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The internal structure of a composite fermion is investigated for a two-dimensional parabolic quantum dot
containing three electrons. A Yukawa screened Coulomb interaction is assumed, which allows us to discuss the
evolution of the electron-vortex correlations from the Coulomb interaction limit to the contact potential limit.
The vortex structure approaches the Laughlin limit nonmonotonically through the formation of intermediate
composite fermions in which a flip of the spatial orientation of the vortices with respect to the position of the
electrons is observed. Only when we limit ourselves to the lowest Landau level �LLL� approximation the flip
appears through the formation of an intermediate giant vortex at specific values of the screening length.
Beyond the LLL approximation antivortices appear in the internal structure of the intermediate composite
fermions which prevent the nucleation of giant vortices. We also studied the system of five electrons and show
that the mechanism of the flip of the vortex orientation found for three-electron system is reproduced for higher
number of electrons.
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I. INTRODUCTION

Theoretical interpretation of the fractional quantum Hall
effect1 �FQHE�, observed at high magnetic field in the spin-
polarized two-dimensional �2D� electron gas, is based on the
properties of the Laughlin2 wave function. FQHE for elec-
trons is explained3 in terms of the integer quantum Hall ef-
fect for composite fermions, i.e., quasiparticles consisting of
electrons with additional even number of bound vortices �or
magnetic field fluxes�. The vortices appear as zeros of the
many-electron wave function when its phase changes by 2�
on a path around this zero. The electron in a composite fer-
mion feels a reduced effective magnetic field as the bound
vortices partly cancel the usual Aharonov-Bohm phase on a
closed loop around the electron.4 The original problem con-
sidered by Laughlin,2 i.e., the diagonalization of the few-
electron eigenequation in the basis of single-electron wave
functions obtained in the symmetric gauge, is formally very
similar to an electron system confined in a parabolic quan-
tum dot. Only very recently wider attention has been paid to
the vortices in the quantum Hall regime of confined
systems5–10 and to the composite fermion theory for quantum
dots.11–13 In particular, the vortex distribution for Coulomb
interacting electrons confined in quantum dots was
investigated5–7 using the exact diagonalization technique and
the reduced wave function imaging. The structure of vortices
as obtained from such exact calculations differs significantly
from the one assumed in the Laughlin wave function or in
the composite fermion approach. It was found5–7 that the
vortices are not localized on the electron as assumed in the
Laughlin state but stay in the neighborhood of electrons to
which they are bound. On the other hand, Laughlin functions
are the exact nondegenerate ground state wave functions for
the case of short-range interactions. Analytical proof of their
exactness and uniqueness was provided14 for potentials de-

veloped in series of �2j�2�r�. The energy gap allowing the
Laughlin liquid to be incompressible was identified15 as due
to the short-range component of the Coulomb interaction.

The purpose of the present work is to investigate how the
vortex structure is modified when the inter-electron interac-
tion is taken from the Coulomb limit to the contact potential
limit. We show that the vortices approach the Laughlin liquid
limit in a nonmonotonic fashion. Within the lowest Landau
level �LLL� approximation for filling factors ��1/3 inter-
mediate composite fermion states are found with two addi-
tional vortices localized on the electron. Beyond the LLL
approximation the internal structure of the intermediate com-
posite fermion turns out to be very complex with possible
appearances of antivortices which can even be localized at
the position of the electron. Within the LLL we found that
only in the contact potential limit more than two extra vorti-
ces are localized at the electron position.

In the present paper we focus our attention on the lowest
number of electrons, i.e., N=3, for which a nontrivial5 inter-
nal composite fermion structure can be observed in the re-
duced wave function. Next, we verify the conclusions
reached for N=3 studying the vortex structure of a five-
electron system. To study the dependence of the structure on
the range of the inter-electron interaction we assume that the
electrons interact through a Yukawa potential

V�r� =
e2

4��0�

exp�− r/��
r

, �1�

which in the large and small screening length ��� limits
yields the Coulomb and the contact potential, respectively. A
potential of the form �1� is obtained for an external Coulomb
defect linearly screened by a three-dimensional electron
gas.16 In fact the screening of the electron-electron interac-
tion in electrostatic quantum dots results from charges in-
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duced on the metallic electrodes and is of a more complex
form.17 The screening of the electron-electron interaction by
the image charges cuts off the long tail of the Coulomb po-
tential. The contact potential limit corresponds then to the
case of a negligible distance of the quantum dot to the metal
gate in comparison to the dots size.

This paper is organized as follows: Section II presents the
theory behind the results, which are given in Sec. III. Section
III A contains the results calculated in the LLL approxima-
tion and the influence of the higher LL is described in Sec.
III B. Results for five electrons are given in Sec. III C. Sum-
mary and conclusions are provided in Sec. IV.

II. THEORY

The effective mass Hamiltonian of our system is

Ĥ = �
i=1

N � �− i��i + eA�ri��2

2m* + Vext�ri�� + �
i�j

N

V�rij� , �2�

where Vext�r�= 1
2m*	2r2 is the parabolic confinement poten-

tial, and A is the vector potential. We adopt the GaAs effec-
tive mass m*=0.067me and dielectric constant �=12.4. All
the calculations were performed for �	=1 meV for which
the oscillator length equals l0�	� /m*	=33.7 nm. The
Schrödinger equation is solved using the exact diag-
onalization �ED� technique18 with the three-electron Slater
determinants constructed from the single-electron Fock-
Darwin orbitals.19 We investigated the ground-state
magnetic-field induced angular momentum and spin transi-
tions of the three-electron system as function of the screen-
ing length in the presence of a perpendicular magnetic field
��
A= �0,0 ,B��. For �→� we exactly reproduce the re-
sults of Ref. 20 �our parameters correspond to the interaction
constant �� l0 /aB=3.44, with aB the donor Bohr radius�. For
finite values of � no interesting results are obtained: decreas-
ing the screening length has the trivial effect of decreasing
the strength of the interaction ���, the ground-state spin-
orbital symmetry sequence remains unchanged, only the
critical magnetic fields for the transitions between subse-
quent angular momentum states are shifted to higher values.

We consider only the spin-polarized states of the magic
angular momentum sequence19 �total angular momentum L�
being a multiple of 3��, which become ground states at high
magnetic fields, after the maximum density droplet decays.
The results presented below were obtained mostly within the
LLL �more precisely in the lowest Fock-Darwin band19 of
zero radial quantum number and nonnegative angular mo-
mentum� to keep a direct correspondence to the Laughlin
wave function. In the discussion of the vortices we do not
apply any magnetic field to the system without loss of gen-
erality for the wave function, since for a harmonic confine-
ment potential the magnetic field simply rescales the electron
coordinates of the wave function for a given L,18


B�0�r1,r2,r3� = 
B=0��r1,�r2,�r3� , �3�

with the scaling factor �= �1+ �	c /2	�2�1/4, where 	c

=eB /m* stands for the cyclotron frequency. Note, that prop-
erty �3� implies that if, as generally accepted, the ground

states at high magnetic fields are well approximated by the
LLL, the approximation is not any worse at B=0, where the
high L states correspond to high excitations. Moreover, the
eigenstates of the Hamiltonian written in the basis of Slater
determinants built of LLL wave functions can be exactly
identified with the eigenstates of the electron-electron inter-
action matrix operator. They are therefore the same for any
constant � multiplying the interaction potential �Eq. �1��,
even if for large � the LLL approximation can be arbi-
trarily bad.22 In the calculations we consider screening
lengths ��0.1 nm. The deltalike interaction potential ob-
tained for �→0 does not influence the energies or wave
functions for a spin-polarized system because of the Pauli
exclusion principle. Consequently, for �=0 one obtains a
multifold degenerate noninteracting ground state. Since in
the diagonalization these states �with very different vortex
structure each� mix stochastically one cannot carry on the
discussion of vortices for a screening length equal to zero. As
a matter of fact, there is actually no need to take � strictly
zero, since then the Laughlin function, as well as any other
wave function constructed within the LLL, obviously corre-
sponds to the degenerate ground state.

A general form of the three-electron wave function in the
LLL approximation is21


�z1,z2,z3� = �
j

� jAz1
j1z2

j2z3
j3 exp�−

1

2�
k=1

3 
zk
2

l0
2 � , �4�

where A stands for the antisymmetrizer, zk�xk+ iyk denotes
the complex, two-dimensional position of the kth particle,
� j are the linear variational parameters, j1, j2, j3 are non-
negative integers, of which not a pair is identical, and
j1+ j2+ j3=L. The Laughlin wave function2 for the angular
momentum L=3m �for odd m� is a product of the Jastrow
factor and a Gaussian

�1/m�z1,z2,z3� = �
k�l

�zk − zl�m exp�−
1

2�
n=1

3 
zn
2

l0
2 � , �5�

which is a special form of the general formula �4�. In the
Laughlin function the filling factor �=1/m is directly related
to the number of zeros m localized on each electron as well
as to the angular momentum �=N�N−1� / �2L� �for N=3
electrons, one has �=3/L�. Note that not all the states of the
magic angular momentum sequence can be represented by
the Laughlin function, only those of odd L can.

We investigate the zeros of the reduced wave function,5–7

constructed by fixing coordinates of two electrons z1 and z2

�z1,z2
�z� = 
�z1,z2,z� , �6�

where z is the test electron coordinate. The reduced Laughlin
wave function is a complex polynomial of the test electron
position �z� of degree 2m= 2

3L, multiplied by a Gaussian. On
the other hand, for a general LLL state �4� the reduced wave
function is a complex polynomial of degree L−1, resulting in
more zeroes than occurring in the Laughlin wave function.
The additional zeroes, commonly attributed to vortices
bound to the test electron, are not localized close to the
pinned electron positions. Since one extra zero has to be
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attributed to the test electron itself, one obtains the total
number of L vortices �for a general number of N electrons
the number of vortices equals N /�=2L / �N−1��. When
higher Landau levels are included the reduced wave function
depends also on the complex conjugate of the particle posi-
tions and larger exponent values in the polynomial appear,
which increases the number of zeros and allows antivortices
to appear.4,5

III. RESULTS

A. Lowest Landau level approximation

Figure 1 shows the position of zeros of the LLL reduced
wave functions for two of the electrons pinned in the loca-
tions �±l0 ,0� for states with L=9, 12, 15, 18, and 21. In the
presented range of x we focus only on the zeros located near
the pinned electrons. In the Coulomb limit all the vortices are
placed on the x axis.5 For L=9 �Fig. 1�a��, as the screening
length decreases, the two vortices bound to the electron
approach its position, staying always on the x axis. For
�=2 nm ��=0.06l0� the bound vortices are localized exactly
at the electron position forming a giant vortex, characteristic
for the Laughlin wave function. For L=12 �see the black
lines in Fig. 1�b�� the giant vortex on the electron position is
formed earlier, i.e., for �=0.44l0. However, for smaller
screening lengths the two extra vortices leave the electron
position �and the x axis� passing to the x= ± l0 lines �see the
inset in Fig. 1�b��. For still smaller � the vortices return to
the electron position. A similar behavior is found for larger
L. For states with L�12, there are more than two extra vor-
tices bound to each electron and pairs of them collapse on
the electron positions for specific L-dependent screening
length values. Decreasing � beyond this value flips them to
the x= ± l0 lines approaching again the electron positions in
the �=0 limit. Note, that the formation of the intermediate
giant vortices is observed also for non-Laughlin states �even
L� and that all these intermediate giant vortices have winding
number three. For non-Laughlin states the number of zeros
of the reduced wave function �L−1� is odd, therefore a single
vortex resides in the �0,0� position in order not to break the
symmetry. The position of this vortex for L=12 and L=18 is
marked by the vertical line just to the left of the tick marks
on the right-hand side. We see that for even L, i.e., the non-
Laughlin states, the number of vortices bound to the elec-
trons is the same as in the closest Laughlin state with lower
angular momentum �L−3�.

The presented results are quite general in the sense that
for N=3 the vortex structure does not depend on the specific
choice of the positions of the two fixed electrons in Eq. �6�
but scales linearly as a function of the distance between the
fixed electron positions, whether they are, or not, placed
symmetrically with respect to the origin. This is demon-
strated in Fig. 2, which shows a contour plot of the logarithm
of the absolute value of the reduced wave function calculated
in the LLL approximation for L=15 and the screening length
�= l0 /2. In Fig. 2�a� the two electrons are fixed at �±l0 ,0�,
such as in Fig. 1�c�. For �= l0 /2 two of the bound vortices
are localized perpendicular to the line between the electrons

�cf. Fig. 1�c�� whose positions are marked with the blue
arrows. In Fig. 2�b� the fixed electron coordinates were
scaled down 10 times with respect to Fig. 2�a�, and in Fig.
2�c� the electrons were shifted to the left by l0 /2. The scal-
ability of the vortex structure is evident from the form of

FIG. 1. �Color online� Positions of vortices of the conditional
wave function calculated for the two electrons fixed at points
�±l0 ,0� as function of the screening length �. Solid lines correspond
to lower horizontal axis and show the positions of vortices on the x
axis �y=0�. Dashed lines are plotted with respect to the upper hori-
zontal axis and show the y coordinate of vortices localized on the
x=−l0 line. All the results were obtained in the lowest Landau level
�LLL� with the exception of the blue curves plotted in �b� calculated
beyond the LLL approximation with a fully convergent basis set.
At the left side of �b� we show the electron-vortex orienta-
tion before ���0.44l0� and after the formation of the giant vortex
���0.44l0�. The electron positions are marked with dots, and the
vortices by crosses.
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the LLL wave function �4�. If one decreases all the dis-
tances � times, one can take � L before the sum �since j1
+ j2+ j3=L� from the polynomial part, i.e., the one respon-
sible for the appearance of the vortices. The invariance
of the vortex structure with respect to the shift of the fixed
electron positions is not evident from Eq. �4�. In fact, the
vortex structure of each of the Slater determinants is not
invariant with respect to the shifts, and the invariance is only
obtained in the entire basis containing all the LLL determi-
nants. Since we are dealing with the harmonic oscillator po-
tential the exact wave function is separable into a product of
the center of mass and relative motion wave functions

=FCM�zcm�Grel�z1−z2 ,z1−z3 ,z2−z3�. The vortices are en-
tirely due to the relative part. From the separable form it is
clear that the vortices shift with the fixed electron positions.
It is quite remarkable that this feature of the exact solution is
reproduced in the LLL approximation. For a general N the
vortex structure remains invariant with respect to the size,
position and, orientation of the polygon formed by the

N−1 fixed electrons as long as its shape is preserved. One
cannot change the shape of the line segment linking the two
fixed electrons for N=3. But for N=4 different vortex struc-
tures are obtained when the shape of the triangle formed by
the fixed electrons is varied.5 Figure 2 shows also that only
the vortex structure and not the reduced wave function scales
with the positions of the fixed electrons. The nonscalability
of the wave function results from the center of mass compo-
nent of the wave function �or the Gaussian in Eq. �4��.

The dashed lines in the upper part of Fig. 3 show the
positions of the two remaining vortices, which did not fit into
Fig. 1�a� for L=9. These vortices are not bound to the elec-
trons whose positions are pinned but belong to the test elec-
tron and disappear to infinity as the screening constant is
decreased to zero. This behavior is expected since the num-
ber of vortices in the Coulomb problem is larger than in the
limit of the Laughlin liquid �see the end of Sec. II�. The red
full curves close to the lower horizontal axis show the modu-
lus of the corresponding reduced Laughlin wave function for
y=0 with the electron positions fixed at �±l0 ,0�. We see that
the disappearing test-electron vortices are always localized
beyond the region of the reduced Laughlin wave function
localization. This is not always the case. Black solid lines in
Fig. 3 show the position of vortices for the two electrons
fixed at �−l0 ,0� and �−l0 /2 ,0�. The outermost vortices are
localized more closely to the electrons. We see that in this
case, for decreasing screening lengths the vortices pass
through the region in which the reduced Laughlin function
�plotted in blue in Fig. 3� takes large values.

In order to get an idea how well the electron-vortex cor-
relations are described in the Laughlin wave function we
project the reduced optimal wave function obtained within
the LLL approximation to the one corresponding to the
Laughlin many-particle wave function

FIG. 2. �Color online� Contour plots of the logarithm of the
absolute value of the reduced wave function calculated for angular
momentum L=15 and the screening length �= l0 /2 in the LLL ap-
proximation for the pinned electron positions �±l0 ,0� �a�,
�±l0 /10,0� �b�, and �±l0+ l0 /2 ,0� �c�. Electron positions are marked
by blue arrows in �a�.

FIG. 3. �Color online� Vortices and the conditional proba-
bility for L=9 when the two electrons are pinned at �−l0 ,0� and
�−l0 /2 ,0� �black solid lines�. The two outermost vortices for elec-
trons in pinned at �±l0 ,0� are shown with dashed curves. The re-
duced Laughlin wave functions along the y=0 axis are also shown
by red and blue lines, for the symmetrically and nonsymmetrically
pinned electrons, respectively.
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Sz1,z2
=

��z1,z2

� z1,z2

L 


	��z1,z2

�z1,z2


�� z1,z2

L 
� z1,z2

L 

, �7�

in which the positions of vortices as well as of the pinned
electrons can be seen �� L denotes the reduced Laughlin
wave function�. The overlaps calculated between ED wave
functions of states with odd angular momentum and corre-
sponding Laughlin wave functions are shown in Fig. 4. In
Fig. 4�a� the two pinned electrons were placed at �±l0 ,0�.
Vortex positions for this case are shown in Figs. 1�a�, 1�c�,
and 1�e�. The overlap values increase monotonically for all
the three Laughlin states with decreasing �, and in the
�→0 limit they all achieve unity. Note also that the higher
the angular momentum, the smaller the overlap. In Fig. 1 we
observe that for these three states the distance between the
outermost bound vortex and the electron increases with L,
which is the reason why for larger L the overlaps are smaller.
Moreover, there are regions for L=15 and L=21 where vor-
tices increase their distance from the electron with decreas-
ing �, which is not reflected in the overlap plot, which ap-
parently is more strongly determined by the decreasing
distance of the electron from the outermost vortex.

More interesting behavior is observed when the electrons
are pinned closer to each other. We placed them in �−l0 ,0�
and �−l0 /2 ,0� and the resulting overlaps are shown in Fig.
4�b�. For all three states there is a more sharp minimum as
function of �. This is due to the external vortex passing
through the region in which the reduced wave function is
large as discussed in the context of Fig. 3. The minimal value
of the overlap, which is almost zero, occurs exactly when the
vortex position coincides with the Laughlin wave function

maximum. The distinctly different dependence of the over-
laps for the fixed-electron positions is due to the fact that the
reduced wave function is not scalable with the interelectron
distances.

The displacement of the vortex towards infinity for
�→0 and its effect on the reduced LLL wave function is
illustrated in the contour plots of Fig. 5 for L=15 with the
fixed electron positions �−l0 ,0� and �−l0 /2 ,0�. The position
of the vortex is marked by a � in Figs. 5�a� and 5�c�. In Fig.
5�b�, � corresponds to the overlap minimum �cf. Fig. 4�b��;
the vortex is visible near x=3l0 where it digs a hole in the
wave function. Moreover, when the vortex is at the position
of the Laughlin wave function maximum, it splits the LLL
wave function into two almost equal parts with opposite
signs �see Fig. 6�. This makes the Laughlin function almost
orthogonal to the ED wave function. When the vortex of the

FIG. 4. Overlap integral of the conditional wave functions cal-
culated for the lowest-energy state diagonalizing the Hamiltonian in
the LLL subspace and the state described by the Laughlin wave
function �5�. In �a� two of the electrons are fixed at positions
�±l0 ,0�, and in �b� at �−l0 ,0� and �−l0 /2 ,0�.

FIG. 5. Contour plots of the absolute value of the reduced wave
function for the state with L=15 and the two electrons fixed at
�−l0 ,0� and �−l0 /2 ,0� �indicated by crosses�. �a�–�c� show the ED
wave function as obtained within the LLL approximation for differ-
ent values of �, �d� shows the Laughlin wave function correspond-
ing to this state. One of the vortices bound to the test electron which
crosses through the wave function’s maximum is indicated by a star
in �a� and �c�, while in �b� it creates a distinct minimum at x=3l0.

FIG. 6. Evolution of the absolute value of the reduced wave
function at y=0 as function of � for the state with L=15 and two
electrons pinned in �−l0 ,0� and �−l0 /2 ,0�.
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test electron passes beyond the maximum of the wave func-
tions, the overlap starts to increase reaching unity for all the
states, but this occurs earlier for smaller values of L.

Another relevant quantity to be discussed is the pair cor-
relation function �PCF�, defined as

W�za,zb� = �

�
i�j

��zi − za���zj − zb�


 . �8�

PCF calculated for the Laughlin function �5� gives �up to a
normalization constant�

WL�za,zb� = �za − zb�2m exp�− �
za
2 + 
zb
2�/l0
2�


� dz�za − z�2m�zb − z�2m exp�− 
z
2/l0
2� . �9�

Therefore, at small interelectron distances �za→zb� the pair
correlation function will asymptotically behave as
WL�za ,zb���za−zb�2m. We consider the PCFs with one par-
ticle fixed in 
za
=1.5l0 as well as at the origin za=0. In the
case of 
za
=1.5l0 we calculated the PCF for the other elec-
tron at the same distance from the origin �i.e., 
zb
=1.5l0�
along an arc of 0.6l0 length away from za. Then, we fitted the
results to a function of the form f�
za−zb
�=a
za−zb
�. For
the other considered pinned position �za=0� we repeated this
procedure moving from the origin along a straight line of
length 0.2l0. The obtained results are shown in Figs. 7�a� and
7�b�. We found that the value of the exponent depends on the
fixed electron position �za�, which is not the case for the
Laughlin wave function. For L=9 �blue curves in Fig. 7�a��
the fitted � value approaches 6—the Laughlin limit—
monotonically with decreasing �. For L=12, i.e., a non-
Laughlin state, also the value of 6 is obtained in the �=0
limit. In this case three vortices become localized at the elec-
tron position �see Fig. 1�b��, as for L=9. We also notice that
the � fitted for different fixed electron positions �black solid
and black dashed lines in Fig. 7�a�� are both equal to 6
around 0.45l0, i.e., when the intermediate giant vortex is
formed �see Fig. 1�b��. The intermediate giant vortex is
therefore associated with the appearance of a position inde-
pendent �, which is characteristic of the Laughlin wave func-
tion. Note, that the � value calculated for za=0 between the
intermediate ��=0.45l0� and the final ��=0� giant vortices
possesses a local minimum. This minimum is related to those
vortices which initially are moving away from the electron
for � below the occurrence of the intermediate giant vortex
�see the dashed lines in Fig. 1�b��. However, for the � expo-
nent calculated with 
za
=1.5l0 �black dashed line in Fig.
7�a�� a maximum is observed below �=0.45l0. For L=15 the
intermediate giant vortex is formed around �= l0 �Fig. 1�c��.
The � values fitted for the two pinned electron positions
approach one another near �= l0 �see the solid and dashed
red curves in Fig. 7�a��, but the � value for 
za
=1.5l0 is
larger than 6. As before, a more direct correspondence be-
tween the vortex positions and the fitted � value is obtained
for the electron pinned at the origin. The loop that the two
vortices perform in the �� ,y� plane when the intermediate
giant vortex decays into single vortices �see Fig. 1�c�� has no
effect on the � value for 
za
=1.5l0. On the other hand, the

loop is translated into a minimum of � as calculated for za
=0 �see the red solid line in Fig. 7�a��. Both � values tend to
the value of the Laughlin function, i.e., to 10, in the �=0
limit. This limit is achieved by � values calculated for L
=18 as well, since also here five vortices are found at the
electron position in the contact potential limit �see Fig. 1�d��.
Again, for L=18 the � value calculated for za=0 is more
sensitive to the actual vortex behavior. Local maxi-
mum �slightly above 6� is obtained �dashed curve in Fig.
7�b�� when the first intermediate giant vortex is formed
���1.6l0, see Fig. 1�d��. Another maximum is observed for
the second intermediate giant vortex ���0.37l0�. The value
is now considerably larger than 6, which can be explained by
the presence of the other vortices localized in close proxim-
ity of the pinned electron. The third intermediate giant vortex
near 0.1l0 gives a plateau near �=8.5, which then shoots up
to 10, when the final giant vortex is formed. For L=21 we
observe again a local maximum in � calculated for za=0 at
�=0.7l0—an intermediate giant vortex position �see Fig.
1�e��. For L=21 we actually do not observe the final giant

FIG. 7. �Color online� Coefficient � determining the asymptotic
dependence of the pair correlation function W�za ,zb��
za−zb
� for
za→zb �see the text� for different total angular momentum states.
Solid curves were calculated as fits to the actual PCF values calcu-
lated on an arc of length 0.6l0 for 
za
=1.5l0, and the dashed curves
on a line segment of length 0.2l0 with one of the ends fixed at the
origin for za=0.
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vortex in the �→0 limit, due to the problem of degeneracy
of the ground state as explained in Sec. II. However, the
presented � values and the vortex positions for small � for
which the ground state is still nondegenerate, clearly indicate
the giant vortex Laughlin asymptotic with seven vortices at
the position of the electron.

The close correspondence found between the PCF calcu-
lated for za=0 and the vortex behavior is quite remarkable.
For L above the value for the maximum density droplet, the
charge density develops a minimum at the center of the
quantum dot and the depth of the minimum increases with L.
Moreover, by fixing the position of one of the electrons at the
origin, one includes only those Slater determinants in which
the zero angular momentum Fock-Darwin state appears. The
angular momenta of the two remaining orbitals must sum up
to la+ lb=L �let la� lb�. From the asymptotic behavior of the
single-electron orbitals at the origin �zl� one should expect
that the obtained � value is related to the lowest of all la. Due

to the applied fitting procedure one actually obtains a �� la.
For instance, the value of 6 obtained in the Laughlin limit for
L=9 indicates that the Slater determinants corresponding to
angular momenta �0,1,8� and �0,2,7� do not contribute to the
wave function while �0,3,6� does. Expanding the Jastrow fac-
tor it is straightforward to check that the Laughlin wave
function contains admixtures of the �0,3,6� and �0,4,5� basis
functions, but not of the �0,1,8� or the �0,2,7� determinants.

B. Beyond the lowest Landau level approximation

In order to verify the calculated vortex structure in the
neighborhood of the fixed electron we have performed exact
calculations with a basis including higher Landau levels for
L=12. The basis was constructed in the following way. From
all the Slater determinants built of the noninteracting Fock-
Darwin states we picked up only those for which the energy
at B=0 �see the discussion of the wave function scalability
with the magnetic field given in Sec. II� does not exceed a
fixed energy value Eni. The number of basis elements K as
function of Eni is listed in Table I together with the energy
estimates obtained for an interacting system at �=1.48l0.
The first row of the table corresponds to the LLL approxi-
mation. We obtain convergence of the energy estimate up to
six significant digits. The fourth and fifth columns of the
table give the position of the vortices attached to the electron
localized at point �−l0 ,0� for the second electron pinned at
�l0 ,0�, as in Fig. 1. The convergence of the position of the
vortices is slower than the energy. Beyond the LLL approxi-
mation for �=1.48l0 and for � up to the Coulomb limit the
distances between the electrons and the vortices are slightly
larger than in the LLL approximation. The positions of vor-
tices obtained with the most precise calculations are shown
by the blue curves in Fig. 1�b�.

Beyond the LLL approximation the wave function is
nonanalytical and the exact number of nodes in the whole
complex plane is not known a priori. However, we have
found that within the range plotted in Fig. 1�b� the extra
nodes in the exact calculations appear only within the region
where the LLL predicts the formation of the intermediate
giant vortex. Figure 8 shows the contour plots of the loga-
rithm of the absolute value of the reduced wave function
when the two electrons are pinned at �±l0 ,0�, for the range of
� when the bound vortices flip their positions from the x axis

TABLE I. Convergence of the results for L=12 beyond the LLL
approximation. Eni is the maximum energy of the noninteracting
Slater determinants used for the construction of the basis set �B
=0�. Second column lists the number of basis elements �K�. E is the
energy estimate for �=1.48l0. xl and xr are the positions of the
bound vortices to the left and right of the electron fixed at the point
�−l0 ,0� as in Fig. 1�b� for �=1.48l0. �* is the screening length for
which the distance between the vortices aligned in the horizontal
and vertical directions is the same �see Fig. 8�c��. This distance �c�
is listed in the last column. The first row of the table shows the
results for the LLL approximation. Value for �* in the first row
corresponds to the giant vortex.

Eni �meV� K E �meV� xl / l0 xr / l0 �* / l0 c / l0

15 12 15.35272 −1.206 −0.813 0.440 —

17 61 15.33831 −1.246 −0.779 0.450 0.0042

19 173 15.33754 −1.243 −0.779 0.421 0.0073

21 392 15.33732 −1.238 −0.783 0.415 0.011

23 761 15.33722 −1.231 −0.786 0.411 0.014

25 1346 15.33719 −1.226 −0.789 0.409 0.016

27 2213 15.33717 −1.222 −0.792 0.410 0.017

29 3453 15.33717 −1.220 −0.794 0.413 0.017

31 5158 15.33716 −1.223 −0.795 0.416 0.016

FIG. 8. �Color online� Contour plots of the logarithm of the absolute value of the L=12 reduced wave function when the two electrons
are pinned at �±l0 ,0� calculated with a basis of 5158 Slater determinants including higher Landau levels. Plots �a�–�h� correspond to the
screening lengths � / l0=0.421, 0.417, 0.416, 0.415, and 0.412, respectively. Red arrows point to the antivortex positions.
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to the x= ± l0 lines. Instead of the formation of the interme-
diate giant vortex, a state consisting of single separate vorti-
ces is formed. When the vortices approach the electron along
the x axis �Fig. 8�a��, the node of the wave function associ-
ated with the electron elongates in the perpendicular direc-
tion and finally splits into an antivortex localized at the elec-
tron position and two vortices localized at the x= ± l0 lines
�Fig. 8�b�� placed symmetrically with respect to the electron
position. For a certain screening length �=�*, the distances
between the vortices localized at the x axis and those local-
ized at x= ± l0 lines are equal �Fig. 8�c��. With decreasing �
the vortices localized at the x axis approach �Fig. 8�d�� the
pinned electron and annihilate with the antivortex localized
therein. Eventually, we are left with a single vortex at the
electron position and two vortices localized on the x= ± l0
line �Fig. 8�e��, as in the LLL for � values such that we are
between the intermediate and the final giant vortices. This
mechanism of the flip of the orientation of the vortices is
found for all the wave functions calculated beyond the LLL
with basis adopted according to the strategy explained above.
Values of �* are listed in Table I. The corresponding dis-
tances between the pairs of vortices �c� are given in the last
column of the table. Distance c initially increases with the
size of the variational basis and finally saturates near 0.016l0.

Figure 9 presents a zoom of Fig. 1�b� for the range of �
corresponding to the intermediate and final giant vortices.
The blue curves are for the exact calculations. After the flip
of the vortex orientation the results of the LLL and the exact
calculations are nearly equal. Contribution of the higher LL
becomes negligible when the electron-electron interaction is
switched off.

C. Five electrons

The mechanism presented above for the flip of the vortex
orientation is reproduced for higher number of electrons. To
illustrate this we focused on the five-electron system at L
=35, i.e., a non-Laughlin state corresponding to a ground
state of the magic angular momentum sequence below the
filling factor ��1/3. This state is the counterpart of the

L=12 state for three electrons discussed in the context of
Fig. 1�b�. Calculations were performed in the LLL approxi-
mation. The plots of the logarithm of the absolute value of
the reduced wave function are given in Fig. 10 for four elec-
trons fixed at the corners of a square �±l0 , ± l0�. Figure 10�a�
shows the case of the Coulomb potential, and Figs.
10�b�–10�d� the case of the screened Coulomb interaction for
�=0.0889l0, 0.0643l0, and 0.0222l0. In Figs. 10�b�–10�d� we
present the vortices near the electron localized at �l0 , l0�. The
vortices attached to the fixed electrons approach them along
the diagonals of the square and form a giant vortex for
�=0.0643l0 �see Fig. 10�c��. For smaller values of � the line
along which the attached vortices are aligned is rotated over
90° as compared to Fig. 10�b� and is now perpendicular to
the corresponding diagonal of the square �see Fig. 10�d��.

IV. SUMMARY AND CONCLUSIONS

We have investigated the dependence of the vortex struc-
ture of a three-electron quantum dot on the range of the
inter-electron potential. The Yukawa interaction potential can
be changed continuously from the Coulomb to the contact
potential Laughlin limit. The evolution towards the Laughlin
liquid appears through the formation of intermediate three-
fold giant vortices at which the vortices flip their orientation
with respect to the electron to which they are bound. In our
discussion we relied on the reduced wave function where
two electrons are pinned and found that the screening lengths
for which the giant vortices are formed do not depend on the

FIG. 9. �Color online� Zoom of Fig. 1�b�. Solid curves show the
x-position coordinates of the vortices localized at the y=0 axis and
the dashed lines are the y-position coordinates of vortices localized
at x= ± l0 line. Black curves correspond to the LLL approximation
and the exact results are plotted in blue.

FIG. 10. �Color online� Contour plots of the logarithm of the
absolute value of the reduced wave function calculated for five
electrons at angular momentum L=35 in the LLL approximation.
Plot �a� corresponds to the Coulomb interaction potential and plots
�b�–�d� to the screening lengths �=0.0889l0, �=0.0643l0, and �
=0.0222l0. Positions of four electrons are pinned at the corners of
the square �±l0 , ± l0�. Electron positions are marked by blue arrows.
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choice of the positions of the pinned electrons. Hence, for
N=3 the giant vortices can only be created by manipulating
the screening length and not the positions of the fixed elec-
tron. For N�3 electrons the exact vortex structure in the
reduced wave function depends on the shape of the polygon
formed by the N−1 fixed electrons. But the binding of the
vortices to the fixed electrons for large L are independent of
the exact location of the electron. It is the angular position of
the bound vortices which is altered when we move the other
fixed electrons. Nevertheless for N�3, we find that the evo-
lution to the Laughlin limit is also nonmonotonic and is ac-
companied with flips of the vortex orientation and the forma-
tion of the intermediate composite fermion states.

We found that the LLL approximation predicts the vortex
positions quite accurately in the whole range of the screening
length except for � values where the vortices approach
closely the fixed electrons. For a certain value of the screen-
ing length we observe a flip of the vortex orientation. In
general this flip can be realized in four different ways: sym-
metry breaking, discontinuously, through a giant vortex, or
by the formation of antivortices. In the LLL approximation
giant vortices �similar to the ones assumed in the Laughlin
state� are observed at the orientation flip, even though vorti-
ces are expected to exhibit a repulsive behavior at close

distances.4 In the LLL approximation an antivortex cannot
appear because the number of zeroes of the reduced wave
function is fixed. When higher Landau levels are included,
extra vortices and an antivortex appear and annihilate pre-
venting the formation of the giant vortex.

The presented study of the pair-correlation function shows
that the precise positions of the vortices with respect to the
electrons are important for the physics of electron-electron
correlations. The number of bound vortices in the close
neighborhood of the electron is translated into an asymptotic
power-law form for the pair correlation function around the
pinned electron position. For the giant vortices, i.e., for the
intermediate composite fermion states, the electron-electron
correlations acquire properties similar to the ones described
by the Laughlin wave function.
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