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Spin-dependent tunneling through an indirect-band-gap barrier like the GaAs/AlAs/GaAs heterostructure
along the �001� direction is studied by the tight-binding method. The tunneling is characterized by the propor-
tionality of the Dresselhaus Hamiltonians at the � and X points in the barrier and by Fano resonances �i.e.,
pairs of resonances and antiresonances or zeros in transmission�. The present results suggest that large spin
polarization can be obtained for energy windows that significantly exceed the spin splitting. The widths of
these energy windows are mainly determined by the energy difference between the resonance and its associated
zero, which in turn increases with the decrease of barrier transmissibility at direct tunneling. We formulate two
conditions that are necessary for the existence of energy windows with large polarization. First, the resonances
must be well separated such that their corresponding zeros are not pushed away from the real axis by mutual
interaction. Second, the relative energy order of the resonances in the two spin channels must be the same as
the order of their corresponding zeros. The degree to which the first condition is satisfied is determined by the
barrier width and the longitudinal effective mass at the X point. In contrast, the second condition can be
satisfied by choosing an appropriate combination of spin splitting strength at the X point and transmissibility
through the direct barrier.
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I. INTRODUCTION

The spin rather than the charge of carriers has attracted a
lot of interest leading to a new field of electronics dubbed
spintronics.1,2 In this context, spin-polarized transport in
nonmagnetic semiconductor structures and spin-dependent
properties originating from the spin-orbit interaction are a
promising road to spin-based devices.3

Despite the progress that has been made,4,5 spin injection
from ferromagnetic leads proved to be very challenging.6

Consequently, spin-dependent transport in nanostructures
comprised of nonmagnetic semiconductors has been the fo-
cus of extensive work in recent years.3 Recent theoretical
research has suggested that the current resulting from elec-
tron tunneling through zinc-blende semiconductor single-7,8

or double-barrier structures9 can be highly spin polarized.
The origin of the spin-dependent tunneling in these struc-
tures stems from the fact that the barrier material lacks a
center of inversion.

In the effective-mass approximation, the electron Hamil-
tonian of a zinc-blende structure has an additional spin-
dependent k3 coupling called the Dresselhaus term,10

HD = ���xkx�ky
2 − kz

2� + �yky�kz
2 − kx

2� + �zkz�kx
2 − ky

2�� , �1�

where �i are the Pauli matrices, and kx, ky, and kz are the
components of the electron wave vector. For a barrier along
the �001� direction the Dresselhaus Hamiltonian is reduced
to

HD = ���xkx − �yky�
�2

�2z2 . �2�

Perel, Tarasenko, and co-workers7,8 showed that the � point
Hamiltonian in Eq. �2� induces an effective-mass correction

leading to a spin-polarized transmission. It is important to
emphasize that the spin-dependent part of the effective-mass
Hamiltonian at the X point is10,11

HD
X = ���xkx − �yky� �3�

and therefore proportional to the Hamiltonian in Eq. �2�. The
Hamiltonians in Eqs. �2� and �3� are diagonalized by

�± =
1
�2

� 1

�e−i� � �4�

with � the polar angle of the wave vector kt in the xy plane.
Therefore the spin states are not mixed by the interaction
between X states and � states in the barrier.

Spin-dependent transport can be studied using numerous
treatments such as the k · p approach, full-band tight-binding
calculations, and ab initio methods. For various reasons the
theoretical study of spin tunneling through an indirect barrier
like GaAs/AlAs/GaAs has not been fully addressed before.
k · p cannot fully address the problem because the AlAs bar-
rier accommodates at least one quasibound state into the X
valley. Thus, in addition to the �-�-� tunneling, which oc-
curs through the higher � valley, one must also consider the
tunneling ��-X-�� through the lower X barrier �see Fig. 1�.
The k · p method is a perturbative method that can be “tuned”
for the necessities of spin-dependent processes �for instance,
see Ref. 12, in which spin-dependent evanescent states in the
band gap are studied�. In contrast, empirical tight-binding
methods provide a treatment of the full Brillouin zone, but
they lack the complete description of the Dresselhaus term
when the spin-orbit coupling is introduced.13 This is due to
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the fact that the orthogonality assumption in tight-binding
models is incompatible with the formulation of the spin-orbit
interaction.14 In principle, the above shortcomings should be
overcome by utilizing ab initio density functional theory
methods. However, these methods suffer on the side of band-
gap reproducibility.15

Spin-dependent tunneling has been recently analyzed with
a one-band envelope-function model.16 In their study,16 the
authors neglected the ��-�-�� tunneling and the presence of
X-valley quasibound states in the AlAs barrier. However,
spin tunneling through the indirect barrier of the
GaAs/AlAs/GaAs heterostructure shows another peculiar
property. The confined X states in the AlAs barrier interact17

with the continuum � states in GaAs forming Fano
resonances18 �i.e., pairs of resonances and antiresonances�. In
this paper we demonstrate that one can use the proximity in
the resonance and antiresonance states in conjunction with
the spin splitting produced by the spin-dependent Hamil-
tonian to obtain a large degree of spin polarization within the
range between the resonance and antiresonance energies. For
this purpose we devise a spin-dependent tight-binding model
that provides a realistic view of the spin-dependent tunneling
through an indirect barrier. We convert the spin-dependent
effective-mass Hamiltonians for a single band to their tight-
binding versions following the recipes of Ref. 19. The cou-
pling between � and X valleys is made according to Ref. 20.

The paper is organized as follows. In the next section a
simple model is analyzed in order to gain insight into the

physics of spin-dependent tunneling. The third section con-
tains a realistic tight-binding model and the numerical re-
sults. Conclusions are drawn in the fourth section.

II. TIGHT-BINDING MODEL OF SPIN-DEPENDENT
TUNNELING

Consider a simple tight-binding �TB� model of the spin-
dependent tunneling through an indirect barrier. The main
assumptions for this TB model are that spin states are degen-
erate in left and right leads �bulklike states� and the Dressel-
haus Hamiltonians are proportional for � and X states in the
barrier, so we can assume that the spin states in the leads are
eigenvectors of the Dresselhaus Hamiltonian.

A. Spin tunneling through an indirect barrier

The Hamiltonian of the system is

H = �
n=−	,�=↑,↓

−1

�
cn,�
† cn,� + �tcn−1,�

† cn,� + H. c . ��

+ �
n=1,�=↑,↓

	

�
cn,�
† cn,� + �tcn,�

† cn+1,� + H. c . �� + 
1c0,↑
† c0,↑

+ 
2c0,↓
† c0,↓ + �V1c0,↑

† c−1,↑ + V2c0,↓
† c−1,↓ + H. c . �

+ �V1c0,↑
† c1,↑ + V2c0,↓

† c1,↓ + H. c . � + �t1c−1,↑
† c1,↑

+ t2c−1,↓
† c1,↓ + H . c . � . �5�

The first two terms on the right-hand side of Eq. �5� are the
Hamiltonians of the contacts �leads�, where 
 and t are the
on-site energy and transfer integral, respectively �spin degen-
erate �. cn�

† �cn�� is the creation �annihilation� operator of an
electron with spin � on site n. The remaining part is the
Hamiltonian of the barrier and its coupling to the leads. The
active region is modeled by three sites: site −1 that is like the
left-hand side contact, site 0 that is the actual barrier, and site
1 that is like the right-hand side contact. Thus the effective
left- �right-�hand side contact ends �starts� at site −2 �2�. The
matrix form of the Hamiltonian for the sites −1, 0, and 1 �in
fact E−H, where E is the energy� with appropriate boundary
conditions for an open system is21

E − H =

− 1↑ − 1↓ 0↑ 0↓ 1↑ 1↓
− 1↑ E − 
 − �L�E� 0 − V1 0 − t1 0

− 1↓ 0 E − 
 − �L�E� 0 − V2 0 − t2

0↑ − V1
* 0 E − 
1 0 − V1

* 0

0↓ 0 − V2
* 0 E − 
2 0 − V2

*

1↑ − t1
* 0 − V1 0 E − 
 − �R�E� 0

1↓ 0 − t2
* 0 − V2 0 E − 
 − �R�E�

�6�

where �L,R�E� are the self-energies of the semi-infinite parts, i.e.,

FIG. 1. Tunneling through the GaAs/AlAs/GaAs barrier. �
band edges are shown by solid lines and X band edges are repre-
sented by dashed lines. E1 and E2 are X-valley quasibound states in
the AlAs barrier. Direct tunneling ��-�-�� is shown by the solid
curly arrow and �-X-� tunneling is depicted by the dotted curly
arrows.
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�L,R�E� = t† 1

E − HL,R + i�
t , �7�

where HL,R are the Hamiltonians of the semi-infinite left- and
right-hand sides and � is an infinitesimal positive number.
The retarded Green function

GL,R
R �E� =

1

E − HL,R + i�
�8�

of the left- �right-�hand side semi-infinite contact in Eq. �7� is
actually the diagonal part GL

R�E�−2,−2 �GR
R�E�2,2� representing

the site −2 �2�. The expressions of these Green function el-
ements can be found from their equation of motion and the
use of the finite-difference equation method.22 If we consider
the parametrization 
−E=2t cos�ka�, with k a complex pa-
rameter and a a lattice constant parameter, we obtain the
following equation for the self-energies:

�L,R = − teika. �9�

Therefore, the Green function GR for the sites −1, 0, and 1
with the boundary conditions for an open system is

GR�E� = 	
− te−ika 0 − V1 0 − t1 0

0 − te−ika 0 − V2 0 − t2

− V1
* 0 E − 
1 0 − V1

* 0

0 − V2
* 0 E − 
2 0 − V2

*

− t1
* 0 − V1 0 − te−ika 0

0 − t2
* 0 − V2 0 − te−ika



−1

. �10�

We notice that the Hamiltonian is not Hermitian due to open
boundary conditions. To calculate the transmission probabil-
ity from site 1 to N we use the formula21

T�E,kt� = �L�E,kt��G1,N
R �E,kt��2�R�E,kt� , �11�

with

�L,R�E,kt� = i��L,R�E,kt� − �L,R
* �E,kt�� . �12�

Since the Dresselhaus Hamiltonians are proportional at the �
and X points in the barrier10,11 we can solve separately for
each spin. The Green function for spin up is

G↑
R�E� = 	− te−ika − V1 − t1

− V1
* E − 
1 − V1

*

− t1
* − V1 − te−ika 


−1

. �13�

A similar equation is obtained for the spin down. The poles
of GR are the solutions of the determinant equation

 = �− te−ika − V1 − t1

− V1
* E − 
1 − V1

*

− t1
* − V1 − te−ika � = 0, �14�

while the zeros of the transmission are the zeros of the Green
function �G↑

R�1,3 relating the sites −1 and 1,

�G↑
R�1,3�E� =

− V1 E − 
1

− t1 − V1
* 


= 0. �15�

The equation for the poles reads

�E − 
1���t1�2 − t2e−2ika� = �V1�2�− t1 − t1
* + 2te−ika� �16�

and for the zeros

�E − 
1�t1 = − �V1�2. �17�

Since t is basically the conduction bandwidth and t1 and V1
are tunneling rates, then V1 , t1� t, such that the pole is given
by

E � 
1 − 2
�V1�2

t
eika. �18�

The equation for the zero is

E = 
1 −
�V1�2

t1
. �19�

Since we have V1 , t1� t, the energy separation between the
pole and the zero is about V1

2 / t1. The resonances and zeros
occur at slightly different energies for the two spin channels,
resulting in a large spin polarization due to the combination
of a sharp increase in transmission at resonance followed by
an abrupt decrease to zero at antiresonance. Hence, the en-
ergy range of large spin polarization will depend on V1 and t1
but not on the magnitude of spin splitting. One can notice
that the energy separation between resonance and antireso-
nance can be increased by decreasing t1, i.e., increasing the
width of the barrier. In Fig. 2 we illustrate the above argu-
ments with the parameters given in Table I. We also calculate
the spin polarization with the equation
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P =
T↑ − T↓

T↑ + T↓
. �20�

For comparison we also plot the case of the resonance tun-
neling diode �RTD� configuration. The RTD configuration is
made by setting t1 and t2 to 0. To separate the spin reso-
nances, we also have chosen the values of V1 and V2 ten
times smaller than their values in the indirect-barrier con-
figuration. Figure 2 shows that the indirect barrier configu-
ration has a clear advantage over the RTD configuration.

B. Spin tunneling through a direct barrier

Following the same procedure one can also calculate spin
transmission through a direct barrier. The Green function of
the open system is

GR�E� = 	
− te−ika 0 − t1 0

0 − te−ika 0 − t2

− t1
* 0 − te−ika 0

0 − t1
* 0 − te−ika



−1

.

�21�

The Green function for the spin up is

G↑
R�E� = �− te−ika − t1

− t1
* − te−ika�−1

. �22�

Using Eqs. �11� and �12� we calculate the spin-dependent
transmission probabilities for a direct barrier. The transmis-
sion probabilities are approximated by

T↑ �
4�t1�2

t2 sin2ka �23�

and

T↓ �
4�t2�2

t2 sin2ka , �24�

i.e., the transmission for spin up is different from transmis-
sion for spin down, leading to spin polarization.

III. RESULTS OF A REALISTIC TIGHT-BINDING MODEL
AND DISCUSSIONS

In order to make quantitative assessments of the spin tun-
neling through an indirect barrier, we devise a spin-
dependent tight-binding model for a system that is parti-
tioned into layers. The layers from −	 to 0 and from N+1 to
	 are the contacts, while the layers from 1 to N are the active
layers. First, we consider the spin-independent Hamiltonian.
The coupling between � and X states is treated similarly to
Ref. 20, with the Hamiltonian

H = � H� H�X

HX� HX
� . �25�

H� and HX are the Hamiltonians at the � and X points, re-
spectively. H�X and HX� are the couplings between � and X
at the interface layers. For simplicity, we do not distinguish
between X1 and X3, such that H� and HX are single-band
effective-mass Hamiltonians that are converted to TB Hamil-
tonians according to the parametrization given in Ref. 19.
This TB parametrization has been successfully used in quan-
tum transport for nonequilibrium conditions and incoherent
scattering processes.23 The parametrization19,23 is made for
the effective-mass Hamiltonian

H0 =
− �2

2

d

dz

1

m*�z�
d

dz
+ Vk�z� +

�2kt
2

2mL
* , �26�

where mL
* is the effective mass in the left contact, the effec-

tive mass is considered z dependent, and the spatial depen-
dence of the transverse energy has been incorporated in the
transverse-momentum- �kt-�dependent potential:

Vk�z� = V�z� +
�2kt

2

2mL
* � mL

*

m�z�
− 1� . �27�

FIG. 2. Spin-dependent transmission �upper panel� and spin po-
larization �lower panel� through an indirect barrier versus a resonant
tunneling diode configuration. One can see the wide energy window
of large polarization created by indirect tunneling.

TABLE I. Matrix elements in eV of the nearest-neighbor model
outlined in Eq. �5�.

Indirect barrier RTD-like structure

t 1.0 1.0

V1 0.05 0.005

V2 0.052 0.0052

t1 0.05 0.0

t2 0.052 0.0


1 0.17 0.17


2 0.175 0.175
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The corresponding tight-binding parameters for the non-
diagonal part are

tij =
�2

�mi + mj�2 �28�

and the diagonal part is

Di�kt� =
�2

22� 1

m+ +
1

m−� + Vi�kt� . �29�

In Eqs. �28� and �29�, mi is the effective mass at site i on the
mesh of spacing , Vi�kt� is the potential at site i, which also
includes the band offsets, m−= �mi−1+mi� /2 and m+= �mi

+mi+1� /2. The spin-dependent Hamiltonian is expressed in
the basis spanned by spinors �4�, such that the Hamiltonian is
diagonal in this basis. At the � point the spin-dependent part
of the effective-mass Hamiltonians is introduced through the
corrections to the effective masses defined in Eq. �2� and the
effective potential defined in Eq. �27�. The spin-dependent
part at X is expressed through different band offsets for the
two spin projections as one can see from Eq. �3�.

Our calculations are performed with the effective masses
and band edges taken from Ref. 24. The Dresselhaus param-
eters given in Table II are calculated with a quasiparticle
self-consistent GW �G=Green function, W=screened Cou-
lomb interaction� method as in Refs. 25 and 26 with spin-
orbit coupling included perturbatively. The splitting at � in
GaAs found in the present work with the GW method is three
times smaller than the value used by Perel et al. in Ref. 7.27

The GW spin splitting at � for AlAs is about 2.5 times
smaller than in GaAs. While for GaAs one can also use the
experimental estimation for the splitting at the � point27

there are no such estimations for AlAs. Therefore to be con-
sistent, we used the GW values for both. The value of spin
splitting at the X point is almost the same as the one obtained
within the local density approximation with our full potential
linear muffin-tin orbitals code.28 The X-� band offset for a
GaAs/AlAs heterostructure is chosen to be 160 meV.29

Throughout the paper we have chosen a value kt=2� /a
�0.05 for the transverse wave vector �a is the lattice con-
stant of GaAs�.

In Fig. 3 we compare the one-band model �direct tunnel-
ing� given by the effective-mass Hamiltonian and the two-
band model �direct and indirect tunneling� given by Eq. �25�.
Below the indirect barrier, the main contribution to spin tun-
neling and polarization is provided by direct tunneling. How-
ever, the tunneling and the polarization through the X states
become dominant for energies above the indirect barrier. The
result shows that the confinement of the X states in the bar-

rier increases the energy threshold at which the tunneling
through X states becomes dominant. In the calculations16 in
which the confinement of the X states in the barrier is ne-
glected, the tunneling is predominantly indirect for energies
slightly below the top of indirect barrier. Therefore, our cal-
culations suggest that multiband calculations are needed to
fully describe the electron transport in these heterostructures.

In Fig. 4 we show the transmission probability and spin
polarization for GaAs/ �AlAs�N /GaAs heterostructures with
N=4, 6, and 8. Energy windows with large polarization can
be seen between the resonance and its corresponding zero.

TABLE II. Dresselhaus coefficients at � and X points for GaAs
and AlAs, calculated with the GW method �Refs. 25 and 26� with
spin-orbit coupling included. The units are atomic units.

GaAs AlAs

��hartree bohr�3 2.1 0.85

� �hartree bohr� 0.0074 0.00077

FIG. 3. �a� Spin-dependent transmission probability of one-band
�direct� tunneling through GaAs/ �AlAs�8 /GaAs barrier. �b� Com-
parison between full �direct and indirect� and one-band �direct�
transmission probabilities of a GaAs/ �AlAs�8 /GaAs barrier. �c�
Comparison of spin polarization between full �direct and indirect�
and one-band �direct� electron transmission of a
GaAs/ �AlAs�8 /GaAs barrier. �d� Spin polarization obtained from
one-band calculation over a broader energy range.

FIG. 4. Spin-dependent transmission probability and spin polar-
ization of a GaAs/ �AlAs�N /GaAs heterostructure. N=4, 6, and 8.
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The width of the window increases with the barrier width as
was demonstrated in the previous section. Only the first reso-
nance has a corresponding zero on the real axis; for the other
resonances, the zeros are pushed off the real axis.30 There-
fore, if the resonances are close enough, no well-defined
window with large spin polarization can be found. The pos-
sibility to obtain well-separated resonances with zeros on the
real axis is controlled by the combination of the longitudinal
effective mass in the barrier at the X point and the barrier
width. A lighter longitudinal effective mass and/or a nar-
rower barrier push farther apart the resonance energies in the
barrier.

In Fig. 5 we plot the transmission probability and spin
polarization for GaAs/ �AlAs�N /GaAs with N=5 and 7. The
parity of the number of AlAs monolayers has been taken into
account.20 The case N=5 shows two wide windows with
large and opposite spin polarizations. Again, the polarization
windows are mainly determined by the resonance and anti-
resonance positions and not by the magnitude of spin split-
ting. However, N=7 shows no such energy windows because
the zeros have moved away from the real axis. Moreover, at
larger values of N no energy windows with large polarization
are found for both even and odd values of N.

The pattern can be reestablished by increasing the
strength of the Dresselhaus coefficient at the X point in the
barrier. A barrier made of Al0.8Ga0.2As can achieve this goal.
In Al0.8Ga0.2As, the Dresselhaus coefficients are mixtures of
those of AlAs and GaAs. GaAs has larger coefficients, in
particular, � is ten times larger than the � coefficient of
AlAs, making the � coefficient of the compound stronger
than that of AlAs. In Fig. 6 we make a comparison between
Al0.8Ga0.2As and AlAs barriers with a thickness of N=12
monolayers. The virtual crystal approximation was employed
to calculate the physical parameters of Al0.8Ga0.2As. This is a
reasonable assumption, since AlAs and GaAs have similar
structural and electronic properties. Figure 6 illustrates
clearly that the Al0.8Ga0.2As barrier shows a window of po-
larization, while the AlAs barrier does not.

Visual analysis of Figs. 6 and 7 suggests that in order to
obtain polarization windows, the resonances and zeros in the
spin channels must be properly ordered. If a resonance is
occurring first in the spin channel 1, the zero in the transmis-
sion coefficient of the spin channel 1 must precede the zero
in the transmission coefficient of spin channel 2. This condi-
tion is satisfied for wider barriers provided that the Dressel-
haus coefficient at the X point is sufficiently large.

The practical aspect of focusing the electrons to energies
within the large-polarization window can be achieved by
placing a RTD structure in front of the tunneling barrier. In
this way, one not only can control the incoming energy of the
electrons but also ensures that most electrons have nonvan-
ishing transverse momenta31 and, consequently, their ener-
gies are spin split.

It is important to analyze at this point the influence that
the neglect of the Dresselhaus k3 term in the leads can have

FIG. 5. Spin-dependent transmission probability and spin polar-
ization of a GaAs/ �AlAs�N /GaAs heterostructure. N=5 and 7.

FIG. 6. Comparison of spin-dependent transmission probability
and spin polarization between GaAs/ �AlAs�12/GaAs and
GaAs/ �Al0.8Ga0.2As�12/GaAs heterostructures.

FIG. 7. Closer look at spin-dependent transmission probability
around the resonance energy for GaAs/ �AlAs�12/GaAs and
GaAs/ �Al0.8Ga0.2As�12/GaAs heterostructures. It explains the ori-
gin of the energy window with large spin polarization.
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on the conclusions drawn in the present work. Since the
tight-binding basis is localized, different bases can be used to
treat the spin Hamiltonian in the barrier and in the leads. In
the leads, the basis is that which makes diagonal the Hamil-
tonian in Eq. �2�, while in the barrier the basis is given in Eq.
�4�. The nondiagonal spin-dependent part is then transferred
to interface terms between leads and barrier. The corrections
to the Green function and transmission coefficients are qua-
dratic with respect the strength of this nondiagonal term.
This analysis indicates that the conclusions of the paper are
not likely to change if the Dresselhaus term in the leads is
properly taken into account. A detailed quantitative discus-
sion will be presented elsewhere since special care must be
exercised due to the presence of the kz-linear term in Eq. �2�.

IV. CONCLUSIONS

We investigated the spin-dependent transport across an
indirect semiconductor barrier of a zinc-blende structure like
the GaAs/AlAs/GaAs heterostructure along the �001� axis
by means of a combination of several tight-binding models.
Spin tunneling through such an indirect barrier exhibits two
major characteristics: the proportionality of the Dresselhaus
Hamiltonians at the � and X points and the Fano resonances.
A generic tight-binding Hamiltonian has shown that large
spin polarization occurs in the energy window determined by
the separation between the resonance and its associated an-
tiresonance and not because of the magnitude of the spin
splitting of resonances. Moreover, the energy separation be-
tween the resonance and its corresponding antiresonance in-
creases as the barrier width increases.

Realistic calculations have been performed with a two-
band tight-binding model. The effective mass Hamiltonians
at � and X have been converted19 to tight-binding Hamilto-
nians. The �-X coupling was implemented following the
scheme presented in Ref. 20. Accordingly, the Dresselhaus
Hamiltonians at � and X in the barrier have been included in
the effective masses and band offsets. The calculations show
that, in order to obtain energy windows with large polariza-
tion, two conditions need to be satisfied. The first condition
consists of having well-separated resonances such that their
corresponding antiresonances do not interact with each other.
The second condition is that the relative energy order of the
resonances in the two spin channels must be the same as the
order of their corresponding zeros. The first condition is
achieved by an appropriate combination of barrier width and
longitudinal effective mass at the X point, while the second
condition is accomplished by a combination of spin splitting
strength at the X point and transmissibility through the direct
barrier.

Electrons can be focused in the required energy windows
by passing them through a resonant tunneling diode structure
situated in front of the indirect barrier. Using such an experi-
mental setup, one could obtain large spin polarization fol-
lowing the procedure of Perel et al.7 and Glazov et al.9
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