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A theoretical model of electron transport in quantum cascade lasers subjected to a magnetic field is devel-
oped. The Landau level electronic structure was calculated from the envelope-function Schrödinger equation
within the effective-mass approximation. The electron transport in a magnetic field was modeled using the
self-consistent rate-equation description for the full period of the cascade and its interaction with adjacent
periods. The scattering processes included in the model are electron–longitudinal-optical-phonon, electron–
longitudinal-acoustic-phonon, and electron-electron scattering. All these processes show oscillatory behavior
with magnetic field, and their interplay determines the electron transport and the output characteristics of
quantum cascade lasers in magnetic field. The model was applied to investigate the influence of magnetic field
on the performance of a GaAs/AlGaAs quantum cascade laser emitting at ��11.4 �m �P. Kruck et al., Appl.
Phys. Lett. 76, 3340 �2000��. The calculated results show good overall agreement with the available experi-
mental data.
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I. INTRODUCTION

Quantum cascade lasers1 �QCL’s� based on GaAs/
AlGaAs have undergone significant advances since their first
realization.2 Pulsed room-temperature operation has been re-
ported in several midinfrared QCL’s.3,4 Also, continuous
wave operation in the midinfrared region up to 150 K has
been achieved.5 QCL operation has been demonstrated in the
far-infrared range up to 210 �m.6–10 Recently, experimental
observations of enhanced population inversion and reduced
threshold current in QCL’s in a magnetic field have been
reported.10–17 Previous theoretical work aiming to explain the
influence of a magnetic field on the physical processes in-
volved has been focused only on processes in the active re-
gion. Several studies have analyzed electron–longitudinal-
optical �LO�-phonon scattering between the upper and lower
laser levels in midinfrared QCL’s,12–14,18 and very few have
considered electron-electron scattering between these levels
in THz QCL’s.19 Modeling of the active region of QCL’s,
including electron-LO-phonon and electron–longitudinal-
acoustic �LA�-phonon scattering, and assuming a unity injec-
tion approximation, has been reported.20,21 However, none of
these studies has investigated the electron transport through
the injector-active region-collector cascade.

The influence of electron-electron scattering on QCL per-
formance in a magnetic field may be significant, since it
determines electron injection efficiency from the injector into
the upper laser level.22 Various parasitic mechanisms, such as
leakage from the injector directly into the ground and lower
laser levels, the continuum states, and the collector, degrade
the population inversion and hence the optical gain. These
effects cannot be investigated without consideration of the
injector region and inclusion of electron-electron scattering
into the model.

The aim of this work is to develop a comprehensive
model of electron transport in QCL’s in a magnetic field,
considering full QCL periods �both the injector-collector and
active regions�. The main objective is to determine the elec-
tron populations and scattering rates between Landau levels
in the structure and then to calculate the QCL output charac-
teristics, such as the current density, the gain, and the thresh-
old current. The results, together with a theoretical back-
ground, should provide a better insight into the underlying
physical phenomena. Also, the model should enable the de-
sign of novel quantum cascade structures operating in mag-
netic field and prediction of their output characteristics. A
detailed analysis is performed for a midinfrared GaAs/
AlGaAs QCL in a magnetic field,23 which has been studied
experimentally.13,14

II. THEORETICAL CONSIDERATIONS

A. Electronic structure of quantum wells in a magnetic field

Application of a magnetic field perpendicular to quantum
well layers splits the in-plane continuum of quantized sub-
bands into Landau levels �LL’s�, additionally described by
Landau and spin indices.24 The electronic structure of quan-
tum wells in a magnetic field is found by solving the
Schrödinger equation for envelope functions using the
effective-mass approximation.25 The LL calculation accounts
for the nonparabolicity of both the parallel and perpendicular
effective masses.26 Neglecting the spin splitting, the energy
of the �ji�th LL originated from the �mi�th state �subband�,
with further considerations denoted with a shorthand sub-
script i, i= �mi , ji�, is
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where Ēmi
is the energy of state mi, � is Planck’s constant, e

is the electron charge, B is the applied magnetic field, m̄mi
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�dz, where m
�z ,E�=m*�z��1+ �2��+���
��E−U�z��, is the parallel effective mass, m*�z� is the
position-dependent band-edge electron effective mass, ��
and �� are the nonparabolicity parameters, and U�z� is the
conduction band profile. Along the z axis, the wave functions
of LL’s are independent of their Landau index ��i�z�
= �̄mi

�z��.
We should note that the decoupling between the motion

perpendicular and parallel to the layers, characterized by the
corresponding effective masses, is valid for infinite quantum
wells26 �QW’s� and is a good approximation for finite QW’s
if they are not too narrow. Since QCL’s comprise periods of
relatively narrow, coupled QW’s, this decoupling may be
questionable. However, since a more rigorous consideration
of this problem in such a complex structure is not trivial, the
decoupling approximation was used for QCL’s.

B. Interaction of electrons with an electromagnetic field

For z-polarized radiation optical transitions are allowed
only between LL’s of the same Landau and spin index, and
all of them have the same value of the dipole matrix element.
The optical gain is calculated considering transitions be-
tween all LL’s stemming from the upper and lower laser
levels25,27,28 �denoted as states 4 and 2, respectively�,

G4,2 =
e2�

n	0c
M4,2

2 �
i, f

�mi=4,mf=2,ji=j f=j�

�ni − nf�

�

/2

�Ei − Ef − � ��2 + �
/2�2 , �2�

where i= �mi , j� and f = �mf , j� are LL’s stemming from states
mi=4 and mf =2 of the same Landau index j, Ei and Ef are

their energies with the corresponding wave functions �̄4 and

�̄2, M4,2=��̄4
*�z�z�̄2�z�dz is the dipole matrix element, ni and

nf are the electron sheet densities, � is the frequency of
incident radiation, n is the refraction index, 	0 is the permit-
tivity of vacuum, c is the speed of light in vacuum, and 
 is
the transition linewidth �full width at half maximum
�FWHM��.

C. Scattering processes

The present model includes electron–LO-phonon,
electron–LA-phonon, and electron-electron scattering. Re-
cent experimental results for structures with higher electron
densities indicate that electron-electron scattering is more
important than interface roughness and ionized impurity
scattering.29 It has been also suggested that at large magnetic
fields and low temperatures the interface roughness and im-
purities do not lead to intersubband scattering but to an in-
homogeneous broadening of the gain because of carrier

localization.10 Therefore, the latter two scattering processes
are considered negligible.

The scattering processes in an external magnetic field may
be significantly enhanced or suppressed, depending on the
inter-LL energy separation. The electron–LO-phonon scatter-
ing between two LL’s increases considerably as their energy
difference approaches the resonant LO phonon energy
��36 meV in GaAs�. A similar conclusion applies for
electron-electron scattering, where a resonance occurs when
the total energies of two initial and two final LL’s are equal.
Electron–LA-phonon scattering also shows resonant behav-
ior when two LL’s have very similar energies.

1. Interaction of electrons with longitudinal optical phonons

The electron–longitudinal-optical-phonon scattering rate
between LL’s i= �mi , ji� and f = �mf , j f� if ji� j f reads28

Wi,f =
e2�LO

2�	p
�n0��LO� +

1

2


1

2
���Ei − Ef ± � �LO�

� �
0

�

qxy�Hji,j f
�qxy��2 dqxy�

0

� �Gmi,mf
�qz��2

qxy
2 + qz

2 dqz, �3�

where �LO is the optical phonon frequency, qxy �qxy = �qxy � � is
the xy component and qz is the z component of the phonon
wave vector q= �qxy ,qz�, the constant 	p is defined as 	p

−1

=	�
−1−	s

−1 where 	� and 	s are high-frequency and static per-
mittivity, respectively, and n0��LO� is the Bose-Einstein fac-
tor. To calculate the scattering rate for ji� j f, one swaps the
two subscripts. The upper sign in the �n0��LO�+ 1

2 
1
2
� term

and in the energy conservation law �the � function� holds for
absorption and the lower sign for emission.

The form factor Gmi,mf
�qz� is defined as

Gmi,mf
�qz� =� �̄mf

* �z�eiqzz�̄mi
�z�dz . �4�

The lateral overlap integral Hji,j f
�qxy� is given in analytic

form

�Hji,j f
�qxy��2 = e−qxy

2 /2�2 ji!

j f!
� qxy

2

2�2	 j f−ji�Ljf

jf−ji� qxy
2

2�2	�2

, �5�

where �=�m*�c /�=�eB /� and Ln
k�x� is the associated La-

guerre polynomial. The � function was replaced by a Gauss-
ian distribution with the standard deviation given as �
=�0

�B, where �0=1 meV/T1/2,30 to account for state broad-
ening.

2. Interaction of electrons with longitudinal acoustical phonons

The transition of an electron from the ith LL �i= �mi , ji��
with larger energy than that of the final fth LL �f = �mf , j f��
via an interaction with longitudinal acoustic phonons in a
magnetic field is given by28
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DA
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��vs
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where

qxy0 =��Ei − Ef

�vs
	2

− qz
2. �7�

Here DA is the deformation potential, � is the density of the
material, vs the sound velocity, Gmi,mf

�qz� and Hji,j f
�qxy� are

the form factor and the lateral overlap integral for electron–
LO-phonon scattering, respectively, and

qzmax =
�Ei − Ef�

�vs
. �8�

If Ei�Ef, the electron-LA scattering is calculated from a
similar expression

Wi,f =
DA

2�Ei − Ef�2

��vs
4�3

1

e�Ei−Ef�/kT − 1

� �
0

qzmax

�Gmi,mf
�qz��2�Hji,j f

�qxy0��2dqz. �9�

3. Electron-electron interaction

The electron-electron scattering rate from an initial state
containing an electron in LL i with a wave vector ki and an
electron in LL j to a final state containing electrons in LL’s f
and g is19,29

Wi,j,f ,g�ki� =
e4

8�3	s
2�
� � M2�ki,kj,kf�dkjdkf

���Ef + Eg − Ei − Ej� , �10�

where ki, kj, and kf are the electron wave vectors of LL’s i, j,
and f , respectively. The scattering matrix element is given as

M�ki,kj,kf� =� � ujf

*
„x − f�kf�…ujg

*
„x� − f�kg�…

�uji
„x − f�ki�…ujj

„x� − f�kj�…dx dx�

�� � �̄mf

* �z��̄mg

* �z���̄mi
�z��̄mj

�z��

�K0��kf − ki���x − x��2 + �z − z��2�dz dz�,

�11�

where uji
(x− f�ki�) is the harmonic oscillator wave function

of LL i, f�ki�=ki / �eB / � �, K0 is a modified Bessel function of
the second kind, and kg is the electron wave vector of LL g,
equal to ki+kj −kf. No screening appears in this
expression.19,29 A Gaussian of the same standard deviation as
in the electron–LO-phonon scattering was used instead of the
� function to model LL broadening.

D. Electron transport in a cascade

A semiclassical model of electron dynamics in QCL’s in a
magnetic field is developed in order to describe the electron
transport processes. The populations of LL’s in a QCL with a
large number of periods in an electric and magnetic field are
obtained from the system of rate equations in the steady
state28,31:

dnf

dt
= 0 = �

i

niWi,f�1 − �Bnf� − nf�
i

Wf ,i�1 − �Bni�

+ �
i,j,g

niWi,j,f ,g�Bnj�1 − �Bnf��1 − �Bng�

− nf�
i,j,g

Wf ,g,i,j�Bng�1 − �Bni��1 − �Bnj� , �12�

where i, j, f , and g run over all LL’s in the cascade, in all of
its periods, ni is the electron concentration in ith LL, Wi,f is
the scattering rate from LL i into LL f , and Wi,j,f ,g is the
two-electron scattering rate from LL’s i and j into LL’s f and
g, both independent of the electron distribution. The
electron-electron scattering rate Wi,j,f ,g is calculated by aver-
aging Eq. �10� over the initial wave vector ki. The Pauli
exclusion principle, usually embedded in the total scattering
rate expressions, is extracted in form of the factors �Bni and
�1−�Bni�, where �B=�� /eB.

The periodicity of the QCL design enables solving the
system of rate equations in a similar manner as proposed in
Ref. 32. Each state and its LL’s can be associated with one of
the periods of the QCL due to the wave-function localization
properties. Then, the tight-binding description can be intro-
duced by accounting for several neighboring periods. A glo-
bally linear variation of the conduction band potential is as-
sumed. Therefore, each period has an identical set of N LL’s,
with identical electron distributions �ni=ni+kN, k=0, ±1,
±2, . . .� and identical scattering rates �Wi,j =Wi+kN,j+kN�. Their
wave functions are replicas of each other, translated in space
and energy. Then, the system of rate equations takes a sim-
plified form

dnf

dt
= 0 = �

k=−P

P

�
i=1

N

niWi+kN,f�1 − �Bnf�

− nf �
k=−P

P

�
i=1

N

Wf ,i+kN�1 − �Bni�

+ �
���k� � P�
k,k�,k�=−P

P � �
i,j,g=1

N

niWi+kN,j+k�N,f ,g+k�N�B

�nj�1 − �Bnf��1 − �Bng�

− nf �
i,j,g=1

N

Wf ,g+k�N,i+kN,j+k�N�Bng�1 − �Bni��1 − �Bnj�� ,

�13�

where i, j, f , and g now run over all LL’s assigned to one
period and P is the number of its adjacent periods on each
side. Furthermore, using the translation invariance of scatter-
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ing rates �Wi−kN,j =Wi,j+kN�, the rate equations may be written
so as to contain only the scattering rates with positive sub-
scripts. N−1 out of the total of N equations are linearly in-
dependent. Therefore, if solving them as a set of nonlinear
equations to find the steady-state solution, one rate equation
should be replaced by the electroneutrality condition. On the
other hand, if calculating the time evolution of Eq. �13�, this
comes in as the set of initial conditions.

The current density is calculated by accounting for all the
components due to electron scattering through some refer-
ence plane—e.g., the interface between the central period
and the adjacent right period:

J = �
���k� � P�

k,k�=−P

P

�
i,f=1

N

niWi+kN,f+k�N�1 − �Bnf��h�k�� − h�k��

+ �
���k� � P�

k,k�,k�,k�=−P

P

�
i,j,f ,g=1

N

niWi+kN,j+k�N,f+k�N,g+k�N�Bnj�1 − �Bnf�

��1 − �Bnf��1 − �Bng��h�k�� + h�k�� − h�k� − h�k���,
�14�

where h�k�=1 if k� �1, P� and h�k�=0 if k� �−P ,0�. In the
example considered below, all the states are reasonably well
located in the period they are assigned to, so we use the
scattering between the nearest-neighbor periods only; i.e., we
set P=1 in the above expressions.

We should note that there is no temperature, except the
lattice temperature, which appears in this model. That is, no
particular form of electron distribution is assigned to the set
of LL’s associated with one size-quantized state, which all
“originate” from different in-plane wave vectors existing in
the zero field limit. In contrast, the electron distribution over
all, fully discrete, levels is found from the above rate equa-
tions. Despite the name, therefore, the model corresponds to
the Boltzmann-equation rather than the rate-equation ap-
proach, in the terminology used �for the zero-field case� in
the QCL community, and the type of “thermal self-
consistency” it achieves corresponds to that obtained, e.g., in
Monte Carlo simulations of QCL’s in zero magnetic field.32

A consequence of this level of detail is that a considerably
larger number of levels �typically �200� is handled than is
usual in the rate-equation model of QCL’s at zero field. Solv-
ing a system of nonlinear equations of that size becomes
difficult when using conventional, gradient-based methods,
because they frequently fail to converge. In order to find the
stationary solution of Eq. �13� we actually track the time
evolution of nonstationary rate equations: starting with an
arbitrary �but reasonable� initial guess, the rate equations are
integrated in time until the distribution becomes essentially
stationary. Although perhaps not the fastest, this method
proved to be extremely reliable in terms of convergence.

Upon obtaining electron populations from the self-
consistent rate equations �local self-consistency�, their con-
tribution to the effective conduction band potential can be
calculated from the Poisson equation, completing one itera-
tion of the globally self-consistent calculation. Iterations

should be performed until convergence of the conduction
band profile, and hence the electronic structure and electron
populations, is reached. However, in this work, the compu-
tational time of a single iteration is too large to enable the
realization of the entire globally self-consistent process.
Only one iteration was performed, and the change of energy
spacing between any two states was always less than 10%.

III. NUMERICAL RESULTS AND DISCUSSION

The calculation and analysis of the electron transport were
performed for the �11.4−�m GaAs/Al0.33Ga0.67As QCL,
described in Refs. 13 and 14, similar to the QCL from Ref.
23. The electric field was set to 44 kV/cm, the value for
which this QCL achieves threshold in zero magnetic field.
The lattice temperature was set to 4 K, and the magnetic
field was varied between 10 T and 60 T, as in the
experiment.14 The calculation can be performed for magnetic
field less than 10 T, though it becomes extremely time con-
suming due to the increasing number of relevant LL’s as the
magnetic field decreases. Furthermore, for small magnetic
fields the broadening of LL’s becomes larger than the
inter-LL separation and the magnetic field does not affect the
transport. Therefore, a zero-field calculation22,31 appears to
be more appropriate for the weak-field limit. The electronic
structure of the QCL at zero magnetic field is illustrated in
Fig. 1. The active region levels 1, 2, and 4 represent the
ground, the lower, and the upper laser levels, respectively.
The injector-collector states are denoted as 3, 5, 6, 8, and 9.
State 7 represents a weakly localized continuumlike state.

A. Electron population

The calculated populations of LL’s associated with the
active region levels and the first injector state, as functions of
magnetic field, are given in Fig. 2. To emphasize the impor-
tance of including electron-electron scattering in the model,
the results obtained without this scattering mechanism are
shown in Fig. 3. Comparison of the two figures clearly

FIG. 1. A schematic diagram of the conduction band profile,
energy levels, and squared wave functions for an injector-active
region-collector section of the �11.4-�m GaAs/Al0.33Ga0.67As
QCL for an applied electric field of 44 kV/cm. The active region
levels are shown in bold and denoted as 1, 2, and 4, respectively.
The first injector state is represented by dashed lines and denoted as
3. Other injector states are denoted as 5, 6, 8, and 9. State 7 repre-
sents a continuumlike state.
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shows that neglecting electron-electron scattering in the
model leads to different electron distributions, especially of
the upper laser level and the first injector state, and hence
also to incorrect estimate of the output characteristics.

For some values of the magnetic field �18–22 T,
28–32 T, 38–42 T�, the population of the upper laser level
almost equals the population of the first injector state �see
Fig. 2�, while the other states are depopulated. The same
situation occurs in QCL’s without a magnetic field when the
electric field is increased above threshold. For other values of
the magnetic field, the population of the upper laser level is
considerably smaller than that of the first injector state, while
the populations of all other states are increased.

The population of higher injector states and the lower
laser level are low throughout the magnetic field range con-
sidered. It is only the populations of the second injector state
for B�20 T and of the third injector state for B�20 T that
have significant values, suggesting their major contribution
in the extraction of electrons from the ground state.

It is interesting to look into the electron distributions over
LL’s stemming from different states. This is shown in Fig. 4
for two different magnetic fields. With the exception of the
first injector state, these distributions do not appear to be

very well thermalized �the lower laser level being the most
remote from it� and the general shape of distributions
changes with the field. The first injector state is almost com-
pletely thermalized, and an effective electron temperature of
140 K at B=10 T and 154 K at B=20 T can be extracted
from Fig. 4. Had all the distributions been found to be ther-
malized, this would indicate the possibility to reduce the or-
der of the model by defining the averaged-over-LL’s scatter-
ing rates between size-quantized states, in the same manner
as is done in the rate equations model of QCL’s at zero field
�in which case the effective-state temperatures would appear,
to be determined from energy balance considerations�. How-
ever, electron-electron scattering is not fast enough to create
such conditions, at least not in the structure considered here,
and this requires the use of the present model.

B. Scattering rates

The transition rates between LL’s determine the LL popu-
lation and the current across the device, particularly the tran-
sitions between LL’s stemming from the first injector state
and the active region and from the upper and lower laser
levels. Therefore, we discuss them in some more detail.

The average scattering rate between the LL’s originating
from state mi into the LL’s originating from state mf is de-
fined as

Wmimf

a =

�
ji

�
j f

n�mi,ji�
W�mi,ji�,�mf,j f�

�
ji

n�mi,ji�

. �15�

The total average scattering rate from the LL’s associated
with state mi into the LL’s associated with any other state
mf �mi is then defined as

Wmi

a = �
mf�mi

Wmimf

a . �16�

FIG. 2. �Color online� The electron distribution over QCL states
�all Landau levels� vs magnetic field, calculated with electron-
electron scattering included. States 1, 2, 3, and 4 represent the
ground state, the lower laser level, the first injector state, and the
upper laser level, respectively. NS is the total sheet density of elec-
trons per period.

FIG. 3. �Color online� The electron distribution over QCL states
�all Landau levels� vs magnetic field, calculated with electron-
electron scattering neglected. States 1, 2, 3, and 4 represent the
ground state, the lower laser level, the first injector state, and the
upper laser level, respectively. NS is the total sheet density of elec-
trons per period.

FIG. 4. The electron distribution over first five Landau levels
stemming from the first four QCL states for magnetic fields of 10 T
�upper pane� and 20 T �lower pane�. States 1, 2, 3, and 4 represent
the ground state, the lower laser level, the first injector state, and the
upper laser level, respectively.
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The total average scattering rates from LL’s associated
with each state are oscillatory functions of magnetic field
�shown in Fig. 5�, whose peaks are determined by resonances
with the LL’s of the other states. The calculation showed that
electron–LO-phonon scattering is dominant for electron
transfer in the active region and from the injector to the
lower laser levels �the ground state + the lower laser level�,
while electron-electron scattering prevails for transfers
within the injector, from the injector to the upper laser and
continuum levels, and from the lower laser levels to the col-
lector. The scattering rates of the first injector state and the
ground state are the lowest scattering rates throughout the
whole magnetic field range. The large values of scattering
rates of other injector states imply fast relaxation in the in-
jector. Efficient extraction from the lower laser level is en-
abled by its large scattering rate.

The average scattering rates from either the first injector
state or the upper laser level into the lower laser levels are
determined by electron–LO-phonon interactions and show
prominent oscillations with magnetic field �W3�1,2�

a and
W4�1,2�

a in Fig. 6�. Each average scattering rate between LL’s
originating from two different states �W31

a , W32
a , W41

a , W42
a �

exhibits a monotonic increase of peak values with magnetic

field, due to the increasing density of states of LL’s.18,19 Also,
the peak-to-valley ratio increases and the valley values de-
crease, as a consequence of increasing separation between
the resonances.19 From Fig. 5, one can see that the peak and
valley values of W3�1,2�

a =W31
a +W32

a and W4�1,2�
a =W41

a +W42
a

show the same behavior up to 30 T.
Since the separation between the first injector state and

the upper laser level is small ��5 meV�, scattering between
them is determined by the electron-electron interaction and
electron–LO-phonon scattering is negligible. Furthermore,
this energy separation is such that resonances between these
states do not occur in the magnetic field range considered, so
the oscillations of the scattering rate are not so pronounced.
Its weak decreasing dependence on the magnetic field is at-
tributed to the reduced electron-electron scattering cross
section.29

C. Population inversion

The population inversion and, hence, the optical gain are
determined by transitions between the first injector state and
the active region and transitions between the upper and lower
laser levels. If the electron-electron scattering from the first
injector state into the upper laser level W34

a is larger than the
electron–LO-phonon scattering from the first injector state
into the lower laser levels W3�1,2�

a , the majority of electrons
are injected into the upper laser level. A suppressed electron–
LO-phonon scattering from the upper to the lower laser lev-
els W4�1,2�

a leads to an enhanced population inversion �for
magnetic fields of �11 T, 14–15 T, 18–22 T, 28–33 T,
37–42 T; see Fig. 7�, and vice versa �12–14 T, 17–18 T,
26–28 T, 35–37 T, 42–43 T�. If the electron–LO-phonon
scattering from the first injector state to the lower laser levels
W3�1,2� is dominant, the population inversion is insignificant
or cannot be achieved, because of low injection into the up-
per laser level ��12 T, 15–17 T, 22–26 T, 33–35 T,
43–56 T�. For magnetic fields of 56–60 T, when W3,�1,2�

a

�W3,4
a , the population inversion can be obtained, due to suf-

ficient injection into the upper laser level and rapid extrac-
tion of electrons from the lower laser level into the ground
state.

D. Optical gain

Oscillations of population inversion with magnetic field
translate into oscillations of the optical gain �Fig. 7�, which

FIG. 5. �Color online� Left: total average scattering rates �see
text for explanation� from the active region levels �all Landau lev-
els� vs magnetic field. States 1, 2, and 4 represent the ground state,
the lower laser level, and the upper laser level, respectively. Right:
total average scattering rates from the injector states �all Landau
levels� vs magnetic field. States 3, 5, 8, and 9 represent first, sec-
ond, fourth, and fifth injector states, respectively.

FIG. 6. �Color online� Average scattering rates �see text for ex-
planation� from the first injector state �state 3� and the upper laser
level �state 4� Landau levels into the lower laser level �states 1 and
2� Landau levels and from the first injector state to the upper laser
level Landau levels vs magnetic field.

FIG. 7. Modal gain vs magnetic field dependence.
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reaches large peak values. The modal gain GM is defined as
GM =G4,2� /Lp, where � is the overlap factor between the
optical mode and the core active region of the QCL �here
�=0.36 �Ref. 23�� and Lp is the length of one period. It was
computed using the experimental value of the electrolumi-
nescence spectral width of 12.5 meV �Ref. 13� as the transi-
tion linewidth 
. It was assumed that the transition linewidth
was independent of magnetic field, since such experimental
data are not available, although a more accurate calculation
should include this dependence. It was also assumed that the
waveguide losses were independent of magnetic field, and
the experimentally obtained mirror �M =19.5 cm−1 and
waveguide �W=44 cm−1 losses for zero magnetic field23

were used in the calculation. From the intersection points of
the total loss line �M +�W=63.5 cm−1 and the GM�B� curve,
we obtain the range of magnetic fields where lasing occurs,
which is in fairly good agreement with measurements of the
light intensity at threshold.13 The calculated modal gain
shows a similar trend as the light intensity, shown in Fig. 2 in
Ref. 13. The disagreement between the results from the cal-
culation and the experiment in the range 30–40 T is due to
the approximate calculation of the electronic structure given
in Sec. II A.

E. Current

The current is determined by transitions from the first
injector state into the active region. The current versus mag-
netic field dependence is shown in Fig. 8. When the electron-
electron scattering from the first injector state into the upper
laser level W34

a is larger than electron–LO-phonon scattering
into the lower laser levels W3�1,2�

a , the current is essentially
determined by this electron-electron scattering, followed by
the electron–LO-phonon scattering from the upper to the
lower laser levels W4�1,2�

a . Otherwise, the current is governed
by the electron–LO-phonon scattering from the first injector
state into the lower laser levels W3�1,2�

a . Therefore, the mag-
netic field redirects the current through different transport
channels, enhancing parasitic leakage from the injector into
the lower laser levels when lasing is suppressed. The current
density is characterized by increasing peak and decreasing
valley values with increasing magnetic field, similar to the
behavior of relevant scattering rates.

F. Threshold current

The exact calculation of the threshold current in a mag-
netic field requires the calculation of the current density ver-
sus electric field dependence, then modal gain versus current
dependence, and finally, extraction of the threshold current
Jth from GM�Jth�=�M +�W, for each value of the magnetic
field. Instead, we used an approximate expression Jth= ��M

+�W� /g�, where g is the gain coefficient, after Ref. 33. As-
suming a linear dependence of the modal gain on the current
density GM =g�J when inversion is achieved �i.e., when GM
is positive�, we get Jth=J��M +�W� /GM. For negative GM,
there is no lasing and the threshold current cannot be calcu-
lated within this approximation. Although this might be a
rather crude approximation, it had to be adopted because
each single bias-field combination requires a lot of computa-
tional time. The threshold current density dependence of the
magnetic field is shown in Fig. 9. Its minima generally de-
crease with magnetic field and are constantly lower than the
measured threshold current 6.6 kA/cm2 at zero magnetic
field.23 This is in qualitative agreement with the results from
recent measurements of THz QCL’s in magnetic fields.10,17

IV. CONCLUSION

A semiclassical model of electron transport in QCL’s in a
magnetic field was presented and used to analyze the opera-
tion of midinfrared GaAs/AlGaAs QCL’s. We have calcu-
lated all relevant scattering rates, have shown their oscilla-
tory dependence on magnetic field, and have discussed their
influence on the electron transport. A significant contribution
of electron-electron scattering to low-energy relaxation pro-
cesses, particularly to injection into the upper laser level, was
found. Large oscillations of the laser gain and redirection of
current flow through different transport channels with mag-
netic field were observed. The calculated output characteris-
tics are in good quantitative and qualitative agreement with
the available experimental results.
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