�dd�c + d/2� , �3�

with V0 being the �negative� applied gate voltage, and 	r
being the dielectric constant. The Schottky potential and the
dielectric constant are chosen to be VSchottky=0.8 eV and 	r
=13, which is appropriate for GaAs. The external electro-
static confinement potential is shown in Fig. 1�b� for a rep-
resentative quantum wire with parameters typical for an ex-
periment. Figure 1�b� also illustrates the corresponding
parabolic potential V�y�=m* /2�
y�2 often used to approxi-
mate the electrostatic confinement in the split-gate wires,
where m* is the effective electron mass �m*=0.067me for
GaAs�.

The wire is described by the effective Hamiltonian in a
perpendicular magnetic field, B�=Bẑ,
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H� = H0 + Vconf�y� + Vef f
� �y� + g�bB� , �4�

where H0 is the kinetic energy in the Landau gauge,
A= �−By ,0 ,0�,

H0 = −
�2

2m*�	 �

�x
−

eiBy

�

2

+
�2

�2y
� . �5�

The last term in Eq. �4� accounts for Zeeman energy where
�b=e� /2me is the Bohr magneton, �= ± 1

2 describes spin-up
and spin-down states, ↑, ↓, and the bulk g factor of GaAs is
g=−0.44.

The effective potential Vef f
� �y� within the framework of

the Kohn-Sham density functional theory reads,22–24

Vef f
� �r� = VH�y� + Vxc

� �y� . �6�

VH�r� is the Hartree potential due to the electron density
n�y�=��n��y� �including the mirror charges�,

VH�y� =
e2

4�	0	r
�

−


+


dx��
−


+


dy�n�y��

� � 1
��x − x��2 + �y − y��2

−
1

��x − x��2 + �y − y��2 + 4b2�
= −

e2

4�	0	r
�

−


+


dy�n�y��ln
�y − y��2

�y − y��2 + 4b2 . �7�

The exchange and correlation potential Vxc�y�=Vx�y�+Vc�y�
in the local spin density approximation is given by

Vxc
� =

d

dn� 
n��xc„n,��y�…� , �8�

where ��y�= �n↑−n↓� / �n↑+n↓� is the local spin polarization.
As we mentioned in the Introduction, in the present paper we
use the parameterization of Tanatar and Cerperly �TC�;27 for
the sake of completeness, the explicit expressions for Vx�y�
and Vc�y� are given in the Appendix �see also Ref. 32�.

III. CALCULATION OF THE ELECTRON DENSITY AND
EDGE STATES IN QUANTUM WIRES

In order to calculate the self-consistent electron densities,
wave functions and wave vectors of the magneto-edge states,
as well as corresponding currents, we use the Green’s func-
tion technique. A detailed account of the major steps of the
calculations is presented in this section.

A. Hamiltonian in the mixed energy-space representation

Numerical computation of the self-consistent electron
densities and other quantities of interest requires the discreti-
zation of the Hamiltonian �4�. Introduce a numerical grid
�lattice� with the discrete variables m ,n according to x ,y
→ma ,na, where a is the lattice constant. The computational
domain consists of Ns sites in the transverse n-direction �the
wire is infinite in the longitudinal m-direction�. Discretiza-
tion of the continuous Hamiltonian �4� gives a standard tight-
binding Hamiltonian with the magnetic field included in the
form of the Peierls substitution,21

H� = �
m
��

n=1

Ns


�0 + V��n��am,n
+ am,n

− t
am,n
+ am,n+1 + e−iqnam,n

+ am+1,n + H.c.�� , �9�

where

V��n� = Vconf�n� + Vef f
� �n� + g�bB� �10�

is the total confining potential, the hopping element t
=�2 /2m*a2, the site energy �0=4t, and q=eBa2 /�; am,n

+ and
am,n denote the creation and annihilation operators at the site
�m ,n�. The translational invariance in the longitudinal direc-

FIG. 1. �Color online� �a� A schematic layout of a split-gate
quantum wire in a perpendicular magnetic field. �b� Solid line: the
calculated electrostatic potential Vconf�y� for the quantum wire with
a=500 nm, b=60 nm, c=14 nm, d=36 nm, �d=6�1023 m−3, and
�V0�=0.2 V. A dashed line shows the corresponding parabolic con-
finement V
�y�=m*�
y�2 /2 �with �
=2 meV� often used to ap-
proximate the external electrostatic confinement.
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tion dictates the Bloch form for the propagating states in the
quantum wire,

���
�� = �

m

eik�
�m�

n=1

Ns

��
��n�am,n

+ �0� , �11�

where the index � corresponds to the �th Bloch state with
the wave vector k�

� and the transverse wave function ��
��n�.

In Eq. �11� the wave function ��
��n� corresponds to the real

space representation. To facilitate the numerical calculation,
it is convenient to expand the wave functions over the trans-
verse eigenstates �modes� of a homogeneous wire of the
width of Ns sites, � j�n�=�2/ �Ns+1�sin �jn / �Ns+1�,

��
��n� = �

j=1

N

��,j
� � j�n� , �12�

where the expansion coefficients ��,j
� can be interpreted as

the wave function in the “energy” representation in the space
of the transverse eigenstates.18 Note that Eq. �12� corre-
sponds to a conventional sin-transformation, whose inverse
transform is given by the same equation.33 The summation in
Eq. �12� runs over 1� j�N, with N=Ns. In practice, how-
ever, it is sufficient to limit the summation to a much smaller
number of modes, with N�Ns. Because the speed of the
method is determined by the dimension of the matrices �that
is given by Ns in the real space representation and N in the
“energy” representation�, passing to the “energy” representa-
tion greatly enhances the computational speed. For example,
for the wire of the width of 0.5 �m, it is sufficient to use
N�50 modes to achieve a good convergence of the results
with respect to the mode number. At the same time, in the
real space representation, Ns=500 �with the lattice constant
a=1 nm�, which makes computations rather impractical.

Passing from the real space representation to the “energy”
representation in the transverse direction we arrive at the
Hamiltonian in the mixed energy-space representation �i.e.,
in the real space representation in the longitudinal
m-direction and “energy” representation in the transverse
n-direction�,18

H = �
m
��

j=1

N


� j + 2t�am,j
+ am,j + �

j,j�

N

Vjj�
� am,j

+ am,j�

− �
j,j�

N

�tjj�
L am,j

+ am+1,j� + tjj�
R am+1,j

+ am,j��� , �13�

where � j =2t−2t cos �j /N+1 are the eigenvalues of the
transverse motion corresponding to the eigenfunctions � j�n�;
the creation and annihilation operators in the mixed space-
energy representation are related to the real space creation
and annihilation operators according to am,j

+ =�n=1
Ns � j�n�am,n

+ ,
am,j =�n=1

Ns � j�n�am,n. The matrix elements of total confining
potential and the hopping matrix elements are given by

Vjj�
� = �

n=1

Ns

� j�n�V��n�� j��n� ,

tjj�
R = t�

n=1

Ns

� j�n�eiqn� j��n�, tjj�
L = �tjj�

R �*. �14�

Note that Hamiltonian �13� has nearest-neighbor couplings in
the longitudinal m-direction �described by the two last terms
in Eq. �13��. In the transverse �“energy”� direction, the mag-
netic field couples all states j on slice m to all states j� on
neighboring slices m+1 and m−1. The Bloch wave functions
�11� in the mixed space-energy representation read

���
�� = �

m

eik�
�m�

j=1

N

��,j
� am,j

+ �0� . �15�

B. Bloch states of a quantum wire in magnetic field

Define a retarded Green’s function of the Hamiltonian H
in a standard way,21,34

�E − H + i	�G = 1 , �16�

where 1 is a unitary operator. Calculate first the Green’s
function g� corresponding to a single slice �see Fig. 2�a��.
The Hamiltonian of mth single slice reads

hm
� = �

j=1

N


� j + 2t�am,j
+ am,j + �

j,j�

N

Vjj�
� am,j

+ am,j�. �17�

�Note that a single slice is not coupled to its neighbors, and
hence two last terms in Eq. �13� are absent in Eq. �17�.�
Using this operator in the definition of Green’s function �16�,
and taking the matrix elements �0�am,j¯am,j�

+ �0�, we arrive at
the N�N system of linear equations for the matrix elements
of the Green’s function of a single slice gj�j�

�

= �0�am,jg
�am,j�

+ �0�,

FIG. 2. �Color online� Graphical illustration of the calculations
of the Green’s function for a single slice �a�, and for an infinite wire
�b�, �c�.
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�
j�=1

N

„�E − � j − 2t�� j,j� − Vjj�
�
…gj�j�

� = � j,j�. �18�

Note that because of the translational invariance, we have
dropped index m in the definition of the matrix element of
the Green’s function of a single slice.

Knowledge of the Green’s function of a single slice g�

allows one to find the Bloch states of an infinite wire. The
eigenvectors 
� j�

� � and eigenvalues 
k�
�� are determined by

the eigenequation18

	− �g�tL�−1 − �tL�−1tR

1 0

	eik���

��� 
 = eik	eik���

��� 
 , �19�

where the matrices tR, tL, and g� have matrix elements given

by Eqs. �14� and �18�, respectively, and ��� is the column
vector composed of � j

�, 1� j�N �Eq. �12��. Here and here-
after we use Greek indexes �,�� for Bloch states of the wire,
and Roman indexes j , j� for the basis set of the transverse
eigenfunctions 
� j�n��. Equation �19� has 2N eigenvalues k�

�,
1���N, which can be real or complex, describing, respec-
tively, propagating and evanescent states. �Here and hereafter
k�

� is given in units of a−1 and the group velocity v is in units
of a.� The eigenvalues corresponding to right propagating
states �v=�E /�k�0, Im�k�=0� and states decaying to the

right �Im�k��0� we denote by k�
�+

with corresponding eigen-

states � j�
�+

. Correspondingly, k�
�−

and � j�
�−

stand for left propa-
gating states �v=�E /�k�0, Im�k�=0� and states decaying to
the left �Im�k��0�. Sorting right- and left-propagating
eigenstates can be easily done by calculating their group
velocity18

v�
� =

1

�

�E

�k�
� = −

2

�
�
j,j�

N

�� j�
� �*� j��

� Im�e−ik�
�
tjj�
L � . �20�

Passing to the real space representation for the wave func-
tions in the above expressions and using the quantum-
mechanical particle current density for �th Bloch state cal-
culated in a standard way for a tight-binding lattice,18

j�
��n,E� =

2t

�
sin�qn + k�

�����
��n��2, �21�

the group velocity �20� can be expressed as the total particle
current of �th Bloch state,

v�
� = �

n

j�
��n,E� . �22�

To conclude this section we note that a direct calculation of
the eigenvectors k�

� and eigenfunctions � j��
� by substitution

of Eq. �15� into the Schrödinger equation and calculation of
the roots of the corresponding determinant is possible �see,
e.g., Refs. 10, 11, and 13�. However, the procedure used here
is more efficient as the solution of the eigenproblem �19� is
numerically faster and less demanding than the root search-
ing. Besides, an important advantage of the present method
is that it can be directly incorporated into magnetotransport
calculations, because in contrast to the root searching

method, the present technique provides the eigenstates and
wave vectors at the given energy, not at a given wave vector.
It is also important to stress that in the magnetotransport
calculations one needs a complete set of eigenfunctions in-
cluding both propagating and evanescent waves. In the mag-
netic field the evanescent states in the quantum wires have
complex k-vectors. Such solutions are not available in the
conventional methods searching for the eigenstates at a given
k-vector. On the other hand, the eigenequation �19� provides
all the eigenvectors �both real and complex� that are subse-
quently sorted out as described above.

C. Calculation of the local electron density

The diagonal elements of the total Green’s function of an
infinite wire in the real space representation give the local
density of states �LDOS� at the site r= �m ,n�,34

���r,E� = −
1

�
Im�G��r,r,E�� . �23�

The LDOS ���r ,r ,E� can be used to calculate the local
electron density at the site r,

n��r� = �
Vb




dE���r,E�f�E − EF� , �24�

where f�E−EF� is the Fermi-Dirac distribution function and
the lower limit of integration Vb corresponds to the bottom of
the total confining potential. Note that ���r ,r ,E� is a rapidly
varying function of energy diverging as ��E−E��−1/2 when
E approaches the threshold subband energies E�. Because of
this, a direct integration along the real axis is rather ineffec-
tive as its numerical accuracy is not sufficient to achieve
convergence of the self-consistent calculation of the electron
density. We therefore calculate integral �24� by transforming
the integration contour into the complex energy plane
Im�E��0 where the Green’s function is much more
smoother than on the real axis. �Note that all poles of the
Green’s function �23� are in the lower half-plane Im�E��0.�
A typical contour used in the integration avoiding poles of
the Fermi-Dirac function f�E−EF� is shown in Fig. 3. We
calculate the diagonal elements of the total Green’s function
G��r ,r ,E� as follows. We start from a semi-infinite quantum
wire and calculate its surface Green’s function � �i.e.,
Green’s function for the boundary slice m=1�, see Fig. 2�b�.

FIG. 3. A typical integration contour used in the calculation of
integral �24�. Dots indicate the poles of the Fermi-Dirac distribution
function in the upper complex plane at Re�E�=EF, Im�E�= �2m
+1��kT, m=0,1 ,2 , . . ..
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The right and left surface Green’s functions �r and �l �cor-
responding to semi-infinite wires open, respectively, to the
right and left� can be written in a matrix form18,35

��
r tR = − ��

+K�
+��

+−1

��
l tL = − ��

−�K�
−�−1���

−�−1, �25�

where the matrix elements ���
+�−�� j�=� j�

�+�−�
, �K�

+�−�����
=exp�k�

�+�−�
�����. We then connect this semi-infinite wire to

the second semi-infinite wire to form an infinitely long quan-
tum wire as shown in Fig. 2�c�. The total Green’s function
can be calculated with the help of Dyson equation21,34

G = G0 + G0UG , �26�

where G0 corresponds to the “unperturbed” structures �the
left and right semi-infinite wires�, and the operator U de-
scribes the interaction between them,

U = − �
j,j�

N

�tjj�
L a0,j

+ a1,j� + tjj�
R a1,j

+ a0,j�� �27�

�see Eq. �13��. Using Eq. �26� to calculate the matrix element
�G�� j j�= �0�a1,jG

�a1,j�
+ �0�, we obtain Green’s function for the

slice m=1 �note that because of the translational invariance
in the m-direction, the calculated Green’s function is the
same for all slices�,

G� = �1 − ��
r tR��

l tL�−1��
r , �28�

where 1 is the unit matrix. Note that Eq. �28� gives Green’s
functions in the “energy” representation of the space of the
transverse eigenstates. To obtain the Green’s function in the
real space representation needed to compute the electron
density n��r� �Eq. �24�� we perform a standard change of the
basis, G��n ,n ,E�=� j,j�

N � j�n�Gjj�
� � j��n�.

D. Self-consistent calculations

1. Iteration procedure

We calculate magneto-edge states and electron densities
in a quantum wire in a self-consistent way, when on each
iteration step a small part of a new potential �10� is mixed
with the old one �from the previous iteration step�,

Vi+1
� �n� = �1 − ��Vi

��n� + �Vi+1
� �n� , �29�

� being a small constant, �0.1–0.01. Using this input poten-
tial we, for a given energy E, solve the eigenproblem �19� to
find the Bloch states in the quantum wire. �Note that energy
E is chosen in the complex plane as shown in Fig. 3.� We
then use the obtained results to calculate the Green’s function
G��n ,n ,E� according to Eqs. �25�–�28�. The integration of
the Green’s function �24� gives the electron densities n��r�,
which are subsequently used to compute the new total con-
fining potential �10�. It is typically needed �1000 iteration
steps to achieve our convergence criterium �n1D

i+1−n1D
i � / �n1D

i+1

+n1D
i ��10−5, where n1D

i is the one-dimensional electron
density n1D=�n�r�dy on ith iteration step.

2. Adjustment of the Fermi energy

When the same fixed Fermi energy EF is used for differ-
ent magnetic fields B, the calculated self-consistent one-
dimensional electron density changes as B varies. Depending
on a particular realization of a quantum wire, one might need
to adjust EF for each B in order to keep the total electron
density fixed, as magnetic field does not change the electron
density in the system. However, in a typical experimental
situation when a long quantum wire is connected to a
2DEG,38 the Fermi energy in the reservoirs �not the electron
density in the wire� is fixed. Because of this, in all calcula-
tions reported in the paper we keep EF fixed �we set EF=0�.

Note that we have also performed calculations where EF
was adjusted to keep the electron density n1D

� constant. All
the results obtained in this case �in particular, the density and
current spin polarizations� are qualitatively and quantita-
tively similar to those obtained in the case when EF is ad-
justed.

3. Bloch states, subband structure, and current density

Having calculated the total self-consisted confining poten-
tial, we can compute the Bloch wave functions and wave
vectors by solving the eigenequation �19� for the whole
range of energies of interest �note that for these calculations
the energy has to be chosen on the real axis�. Knowledge of
the wave vectors for different states allows us to recover the
subband structure, i.e., to calculate an overage position y�

� of
the wave functions for different modes �,36

y�
� =

�k�
�a

eB
. �30�

We calculate the conductance of the wire G�= I� /V on the
basis of the linear-response Landauer formula,

I� =
e2

h
V�

�
�

Eth�
�




dE	−
�f�E − EF�

�E

 , �31�

where summation is performed over all propagating modes �
for the spin �, with Eth �

� being the propagation threshold for
�th mode. In order to visualize the current density we can
rewrite Eq. �31� for the total current in the form I�

�

=a�nJ�
��n�, where the current density for the mode � reads

J�
��n� =

e2

h
V� dE

j�
��n,E�

v�
� 	−

�f�E − EF�
�E


 , �32�

with v�
� and j�

��n ,E� being, respectively, the group velocity
and quantum-mechanical particle current density for the state
� at the energy E �see Eqs. �22� and �21��, and V being the
applied voltage.

IV. RESULTS AND DISCUSSION

A. Hartree approximation

To outline the role of exchange and correlation interac-
tions we first study the magnetotransport in a quantum wire
within the Hartree approximation �i.e., when Vxc

� �y� is not
included in the effective potential �6�, and the spin polariza-
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tion is driven by Zeeman splitting of the energy levels�. In
our calculations we use the parameters of a quantum wire
indicated in Fig. 1 and the temperature T=1 K. With these
parameters the effective width of the wire is �400 nm, and
the sheet electron density n�1.5�1015 m−2. Figure 4�a�
shows the one-dimensional �1D� electron density n1D

� for the
spin-up and spin-down electrons in the quantum wire. The
pronounced feature of this dependence is a 1/B-periodic,
looplike pattern of the density spin polarization Pn= �n1D

↑

−n1D
↓ � / �n1D

↑ +n1D
↓ � as illustrated in Fig. 4�b�.

Figure 4�c� shows the number of spin-resolved subbands
as a function of B. �As the calculations are done for the finite
temperature T, for a given magnetic field, we count the sub-
bands that lie in the energy interval E�EF+4kT, where 4kT
determines the energy window beyond which the Fermi-
Dirac distribution rapidly decays to zero.� The pronounced
feature of this dependence is that the number of subbands is
always even, N=2,4 ,6 , . . ., such that the spin-up and spin-
down subbands depopulate simultaneously. The comparison
of Figs. 4�a�–4�c� demonstrates that the spin polarization is
directly related to the magnetosubband structure: The polar-
ization drops almost to zero at the magnetic fields when the
subbands depopulate. In order to understand the origin of the
spin polarization let us analyze the evolution of the subband
structure as the applied magnetic field varies. Let us concen-
trate at the polarization loops in the field interval 1.3 T�B
�2.6 T when the number of the spin-resolved subbands N
=4 and the filling factor in the middle of the wire 2���0�
�4.

Figure 5�a� shows the spatially resolved difference in the
electron densities n↑�y�−n↓�y� as a function of B. When the
subband number N�4 �for B�2.6 T�, the electron density is
mostly polarized in the inner region of the wire. We thus
concentrate first on the formation of the compressible and
incompressible strips in the inner region due to the upper
subband. Figure 5�b� shows the filling factor ���y�, current
densities J�

��n�, and the magnetosubband structure for the
magnetic field B=1.35 T. This field corresponds to the case
when the fifth and sixth spin-resolved subbands just became
depopulated, i.e., their bottoms are situated at �EF+4kT.
The third and fourth subbands are separated from the fifth
and sixth by the distance �
c �with 
c being the cyclotron
frequency, �
c�kT�, see Fig. 5�b�. They are therefore situ-
ated below the Fermy energy and are fully populated. As a
result, the electron density is constant, which corresponds to
the formation of the incompressible strip. Because the
spin-up and down subbands are fully filled, the correspond-
ing electron densities are equal and the spin polarization of
the electron density is zero.

When the magnetic field is raised the subbands are pushed
up in the energy and the two highest spin-resolved subbands,
following the Chklovslii et al. scenario,2 become pinned at
the Fermi energy. The subband bottoms flatten which signals
the formation of the compressible strip in the middle of the
wire, see Fig. 5�c�. When the subband bottoms reach the
energy E�EF−4kT, the subbands become partially occu-
pied. Partial subband occupation combined with their energy
separation due to Zeeman interactions results in the different
population for spin-up and down electrons. With increase of

the magnetic field the filling factor decreases, but spin polar-
ization increases until the subband bottoms approach �EF,
Fig. 5�d�. This magnetic field corresponds to the maximal
spin polarization Pn�3%. With further increase of the mag-

FIG. 4. �Color online� �a� One-dimensional charge density for
the spin-up and spin-down electrons, n1D

↑ ,n1D
↓ in the Hartree ap-

proximation, and �b� spin polarization of the charge density, Pn

= �n1D
↑ −n1D

↓ � / �n1D
↑ +n1D

↓ �, as a function of magnetic field B. �c� Total
number of subbands, conductance of the spin-up and spin-down
electrons, the total conductance G=G↑+G↓, and the filling factor in
the center of the wire ��0� �note GCh=e2 /h��0��. �d� The spin po-
larization of G and GCh. Parameters of the wire are chosen as indi-
cated in the caption of Fig. 1. Arrows in �b� indicate the magnetic
fields corresponding to the magnetosubband band structure shown
in Fig. 5. Temperature T=1 K.
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netic field, the subbands bottoms are pushed up above EF,
which causes further decrease of the filling factor and dimin-
ishing screening efficiency. As a result, the width of the com-
pressible strip decreases until the upper subbands become
completely depopulated and the incompressible strip forms
again in the middle of the wire, see Fig. 5�e�. This is accom-
panied by a gradual decrease of the density polarization Pn to
zero. The shrinkage of the compressible strip in the middle
of the wire can be also clearly traced in the evolution of the
current density distribution, shown in the middle panels of
Figs. 5�b�–5�e�. It is interesting to note that the compressible
regions are not formed for the outermost edge states corre-
sponding to the lowest subbands N=1 and 2. This is because
that in the field interval under study the extension of the
wave function is larger than the width of the compressible
strip predicted by the Chklovskii et al. theory.2 The onset of
the formation of the compressible strips can be seen in Fig.
5�e� for B=2.5 T. Note that the effect of the formation/
nonformation of the compressible strips in quantum wires
was discussed in detail by Suzuki and Ando for the case of
spinless electrons.12

The described above picture of evolution of the density
polarization qualitatively holds for all other polarization
loops. We stress that in all the loops only two upper, partially
occupied spin-resolved subbands contribute to the spin po-
larization, whereas remaining subbands are fully �and
equally� populated and thus do no contribute to the total spin
polarization. When magnetic field exceeds B=2.6 T, only
two subbands survive in the quantum wire. With further in-
crease of magnetic field the upper �spin-up� subband gradu-
ally depopulates and the density polarization Pn grows lin-
early until it reaches 100% when only the spin-down
subband remains in the wire.

It should be also stressed that within Hartree approxima-
tion two outermost spin-up and spin-down edge states are not
spatially polarized �i.e., they are situated at practically the
same distance from the wire edges, see Fig. 5�.

Figures 4�c� and 4�d� show the conductance G� for
spin-up and spin-down states and its relative spin polariza-
tion PG= �G↑−G↓� / �G↑+G↓�. The spin polarization PG fol-
lows a similar behavior as the density polarization Pn with
one subtle difference. Namely, the density polarization Pn is
always positive because spin-up states always lie in energy
below the corresponding spin-down states, and, therefore
n↑�y�−n↓�y��0. In contrast, the spin polarization of the cur-
rent, after reaching zero, does not immediately rise as the
magnetic field increases, but, instead, becomes negative be-
fore raising again. Note that this is accompanied by a small
�but noticeable� increase of the total current �at B�1.5 T,
3 T see Fig. 4�c��. This effect can be traced back to the
self-consistent band structure as explained below. Figure 6
shows a closeup of the upper subbands N=3,4 for the mag-
netic field B=1.5 T, i.e., when the current polarization is
negative. Because the spin-up/down subbands are not flat,
for certain energies E�EF the upper �spin-down� subband
can give rise to several propagating states, whereas the lower
�spin-up� subband corresponds to only one propagating state,
see Fig. 6. According to the Landauer formula �31� all propa-
gating states contribute equally to the total current. Because
of this and due to the fact that the spin-down subband is
situated closer to the Fermi energy, the total current for the
spin-down electrons is larger than the current for the spin-up
ones. This explains the negative spin polarization of the cur-
rent and the increase of the total current at the magnetic
fields just above the subband depopulation. We are not aware
of the discussion of this effect in the current literature. The
available experimental data, see, e.g., Fig. 2 of Ref. 38 show-
ing a nonmonotonic dependence of the conductance of a
quantum wire as a function of magnetic field, are consistent
with the predicted behavior of the total current. Note that this
feature in the conductance also survives within the DFT ap-
proach �see below, Fig. 7�.

Figures 4�c� and 4�d� also show the conductance and its
spin polarization calculated according to the Chklovskii et al.

FIG. 5. �Color online� �a� Spatially resolved difference in the electron densities n↑�y�−n↓�y� as a function of B calculated within Hartree
approximation. �b�–�e� The subband structure for the magnetic fields indicated in �a� �see also Fig. 4�b��. Upper panel: The filling factor ��y�
for spin-up and spin-down electrons. Middle panel: the current density distribution �in arbitrary units� for spin-up and spin-down electrons
calculated according to Eq. �32�. Lower panel: magnetosubband structure for spin-up and spin-down electrons �solid and dashed lines
correspondingly�. Fat solid and dashed lines indicate the total confining potential, Eq. �10�, for, respectively, spin-up and spin-down
electrons. Temperature T=1 K.
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prescription,2 GCh=e2 /h��0�, with ��0� being the filling fac-
tor in the center of the wire. GCh follows the exact conduc-
tance rather well, but does not recover the steps in the con-
ductance related to the subband depopulation �see Ref. 3 for
a related discussion�. GCh does not also reproduce the in-
crease of the current and the negative conductance polariza-
tion discussed above because these features are related to the
quantum-mechanical band structure.

As we mentioned before, the Hartree approximation pre-
dicts that spin-up and spin-down subbands depopulate simul-
taneously and thus the conductance drops in steps of 2e2 /h
as the magnetic field increases. This is in strong disagree-
ment with the experimental observations that demonstrate
that the subbands depopulate one by one such that the con-
ductance decreases in steps of e2 /h. We will show in the next
section that accounting for the exchange and correlation in-
teractions leads to qualitatively new features in the subband
structure and brings the theory to a close agreement with
experiment.

B. Density functional theory in the local spin density
approximation

Figures 7 and 8 show the electron density, conductance,
and subband structure for the quantum wire calculated using
DFT within LSDA, Eqs. �4�–�8�. Utilization of the DFT
+LSDA leads to several major quantitative and qualitative

differences in comparison to the Hartree approximation.
First, the spin polarization of the electron density also shows
a pronounced 1/B-periodic looplike pattern. However, for
the given magnetic field B the spin polarization in the quan-

FIG. 6. �Color online� Lower panel: A closeup of the spin-up
and spin-down subbands N=3,4 �solid and dashed lines, respec-
tively� for the magnetic field B=1.5 T, when the polarization of the
conductance PG is negative. Upper panels: current density distribu-
tion �in arbitrary units� for the spin-up and spin-down electrons at
the energy E indicated in the lower panel. At this energy, there is
one propagating state for spin-up electrons and three propagating
states for spin-down electrons. Left inset shows the derivative of the
Fermi-Dirac distribution determining the weight of the contribu-
tions from the current-carrying states to the total current density at
the given energy, see Eq. �32�.

FIG. 7. �Color online�. �a� One-dimensional charge density for
the spin-up and spin-down electrons, n1D

↑ ,n1D
↓ calculated within

DFT+LSDA, and �b� spin polarization of the charge density, Pn

= �n1D
↑ −n1D

↓ � / �n1D
↑ +n1D

↓ �, as a function of magnetic field B. �c� Total
number of subbands, conductance of the spin-up and spin-down
electrons, the total conductance G=G↑+G↓, and the filling factor in
the center of the wire. �d� The spin polarization of the conductance
PG. Parameters of the wire are chosen as indicated in the caption to
Fig. 1. Arrows in �b� indicate the magnetic fields corresponding to
the magnetosubband band structure shown in Fig. 8. Temperature
T=1 K.
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tum wire calculated on the basis of DFT is of the order of
magnitude higher in comparison to the Hartree approxima-
tion. Second, the magnetosubbands depopulate one by one,
and the conductance decreases in steps of e2 /h �not in steps
of 2e2 /h as in the case of Hartree approach when the spin-up
and spin-down subbands depopulate simultaneously�. Third,
the outermost edge states become spatially polarized �sepa-
rated�, which is in strong contrast with the Hartree approxi-
mation, where they are situated practically at the same dis-
tance from the wire boundary.

In order to understand the effect of the exchange and cor-
relation interactions on the evolution of the magnetosubband
structure, let us now concentrate on the same field interval as
studied in the previous section, i.e., when the number of the
subbands lies in the interval 3�N�4 and the filling factor
in the middle of the wire 2���0��4, see Fig. 7. We start
from the magnetic field B=1.4 T, where the spin polarization
of the density is minimal. Similarly to the case of Hartree
approximation �Fig. 5�b��, this corresponds to the case when
the fifth subbands just became depopulated as shown in Fig.
8�b�. However, in contrast to the Hartree approximation,
where the Zeeman interaction is not strong enough to cause
any significant spin polarization, in the present case the ex-
change interaction leads to a non-negligible spin polarization
near the boundaries of the wire �Pn�7% �. For this magnetic
field the number of subbands is even, and the spin-up and
spin-down subbands are fully filled in the center of the wire.
As the result, the electron densities are constant, which cor-
responds to a formation of the incompressible strip in the
center of the wire. Because the spin-up and spin-down sub-
bands are equally occupied, spin polarization in the center of
the wire is zero �Fig. 8�a��.

When the magnetic field increases, all the subbands are
pushed up in energy, and the fourth subband gets pinned at
EF near the boundary of the wire, forming the compressible
strip, Fig. 8�c�. With increase of magnetic field, the com-
pressible strip extends to the center of the wire, compare

Figs. 8�b� and 8�c�. Note that in the Hartree case the separa-
tion between the subbands caused by the Zeeman splitting is
small ��kT� and hence both the subbands are pinned at EF

�see Figs. 5�c�–5�e��. In contrast, in the present case only one
of the subbands is pinned at EF because the subband separa-
tion is determined by the exchange interaction whose mag-
nitude can be comparable to �
c.

Figure 8�d� shows the subband structure for the magnetic
field B=1.9 T when the spin polarization of the electron den-
sity is maximal. In this case the fourth subband is about to be
depopulated and all the remaining subbands �two spin-up
and one spin-down� lie below EF. They are therefore fully
populated �2n1D

↓ �n1D
↑ �, which corresponds to the calculated

polarization Pn�33%.
When magnetic field is increased by only 0.05 T, the den-

sity spin polarization drops by �10%, and the subband struc-
ture experiences dramatic changes, see Fig. 8�e�. In particu-
lar, the spatial separation between the outermost spin-up and
spin-down states collapses from �20 nm to zero, as shown
in Fig. 9. The explanation of this remarkable effect is based
on the fact that the electrostatic energy is dominant for the
system at hand.2 This is illustrated in Fig. 10 which com-
pares the electron densities and the magnetosubband struc-
ture in a quantum wire calculated within the Hartree and
DFT approximations for some representative value of the
magnetic field. As expected, the total electron density is
practically the same in both approximations. At the same
time, the magnetosubbands and the spin-up and spin-down
densities vary significantly between them. It is also interest-
ing to note that the magnetic fields corresponding to the de-
population of even subbands N=2,4 ,6. . . are practically the
same with and without accounting for the exchange and in-
teraction terms, compare Figs. 4�c� and 7�c�. The dramatic
changes in the subband structure at B�1.95 T can be ex-
plained as follows. At B�1.9 T the electron density near the
edge of the wire is dominated by spin-up electrons, see Fig.
7�d�, the upper and middle panels. When magnetic field is

FIG. 8. �Color online� �a� Spatially resolved difference in the electron densities n↑�y�−n↓�y� as a function of B calculated within DFT
+LSDA. �b�–�e� The subband structure for the magnetic fields indicated in �a� �see also Fig. 7�b��. Upper panel: The filling factor ��y� for
spin-up and spin-down electrons. Middle panel: the current density distribution �in arbitrary units� for spin-up and spin-down electrons
calculated according to Eq. �32�. Lower panel: magnetosubband structure for spin-up and spin-down electrons �solid and dashed lines
correspondingly�. Fat solid and dashed lines indicate the total confining potential, Eq. �10�, for, respectively, spin-up and spin-down
electrons. Temperature T=1 K.
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raised, the fourth subband practically depopulates, and the
third �spin-up� subband is pushed up in energy. As a result,
the density of the spin-up electrons associated with this sub-
band is redistributed towards the center of the wire. How-
ever, this small change in the magnetic field cannot affect the
total density. Because of this, the density of the remaining
electrons has to be adjusted to keep the total density un-
changed. This can be done only if the spin-down electrons
associated with the subband N=2 are redistributed towards
the edge of the wire. As a consequence of this redistribution,
the densities of the spin-up �first subband� and spin-down
�second subband� electrons near the wire edge become ap-
proximately equal and so does the total confining potential

V��n�, Eq. �10�. The latter results in the absence of the spa-
tial separation for the outermost edge states N=1 and N=2.
Note that the effect of a collapse of the spatial separation
between the outermost edge states is related to the features of
the quantum-mechanical band structure, and hence is absent
in the Thomas-Fermi approximation.5,8 This effect can be
utilized in spintronics devices operating in the edge state
regime for injection of different spin species.15

The outermost spin-up and spin-down edge states remain
spatially degenerate up to the magnetic field B�2.25 T, see
Figs. 8�a� and 9. The spin polarization of the electron density
Pn gradually decreases in the range 1.9 T�B�2.8 T. This
decrease is related to the gradual depopulation of the third
�spin-up� subband. At B�2.8 T this subband practically de-
populates, Pn reaches its minimum, and the incompressible
strip is again formed in the middle of the wire �Fig. 8�f��.
With further increase of the magnetic field, the second �spin-
up� subband gets pinned to EF, and Pn gradually increases
until it reaches 100% at the magnetic field when the spin-up
subband depopulates.

As in the case of Hartree approximation, the evolution of
the magnetosubband structure within DFT described above
qualitatively holds for all other polarization loops.

Figure 7�c� shows the conductance for spin-up and spin-
down electrons G↑ ,G↓, the total conductance G=G↑+G↓, the
filling factor in the middle of the wire ��0�, and the spin
polarization of the conductance. The total conductance G�B�
decreases in steps of e2 /h closely following the depopulation
of the magnetosubbands as B increases. Note that the mag-
nitude of G�B� in plateau regions when N�2 shows a slight
increase in comparison to the corresponding value of Ne2 /h.
This effect has the same origin as in the case of Hartree
approximation �see Fig. 6 and a related discussion in the
text�. For N�2 this effect becomes much more pronounced
in comparison to the Hartree approximation. This is because
for magnetic fields corresponding to N�2, the separation

FIG. 9. �Color online� Spatial separation between the outermost
spin-up and spin-down edge states as a function of magnetic field B.
�The separation between the edge states is extracted from the cor-
responding current distribution �in arbitrary units�, see Fig. 8,
middle panel.� The number of subbands and the electron density
spin polarization Pn from Fig. 7 is shown for comparison.

FIG. 10. �Color online� The filling factor, current densities, and the magnetosubband structure �upper, middle, and lower panels corre-
spondingly� calculated within �a� Hartree and �b� DFT approximations for two quantum wires with different distances between the gates,
a=500 nm �left panels�, and a=1 �m �right panels�. Remaining parameters of the wire are chosen as indicated in the caption of Fig. 1. Solid
and dashed lines correspond to the spin-up and spin-down states. Fat solid and dashed lines indicate the total confining potential, Eq. �10�,
for, respectively, spin-up and spin-down electrons. Temperature T=1 K.
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between bottoms of spin-up and spin-down subbands due to
the exchange interaction exceeds 8kT. Because the subbands
are not flat, the spin-down subband �which is pinned to EF�
gives rise to several states propagating in the bulk of the wire
as discussed in the previous section, whereas the spin-up
subband �whose bottom lies well below EF� corresponds to
only one propagating state situated near the wire edge.

Note that the propagating states giving rise to the conduc-
tance for N�2 are the Bloch states of an infinite quantum
wire. In a typical experimental condition, a long quantum
wire is connected to a much wider region of 2DEG.38 The
edge states in the region of 2DEG are coupled only to the
edge states in the wire. As a result, the measured conduc-
tance for N�2 does not exhibit the increase over the plateau
values of Ne2 /h.38

Finally, we note that our analysis of the spin polarization
and evolution of magnetosubbands in quantum wires was
concentrated on a representative wire with the distance be-
tween the gates a=500 nm and the sheet electron density n
�1015 m−2. We would like to emphasize that all the results
presented here qualitatively hold for wires of arbitrary
widths and electron densities. This is illustrated in Fig. 10 for
the case of two quantum wires with different distances be-
tween the gates, a=500 nm and a=1 �m, which shows prac-
tically identical subband structures as well as electron and
current densities distributions.

V. CONCLUSION

In the present paper we provide a quantitative description
of the structure of edge states in split-gate quantum wires in
the integer quantum Hall regime. We start with a geometrical
layout of the wire and calculate self-consistently quantum-
mechanical magnetosubband structure and spin-resolved
edge states where electron and spin interactions are included
within the density functional theory in the local spin density
approximation �DFT+LSDA�.

We develop an effective and stable numerical method
based on the Green’s function technique capable of dealing
with a quantum wire of arbitrary width in a high perpendicu-
lar magnetic field. The advantage of this technique is that it
can be directly incorporated into magnetotransport calcula-
tions because it provides the eigenstates and wave vectors at
a given energy, not at a given wave vector �as conventional
methods do�. Another advantage of this technique is that it
calculates the Green’s function of the wire, which can be
subsequently used in the recursive Green’s function tech-
nique widely utilized for magnetotransport calculations in
lateral structures.

We use the developed method to calculate the self-
consistent subband structure and propagating states in the
quantum wires in a perpendicular magnetic field. We discuss
how the spin-resolved subband structure, the current densi-
ties, the confining potentials, as well as the spin polarization
of the electron and current densities evolve when an applied
magnetic field varies. We demonstrate that the exchange and
correlation interactions dramatically affect the magnetosub-
bands in quantum wires bringing about qualitatively new
features in comparison to a widely used model of spinless

electrons in Hartree approximation. These features can be
summarized as follows.

�a� The spin polarization of the electron density shows a
pronounced 1/B-periodic looplike pattern, whose periodicity
is related to the subband depopulation. For a given magnetic
field B the spin polarization in the quantum wire calculated
on the basis of DFT+LSDA is of the order of magnitude
higher in comparison to the Hartree approximation �where
the spin polarization is driven by the Zeeman interaction
only�.

�b� The magnetosubbands depopulate one by one, and the
conductance decreases in steps of e2 /h �not in steps of 2e2 /h
as in the case of Hartree approach when the spin-up and
spin-down subbands depopulate practically simultaneously�.

�c� The outermost spin-up and spin-down edge states be-
come spatially polarized �separated�, which is in strong con-
trast to the Hartree approximation, where they are situated
practically at the same distance from the wire boundary. We
also find that the spatial separation between the outermost
edge states disappears in the range of magnetic close to fill-
ing factor �=3 and then is restored again when the magnetic
field is raised. This effect can be utilized in the spintronics
devices operating in the edge state regime for injection of
different spin species.15

Recently, the structure of edge states around quantum an-
tidots has been the subject of a lively discussion.39 Even
though the method developed in the present paper applies to
quantum wires, it is reasonable to expect that for sufficiently
large antidots �when the single particle level spacing � is
smaller than kT� the present approach can also provide infor-
mation on the edge state structure around the antidots.

A direct probe of spin polarization of electrons in quan-
tum dot edge channels using polarized photoluminescence
spectra has been recently reported by Nomura and Aoyagi.40

Their method opens up a possibility for a direct probing of
the electron density spin polarization in quantum wires, such
that the results presented in our study �in particular the spin
polarization shown in Figs. 7�b� and 8�a��, can be directly
verified in the experiment.
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APPENDIX: EXCHANGE AND CORRELATION
POTENTIALS IN THE LOCAL SPIN DENSITY

APPROXIMATION

In this Appendix we provide explicit expressions for the
exchange and correlation potentials entering the DFT effec-
tive potential �6�. The exchange and correlation energies for
2DEG used in Eq. �8� are given by Tanatar and Ceperley
�TC�.27 The exchange energy reads

Eex = − Ry* 4�2

3�rs
��1 + ��3/2 + �1 − ��3/2� , �A1�

where ��y�= �n↑−n↓� /n is the local spin-polarization, n=n↑

+n↓ is the total electron density, and rs is the dimensionless
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density parameter which is defined in terms of the effective
Bohr radius a0

* �appropriate for a material with the effective
electron mass m*=mef fme, and the dielectric constant 	
=	r	0�,

rs =
a

a0
* , a =

1
��n

, a0
* =

4�	r	�2

mef fmee
2 =

	r

mef f
a0, �A2�

where Bohr radius a0=0.529�10−9 m. The factor Ry*

=mef fmee
4 /32�2	r

2	0
2�2=mef f /	r

2Ry �1 Ry=2.17989
�10−18 J� generalizes TC results for the case of an arbitrary
effective electron mass m* and relative dielectric constant 	r,
and converts TC expressions27 into SI units. The correlation
energy for the unnpolarized case ��=0� and for the fully
polarized case ��=1� is approximated in the form27

Ecor��� = − Ry*C0
1 + C1w

1 + C1w + C2w2 + C3w3 , �A3�

where w=�rs, and the coefficients C0, C1, C2, and C3 are
tabulated below �see Table I�. For the case of an intermediate
polarization, 0���1, the correlation energy can be interpo-
lated between the nonpolarized and the fully polarized cases

following the receipt of von Barth and Hendin24,37

Ecor��� = Ecor�0� + f����Ecor�1� − Ecor�0�� with f���

=
�1 + ��/32 + �1 − ��3/2 − 2

23/2 − 2
. �A4�

Taking the functional derivatives �8� using the above expres-
sions for the exchange and correlation energies �A1� and
�A3� we arrive at the following expression for the exchange
potential Vex↑, Vex↓, and for the correlation potentials used in
Eq. �6�,

Vex↑ = −
�2

4

e2

	0	r�
3/2

�n���1 + ��3/2 + �1 − ��3/2�

+
2n↓

n
��1 + � − �1 − ��� ,

Vex↓ = −
�2

4

e2

	0	r�
3/2

�n���1 + ��3/2 + �1 − ��3/2�

−
2n↑

n
��1 + � − �1 − ��� , �A5�

Vcor��� = Vcor�0� + f����Vcor�1� − Vcor�0�� ,

Vcor�� = 0 or � = 1�

= −
mef f

	r
2 RyC0

1 + d1w + d2w2 + d3w3 + d4w4

�1 + C1w + C2w2 + C3w3�2 ,

�A6�

where f��� is given by Eq. �A4�, and d1=2C1, d2= � 3
2C2

+C1
2�, d3= � 7

4C3+ 5
4C1C2�, and d4= 3

2C1C3.

*Permanent address: Centre of Nanoelectronics, Department of Mi-
croelectronics, Belarusian State University for Informatics and
Radioelectronics., 220013 Minsk, Belarus.
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