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We introduce the concept of bond spin currents, which describe the spin transport between two sites of the
lattice model of a multiterminal spin-orbit �SO� coupled semiconductor nanostructure, and express them in
terms of the spin-dependent nonequilibrium �Keldysh� Green functions for the Landauer setup where the
nanostructure is attached to many semi-infinite ideal leads terminating in macroscopic thermalizing reservoirs.
This formalism is applied to obtain the spatial distribution of microscopic spin currents in a clean phase-
coherent two-dimensional electron �2DEG� gas with the Rashba type of SO coupling attached to four external
leads. Together with the corresponding spatial profiles of the steady-state spin density, such visualization of the
phase-coherent spin flow allow us to resolve several key issues for the understanding of microscopic mecha-
nisms which generate pure spin Hall currents in the transverse leads of ballistic devices due to the flow of
unpolarized charge current through their longitudinal leads: �i� while bond spin currents are nonzero locally
within the SO coupled sample and neighboring region of the leads even in equilibrium �when all leads are at
the same potential�, the total spin currents obtained by summing the bond spin currents over any cross section
within the leads are zero, so that no spin is actually transported by such equilibrium spin currents; �ii� when the
device is brought into a nonequilibrium state �supporting steady-state charge current� by applying the external
voltage difference between its longitudinal leads, only the wave functions �or Green functions� around the
Fermi energy contribute to the total spin current through a given transverse cross section; �iii� the total spin
Hall current is not conserved within the SO coupled region—however, it becomes conserved and physically
well-defined quantity in the ideal leads where it is, furthermore, equal to the spin current obtained within the
multiprobe Landauer-Büttiker scattering formalism in linear response regime. The spatial profiles of the local
spin currents and stationary flowing spin densities crucially depend on whether the sample is smaller or greater
than the spin precession length, thereby demonstrating its essential role as the characteristic mesoscale for the
spin Hall effect in ballistic multiterminal semiconductor nanostructures. Although the static spin-independent
disorder reduces the magnitude of the total spin current in the leads, the bond spin currents and spin densities
remain nonzero throughout the whole diffusive 2DEG sample.
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I. INTRODUCTION

The recent experimental observation of the spin Hall
effect1,2 has opened new avenues for the understanding of the
fundamental role which spin-orbit �SO� couplings3,4 can play
in transport and equilibrium properties of semiconductor
structures. While SO coupling effects are tiny relativistic cor-
rections for particles moving through electric fields in
vacuum, they can be enhanced in solids by several orders of
magnitude due to the interplay of crystal symmetry and
strong crystalline potential.3,4 Furthermore, harnessing of
spin currents induced by the spin Hall effect offers new pos-
sibilities for the envisioned all-electrical manipulation of
spin for semiconductor spintronics applications5 where elec-
trical fields can access individual spins on short length and
time scales.

The principal phenomenological manifestation of the spin
Hall effect is unique: the transverse spin current, which is
pure in the sense of not being accompanied by any net
charge transport in the transverse direction, emerges as the
response to conventional unpolarized charge current in the
longitudinal direction through a paramagnetic system in the
absence of any external magnetic field. When such current
hits the sample boundary, it will deposit nonequilibrium spin

accumulation6–10 at the lateral edges of the sample attached
to two longitudinal electrodes,9,10 as detected optically in re-
cent breakthrough experiments.1,2

However, there are several apparently disconnected
mechanisms capable of inducing the spin Hall currents.
Nonetheless, they share the necessity for some type of SO
interaction which couples the spin and charge transport. For
example, impurities with SO interaction will deflect spin-↑
�spin-↓� conduction electrons predominantly to the left
�right� in the scattering process, thereby generating the ex-
trinsic transverse spin Hall current. The theory of the extrin-
sic spin Hall effect has been around for several decades,6–8

and it has recently been reexamined11 to argue its major role
in one of the two recent seminal experimental observations.1

However, the extrinsic effect, which crucially relies on the
presence of impurities with skew scattering and does not
involve any SO coupling induced modification of the quasi-
particle energy spectrum, is a rather small effect �unless one
invokes band structure enhancement mechanisms involving
intrinsic SO coupling in the bulk crystal which contributes a
spin-dependent term to the impurity potential11� whose pre-
cise magnitude has been tantalizingly hard to estimate.12

Thus, a strong impetus for the revival of interest in the
realm of the spin Hall effect has ascended from recent pre-
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dictions for large pure spin currents flowing through �a� in-
finite homogeneous SO coupled semiconductors in the clean
limit,13,14 where the strong SO coupling induces the spin
splitting of the quasiparticle energies, or �b� the electrodes of
multiterminal finite-size mesoscopic nanostructures15–17

made of such materials. However, the theory of the intrinsic
spin Hall effect18 in the bulk of infinite semiconductors is
formulated in terms of the spin current density which is not
conserved3 in a medium with SO coupling and, therefore,
does not have well-defined experimental measurement pro-
cedures associated with it. Moreover, these spin current den-
sities can be nonzero even in thermodynamic equilibrium
�with preserved time-reversal invariance�.19

Theoretical scrutiny of such unusual features of the intrin-
sic spin Hall currents has led to major controversies:18 �i�
their dependence solely on the whole SO coupled Fermi sea
and the spin-split band structure �e.g., the anomalous veloc-
ity due to the Berry curvature of Bloch states in p-doped
semiconductors13,20�, without any connection to nonequilib-
rium distribution function that characterizes conventional
charge transport in the longitudinal direction,21 have
prompted arguments that such currents do not really trans-
port spin or induce spin accumulation that would be useful
for spintronics applications;21,22 �ii� for the linear in momen-
tum SO couplings, such as the Rashba or linear Dresselhaus
coupling4 in a two-dimensional electron gas �2DEG�, numer-
ous perturbative analytical23–25 and nonperturbative numeri-
cal exact-diagonalization26 studies find that the bulk intrinsic
spin Hall current density �averaged over an infinite system27�
vanishes for arbitrary small disorder, while being able to sur-
vive as edge spin current near the sample-electrode
interfaces.28,29 Also, the conclusions on the effect of different
types of disorder �short-range versus long-range� are
ambiguous30 since they depend on the particular definition of
the spin current density �conserved versus nonconserved31�
employed in the calculation of the spin Hall conductivity
defined for an infinite SO coupled system.

On the other hand, the mesoscopic spin Hall currents,
predicted to flow out of ballistic phase-coherent samples
made of various15–17,32–34 SO coupled semiconductor sys-
tems through the attached transverse ideal �i.e., free of spin
and charge interactions� leads, are conserved throughout the
leads, depend only on the wave functions �or Green func-
tions� at the Fermi surface �at low temperatures T→0�, and
are resilient to rather large static disorder �SO� /��10−1

��SO is the Rashba spin-splitting energy and � is the elastic
mean free time� within the diffusive metallic regime.15,17

However, the theory of the mesoscopic spin Hall effect is
formulated in terms of the Landauer-Büttiker-type transmis-
sion formalism35 for spin currents,15,16,36 which connects
asymptotic scattering states in the leads without requiring
any information about the quantum-mechanical probabilities
for spin and charge propagation between two points inside
the SO coupled sample. Technically, to obtain the spin Hall
current flowing through the leads of a multiterminal device,
one only needs the spin-dependent retarded real-space Green
function connecting the sites residing in different leads, so
that no information about its values between the points
within the sample is required.15

Thus, many recent debates on the very existence of the
spin Hall effect in clean SO coupled semiconductor struc-

tures could be resolved by visualizing the spatial details of
the spin flow through experimentally accessible Hall
bridges—from the SO coupled sample toward to attached
electrodes with no SO interactions. Analogous studies of the
spatial distribution of charge flow were essential in under-
standing the nature of quantum Hall transport �bulk versus
edge37� in mesoscopic Hall bridges.38,39 Furthermore, recent
advances in multifarious scanning probe experimental tech-
niques have made it possible to go beyond conventional
transport measurements of macroscopically averaged quanti-
ties and image phase-coherent charge flow through a single
2DEG in the quantum Hall or quantum point-contact regime
where the host semiconductor heterostructures is subjected to
high or zero external magnetic field, respectively.40 Compa-
rable microscopic insights into the transport of spin have
recently become available through advances in optical Kerr
rotation microscopy for imaging of flowing spin densities.41

In particular, the theory of the imaging of charge flow can
be obtained efficiently within the framework of lattice mod-
els of mesoscopic devices and the corresponding bond
charge currents35,42 which yield a detailed picture of the
charge propagation between two arbitrary sites of the
lattice.43–45 Here we provide a tool that makes it possible to
obtain the spatial details of the spin flow on the scale of a
few nanometers by introducing bond spin currents, which
represent the analog of bond charge currents as well as a
lattice version of the spin current density3 conventionally
employed in studies of the intrinsic spin Hall effect in mac-
roscopic systems.13,14,23,24,28

As shown in Sec. II, the bond spin currents can be com-
puted efficiently in terms of the spin-resolved Keldysh Green
functions46 applied to the Landauer setup where a finite-size
SO coupled semiconductor sample is attached to many semi-
infinite ideal leads.43,44,47 They are evaluated in Sec. III for a
paradigmatic mesoscopic spin Hall generator—a four-
terminal ballistic 2DEG with the Rashba type of SO
coupling—to show the spatial profiles of spin currents and
steady-state spin densities, thereby revealing features of the
spin Hall transport on the nanoscale. In Sec. IV we show that
local spin currents remain nonzero throughout the whole
2DEG even in the diffusive transport regime, in contrast to
conjectures28 put forth for macroscopic 2DEG’s attached to
massive electrodes where only the edge spin currents can
survive disorder effects in Rashba spin-split systems. The
integration of the linear response bond spin currents over the
transverse cross sections allows us to connect in Sec. V the
spin transport within the sample to the total spin Hall cur-
rents, which are obtained from the Landauer-Büttiker multi-
probe spin current formulas,15 flowing in an out of the 2DEG
through the leads as a response to the applied voltages at the
device boundaries. We conclude in Sec. VI.

II. BOND SPIN CURRENTS IN MULTITERMINAL
NANOSTRUCTURES: LANDAUER-KELDYSH APPROACH

The conservation of charge implies the continuity equa-
tion in quantum mechanics for the charge density �
=e���r��2 associated with a given wave function ��r�,
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��

�t
+ � · j = 0, �1�

from which one can extract the expression for the charge
current density:

j = e Re��†�r�v̂��r�� . �2�

This can be viewed as the quantum-mechanical expectation
value �in the state ��r�� of the charge current density opera-
tor

ĵ = e
n̂�r�v̂ + v̂n̂�r�

2
. �3�

Such operator can also be obtained heuristically from the
classical charge current density j=en�r�v via a quantization
procedure where the particle density n�r� and the velocity v
are replaced by the corresponding operators and symme-
trized to ensure that ĵ is a Hermitian operator.35

In SO coupled systems ĵ acquires extra terms since the

velocity operator i�v̂= �r̂ , Ĥ� is modified by the presence of

SO terms in the Hamiltonian Ĥ. For example, for the
effective-mass Rashba Hamiltonian of a finite-size 2DEG �in
the xy plane�,

Ĥ =
p̂2

2m* +
�

�
�p̂y	̂x − p̂x	̂y� + Vconf�x,y� , �4�

the velocity operator is

v̂ =
p̂

m* −
�

�
�	̂yex − 	̂xey� , �5�

where ex and ey are the unit vectors along the x and y axes,
respectively. Here p̂= �p̂x , p̂y� is the momentum operator in
2D, �̂= �	̂x , 	̂y , 	̂z� is the vector of the Pauli spin matrices, �
is the strength of the Rashba SO coupling3,4 arising due to
the structure inversion asymmetry,48 and Vconf�x ,y� is the
transverse confining potential.

In contrast to the charge continuity equation �1�, the
analogous continuity equation for the spin density Si= �� /2�

��†�r�	̂i��r��,

�Si

�t
+ � · Ji = Fs

i , �6�

contains the spin current density

Ji =
�

2
�†�r�

	̂iv̂ + v̂	̂i

2
��r� , �7�

as well as a nonzero spin source term49

Fs
i =

�

2
Re��†�r�

i

�
�Ĥ,	̂i���r�� . �8�

The nonzero Fs
i �0 term reflects nonconservation of spin in

the presence of SO couplings. Thus, the plausible Hermitian
operator of the spin current density,3

Ĵk
i =

�

2

	̂iv̂k + v̂k	̂i

2
, �9�

is a well-defined quantity �a tensor with nine components�
only when the velocity operator is spin independent, as en-
countered in many metal spintronic devices.50 Such a lack of
physical justification for Eq. �9� in SO coupled systems leads
to an arbitrariness13 in the definition of the spin current den-
sity employed in recent intrinsic spin Hall studies,31 thereby
casting doubt on the experimental relevance of the quantita-
tive predictions13,14 for the spin Hall conductivity 	sH
=Jy

z /Ex computed as the linear response to the applied lon-
gitudinal electric field Ex penetrating an infinite SO coupled
�perfect� semiconductor crystal.

To obtain the spatial profiles of spin and charge current
densities in finite-size samples of arbitrary shape attached to
many probes, it is advantageous to represent the spin-
dependent Hamiltonian and the corresponding charge and
spin current density operators in the local orbital basis.42–44,47

For example, in such a representation the Rashba Hamil-
tonian can be recast in the form9

Ĥ = �
m	

�mĉm	
† ĉm	 + �

mm�		�

ĉm	
† tmm�

		� ĉm�	�, �10�

where the hard-wall boundary conditions account for con-
finement on the lattice Lx
Ly with the lattice spacing a.
Here ĉm	

† �ĉm	� is the creation �annihilation� operator of an
electron at the site m= �mx ,my�.

While this Hamiltonian is of tight-binding type, its hop-
ping parameters are nontrivial 2
2 Hermitian matrices
tm�m= �tmm��

† in the spin space. The on-site potential �m de-
scribes any static local potential, such as the electrostatic
potential due to the applied voltage or the disorder simulated
via a uniform random variable �m� �−W /2 ,W /2�. The gen-

eralized nearest-neighbor hopping tmm�
		� = �tmm��		� accounts

for the Rashba coupling

tmm� = 	− toIs − itSO	̂y �m = m� + ex� ,

− toIs + itSO	̂x �m = m� + ey� ,

 �11�

through the SO hopping parameter tSO=� /2a �Is is the unit
2
2 matrix in the spin space�. A direct correspondence be-
tween the continuous effective Rashba Hamiltonian, Eq. �4�
�with quadratic and isotropic energy-momentum dispersion�,
and its lattice version Eq. �10� �with tight-binding dispersion�
is established by selecting the Fermi energy �EF=−3.8to in
the rest of the paper� of the injected electrons to be close to
the bottom of the band Eb=−4.0to �so that tight-binding dis-
persion reduces to the quadratic one� and by using to
=�2 / �2m*a2� for the orbital hopping which yields the effec-
tive mass m* in the continuum limit. For example, the
InGaAs/ InAlAs heterostructure employed in experiments of
Ref. 51 is characterized by the effective mass m*=0.05m0
�m0 is the free-electron mass� and the width of the conduc-
tion band �b=0.9 eV, which sets to=�b /8=112 meV for the
orbital hopping parameter on a square lattice �with four near-
est neighbors of each site� and a�2.6 nm for its lattice spac-
ing. Thus, the Rashba SO coupling of 2DEG formed in this
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heterostructure, tuned to a maximum value51 �=0.93

10−11 eV m by the gate voltage covering the 2DEG, corre-
sponds to the SO hopping tSO/ to�0.016 in the lattice Hamil-
tonian, Eq. �10�.

The usage of the second-quantized notation in Eq. �10�
facilitates the introduction of Keldysh Green-function46 ex-
pressions for the nonequilibrium expectation values.43,47 We
imagine that at time t�=−� the sample and leads are not
connected, while the left and right longitudinal leads of a
four-probe device are in their own thermal equilibrium with
the chemical potentials 
L and 
R, respectively, where 
L
=
R+eV. The adiabatic switching of the hopping parameter
connecting the leads and sample generates a time evolution
of the density matrix of the structure.47 The physical quanti-
ties are obtained as the nonequilibrium statistical average
�¯
 �with respect to the density matrix46 at time t�=0� of the
corresponding quantum-mechanical operators expressed in
terms of ĉm	

† and ĉm	. This will lead to the expressions of
the type �ĉm	

† ĉm	�
, which introduce the lesser Green
function43,47

�ĉm	
† ĉm�	�
 =

�

i
Gm�m,	�	

� �� = 0� =
1

2�i
�

−�

�

dEGm�m,	�	
� �E� .

�12�

Here we utilize the fact that the two-time correlation function

�ĉm	�t�=eiĤt/�ĉm	e−iĤt/��

Gmm�,		�
� �t,t�� �

i

�
�ĉm�	�

† �t��ĉm	�t�
 �13�

depends only on �= t− t� in stationary situations, so the time
difference � can be Fourier transformed to energy

Gmm�,		�
� ��� =

1

2��
�

−�

�

dEGmm�,		�
� �E�eiE�/�, �14�

which will be utilized for steady-state transport studied here.
We use the notation where Gmm�

� is a 2
2 matrix in the spin
space whose 		� element is Gmm�,		�

� .

A. Bond charge currents in SO coupled systems

1. Bond charge-current operator

The charge conservation expressed through the familiar
continuity equation �1� yields a uniquely determined bond
charge-current operator for quantum systems described on a
lattice by a tight-binding-type of Hamiltonian, Eq. �10�. That
is, the Heisenberg equation of motion

dN̂m

dt
=

1

i�
�N̂m,Ĥ� , �15�

for the electron number operator N̂m on site m,

N̂m � �
	=↑,↓

ĉm	
† ĉm	, �16�

leads to the charge continuity equation on the lattice:

e
dN̂m

dt
+ �

k=x,y
�Ĵm,m+ek

− Ĵm−ek,m� = 0. �17�

This equation introduces the bond charge-current

operator35,42 Ĵmm� which describes the particle current from
site m to its nearest neighbor site m� �the “bond” terminol-
ogy is supported by a picture where current between two
sites is represented by a bundle of flow lines bunched to-
gether along a line joining the two sites42�.

Thus, the spin-dependent Hamiltonian, Eq. �10�, contain-
ing 2
2 matrix hoppings defines the bond charge-current

operator Ĵmm�=�		�Ĵmm�
		� which can be viewed as the sum of

four different spin-resolved bond charge-current operators

Ĵmm�
		� =

e

i�
�ĉm�	�

† tm�m
	�	 ĉm	 − H.c.� , �18�

where H.c. stands for the Hermitian conjugate of the first

term. In particular, for the case of tmm�
		� being determined by

the Rashba SO interaction, Eq. �11�, we can decompose the
bond charge-current operator into two terms

Ĵmm� = Ĵmm�
kin + Ĵmm�

SO , �19�

which have transparent physical interpretation. The first term

Ĵmm�
kin =

eito

�
�
	

�ĉm�	
† ĉm	 − H.c.� �20�

can be denoted as “kinetic” since it originates only from the
kinetic energy to and does not depend on the SO coupling
energy tSO. On the other hand, the second term

Ĵmm�
SO = �−

4etSO

�2 Ŝmm�
y �m = m� + ex� ,

+
4etSO

�2 Ŝmm�
x �m = m� + ey� ,�

= +
4etSO

�2 ��m� − m� 
 Ŝmm��z �21�

represents an additional contribution to the intersite charge
current flow due to nonzero Rashba SO hopping tSO. Here we
also introduce the “bond spin-density” operator

Ŝmm� =
�

4 �
��

�ĉm��
† �̂��ĉm� + H.c.� , �22�

defined for the bond connecting the sites m and m�, which
reduces to the usual definition of the local spin-density op-
erator for m=m� �see Eq. �34��.

2. Nonequilibrium bond charge current

The formalism of bond charge current makes it possible to
compute physically measurable40 spatial profiles of local
charge current density within the sample as the quantum-
statistical average �¯
 �with respect to a density matrix that
has evolved over sufficiently long time so that nonequilib-
rium state and all relevant interactions are fully established�
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of the bond charge-current operator in the nonequilibrium
state,43,44,47

�Ĵmm�
 = �
		�

�Ĵmm�
		� 
 , �23�

�Ĵmm�
		� 
 =

− e

�
�

−�

� dE

2�
�tm�m

	�	 Gmm�,		�
� �E� − tmm�

		� Gm�m,	�	
� �E�� ,

�24�

where we utilize Eq. �12� to express the local charge current
in terms of the nonequilibrium lesser Green function. The
spin-resolved bond charge current in Eq. �24� describes the
flow of charges which start as spin-	 electrons at site m and
end up as spin-	� electrons at site m� where possible spin
flips 	�	� �instantaneous or due to precession� are caused
by spin-dependent interactions. The decomposition of the
bond charge-current operator into kinetic and SO terms in
Eq. �19� leads to a Green-function expression for the corre-

sponding nonequilibrium bond charge currents �Ĵmm�

= �Ĵmm�

kin 
+ �Ĵmm�
SO 
 with kinetic and SO terms given by

�Ĵmm�
kin 
 =

eto

�
�

−�

� dE

2�
Trs�Gmm�

� �E� − Gm�m
� �E�� , �25�

�Ĵmm�
SO 
 =

etSO

�
�

−�

� dE

2�i
Trs���m� − m� 
 �̂�z


�Gmm�
� �E� + Gm�m

� �E��� . �26�

Note, however, that the “kinetic” term is also influenced by
the SO coupling through G�. In the absence of the SO cou-
pling, Eq. �26� vanishes and the bond charge current reduces
to the standard expression.43,44,47 The trace Trs here is per-
formed in the spin Hilbert space. Similarly, we can also ob-
tain the nonequilibrium local charge density in terms of G�,

e�N̂m
 = e �
	=↑,↓

�ĉm	
† ĉm	
 =

e

2�i
�

−�

�

dE�
	

Gmm,		
� �E�

=
e

2�i
�

−�

�

dETrs�Gmm
� �E�� , �27�

which is the statistical average value of the corresponding
operator, Eq. �16�.

B. Bond spin currents in SO coupled systems

1. Bond spin-current operator

To mimic the plausible definition of the spin-current den-

sity operator Ĵk
i in Eq. �9�, we can introduce the bond spin-

current operator for the spin-Si component as the symme-
trized product of the spin-1

2 operator �	̂i /2 �i=x ,y ,z� and
the bond charge-current operator from Eq. �17�:

Ĵmm�
Si �

1

4i
�
��

�ĉm��
† �	̂i,tm�m���ĉm� − H.c.� . �28�

By inserting the hopping matrix tm�m, Eq. �11�, of the lattice
SO Hamiltonian into this expression we obtain its explicit
expression for the Rashba SO coupled system:

Ĵmm�
Si =

ito

2 �
��

�ĉm��
† �	̂i���ĉm� − H.c.�

+ tSON̂mm��ei 
 �m� − m��z, �29�

which can be considered as the lattice version of Eq. �9�.
Here we simplify the notation by using the “bond electron-

number operator” N̂mm�,

N̂mm� �
1

2�
	

�ĉm�	
† ĉm	 + H.c.� , �30�

which reduces to the standard electron-number operator, Eq.
�16�, for m=m�.

2. Nonequilibrium bond spin current

Similarly to the case of the nonequilibrium bond charge
current in Sec. II A 2, the nonequilibrium statistical average
of the bond-spin-current operator, Eq. �29�, can be expressed
using the lesser Green function G� as

�Ĵmm�
Si 
 = �Ĵmm�

Si�kin�
 + �Ĵmm�
Si�so�
 , �31�

�Ĵmm�
Si�kin�
 =

to

2
�

−�

� dE

2�
Trs�	̂i�Gm�m

� �E� − Gmm�
� �E��� ,

�32�

�Ĵmm�
Si�SO�
 = �ei 
 �m� − m��z

tSO

2
�

−�

� dE

2�i


Trs�Gmm�
� �E� + Gm�m

� �E�� . �33�

Here we also encounter two terms which can be interpreted
as the kinetic and SO contributions to the bond spin current
crossing from site m to site m�. However, we emphasize that
such a SO contribution to the spin-Sz bond current is identi-
cally equal to zero, which simplifies the expression for this
component to Eq. �32� studied in the rest of the paper as the
primary spin current response in the spin Hall effect.

3. Local spin density and its continuity equation

The local spin density in the lattice models is determined

by the local spin operator Ŝm= �Ŝm
x , Ŝm

y , Ŝm
z � at site m defined

by

Ŝm =
�

2 �
��

ĉm�
† �̂��ĉm�. �34�

The Heisenberg equation of motion for each component

Ŝi �i=x ,y ,z� of the spin density operator
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dŜm
i

dt
=

1

i�
�Ŝm

i ,Ĥ� �35�

can be written in the form

dŜm
i

dt
+ �

k=x,y
�Ĵm,m+ek

Si − Ĵm−ek,m
Si � = F̂m

Si , �36�

where Ĵmm�
Si is the bond spin-current operator given by Eq.

�28� so that the second term on the left-hand side of Eq. �36�
corresponds to the “divergence” of the bond spin current on
site m. Here, in analogy with Eq. �8�, we also find the lattice

version of the spin source operator F̂m
Si whose explicit form is

F̂m
Sx = −

tSO

to
�Ĵm,m+ex

Sz + Ĵm−ex,m
Sz � , �37�

F̂m
Sy = −

tSO

to
�Ĵm,m+ey

Sz + Ĵm−ey,m
Sz � , �38�

F̂m
Sz =

tSO

to
�Ĵm,m+ex

Sx + Ĵm−ex,m
Sx + Ĵm,m+ey

Sy + Ĵm−ey,m
Sy � . �39�

The presence of the nonzero term F̂m
Si on the right-hand side

of the spin continuity equation �36� signifies, within the
framework of bond spin-current formalism, the fact that spin
is not conserved in SO coupled systems where it is forced
into precession by the effective momentum-dependent mag-
netic field corresponding to the SO coupling. The fact that
the bond spin-current operator, Eq. �28�, appears in the spin
continuity equation �36� as its divergence implies that its
definition in Eq. �28� is plausible. However, the presence of

the spin source operator F̂m
Si reminds us that such a definition

cannot be made unique,31 unlike the case of the bond charge
current which is uniquely determined by the charge continu-
ity equation �17�.

If we evaluate the statistical average of Eq. �36� in a
steady state �which can be either equilibrium or nonequilib-
rium�, we obtain the identity

�
k=x,y

��Ĵm,m+ek

Si 
 − �Ĵm−ek,m
Si 
� = �F̂m

Si
 . �40�

In particular, for the spin-Sz component we get

�
k=x,y

��Ĵm,m+ek

Sz 
 − �Ĵm−ek,m
Sz 
� =

tSO

to
�

k=x,y
��Ĵm,m+ek

Sk 
 + �Ĵm−ek,m
Sk 
� ,

�41�

which relates the divergence of the spin-Sz current �left-hand
side� to the spin source �right-hand side� determined by the
sum of the longitudinal component of the spin-Sx current and
the transverse component of the spin-Sy current.

Since no experiment has been proposed to measure local
spin current density within the SO coupled sample, defined
through Eq. �7� or its lattice equivalent, Eq. �31�, we can
obtain additional information about the spin fluxes within the
sample by computing the local spin density

�Ŝm
 =
�

2 �
�,�=↑,↓

�̂���ĉm�
† ĉm�


=
�

4�i
�

−�

�

dE �
�,�=↑,↓

�̂��Gmm,��
� �E�

=
�

4�i
�

−�

�

dETrs��̂Gmm
� �E�� . �42�

Motivated by recent advances in Kerr rotation microscopy,
which have made possible experimental imaging of steady-
state spin polarization in various SO coupled semiconductor

structures,41 we will also plot spatial profiles of �Ŝm
 as a
well-defined and measurable quantity that offers insight into
the spin flow in the nonequilibrium steady transport state.

C. Spin-resolved Landauer-Keldysh Green functions for
finite-size mesoscopic devices

The formalism discussed thus far does not depend on the
details of the external driving force which brings the system
into a nonequilibrium state. That is, the system can be driven
by either the homogeneous electric field applied to an infinite
homogeneous 2DEG or the voltage �i.e., electrochemical po-
tential� difference between the electrodes attached to a finite-
size mesoscopic sample. For example, in the latter case, the
external bias voltage only shifts the relative chemical poten-
tials of the reservoirs into which the longitudinal leads �em-
ployed to simplify the boundary conditions� eventually ter-
minate, so that the electrons do not feel any electric field in
the course of ballistic propagation through clean 2DEG cen-
tral region. The information about these different situations is
encoded into the lesser Green function G�.

Here we focus on experimentally accessible spin Hall
bridges15 where the finite-size central region �C�, defined on
the L
L lattice, is attached to four external semi-infinite
leads of the same width L. The leads at infinity terminate into
the reservoirs where electrons are brought into thermal equi-
librium, characterized by the Fermi-Dirac distribution func-
tion f�E−eVp�, to ensure the steady-state transport. In such
Landauer setup35 current is limited by quantum transmission
through a potential profile while power is dissipated nonlo-
cally in the reservoirs. The voltage in each lead of the four-
terminal spin Hall bridge is Vp �p=1, . . . ,4� so that the on-
site potential �m within the leads has to be shifted by eVp.

The spin-dependent lesser Green function G� defined in
Eq. �13� is evaluated within the finite-size sample region as a
2L2
2L2 matrix in the site�spin space through the spin-
resolved Keldysh equation for matrices,9

G��E� = G�E����E�G†�E� , �43�

which is valid in this form for steady-state transport when
transients have died away.46 Within the effective single-
particle picture, the retarded Green function can be obtained
by inverting the Hamiltonian
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G�E� = �EIC − HC − eUm − �
p

�p�E − eVp��−1
, �44�

where the self-energies

���E� = i�
p

�p�E − eVp�f�E − eVp� , �45�

�p�E� = i��p�E� − �p
†�E�� , �46�

�p�E� = HpC
† ��E + i0+�Ip − Hp

lead�−1HpC �47�

are exactly computable in the noninteracting electron ap-
proximation and without any inelastic processes taking place
within the sample. They take into account the “interaction”
of the SO coupled sample with the attached leads and gen-
erate a finite lifetime that an electron spends within the
2DEG before escaping through the leads toward the macro-
scopic thermalizing reservoirs. Here IC is the 2L2
2L2

identity matrix and Ip is the identity matrix in the infinite
site � spin space of the lead p. We use the Hamiltonian
matrices

�HC�mm�,		� = �1m	�Ĥ�1m�	�
 �m,m� � C� ,

�Hp
lead�mm�,		� = �1m	�Ĥ�1m�	�
 �m,m� � p� ,

�HpC�mm�,		� = �1m	�Ĥ�1m�	�
 �m � p,m� � C� ,

�48�

where �1m	
 is a vector in the Fock space �meaning that the
occupation number is one for the single-particle state �m	

and zero otherwise� and Ĥ is the Hamiltonian given in
Eq. �10�.

In the general case of arbitrary applied bias voltage, the
gauge invariance of measurable quantities �such as the
current-voltage characteristic� with respect to the shift of
electric potential everywhere by a constant V, eVp→eVp
+eV and eUm→eUm+eV, is satisfied on the proviso that the
retarded self-energies �p�E−eVp� introduced by each lead
depend explicitly on the applied voltages at the sample
boundary, while the computation of the retarded Green func-
tion G�E� has to include the electric potential landscape Um
within the sample52 �which can be obtained from the Poisson
equation with charge density, Eq. �27��. However, when the
applied bias is low, so that linear response zero-temperature
quantum transport takes place through the sample �as deter-
mined by G�EF��, the exact profile of the internal potential
becomes irrelevant.35,53

III. SPATIAL PROFILES OF LOCAL SPIN CURRENTS
AND SPIN DENSITIES IN BALLISTIC FOUR-TERMINAL

RASHBA SO COUPLED NANOSTRUCTURES

Under time-reversal transformation, the mass, charge, and
energy do not change sign, while the velocity operator and
the Pauli matrices change sign,54 t→−t⇒ v̂→−v̂ and t→
−t⇒ 	̂→−	̂. Since the charge-current density operator, Eq.

�3�, contains velocity, it changes sign under the time reversal
t→−t⇒ ĵ→−ĵ and, therefore, has to vanish in the thermo-
dynamic equilibrium �except in the presence of an external
magnetic field which breaks time-reversal invariance,
thereby allowing for circulating or diamagnetic charge cur-
rents even in thermodynamic equilibrium35,39�. On the other
hand, the spin-current density operator, Eq. �9�, which is the
product of the velocity and Pauli matrices, is the time-

reversal invariant quantity t→−t⇒ Ĵk
i →Ĵk

i : if the clock ran
backward, spin current would continue to flow in the same

direction. Thus, Ĵk
i can have nonzero expectation values

even in thermodynamic equilibrium and in the absence of
external magnetic fields. This has been explicitly
demonstrated19 for the case of an infinite clean Rashba spin-
split 2DEG where such equilibrium spin currents are polar-
ized inside the plane.19 Thus, the out-of-plane polarized spin-
current density in the bulk has been considered as a genuine
nonequilibrium spin-Hall-effect-induced response.14 How-
ever, no analysis of the properties of equilibrium spin cur-
rents in finite-size multiterminal devices with SO coupling
has been undertaken—this is essential information for the
development of a consistent theory for transport �nonequilib-
rium� spin currents where contributions from background
�equilibrium� currents must be eliminated.19

To investigate microscopic profiles of equilibrium local
spin currents in mesoscopic finite-size devices we plot in Fig.
1�a� the spatial distribution of the bond spin currents, carried
by the whole Fermi sea, in a four-terminal ballistic device
with no impurities where all leads are kept at the same po-
tential Vp=const. Although we find nonzero local spin cur-
rents �for the Sz component of spin�, they do not transport
any spin since the total spin current, obtained by summing
the bond spin currents over an arbitrary transverse cross sec-
tion of the device

Itrans
Sz �my� = �

mx

�Ĵ�mx,my��mx,my+1�
Sz 
 �49�

or over any longitudinal cross section

Ilong
Sz �mx� = �

my

�Ĵ�mx,my��mx+1,my�
Sz 
 , �50�

is identically equal to zero Itrans
Sz�eq��my�= Ilong

Sz�eq��mx��0. Note
that equilibrium currents in Fig. 1�a�, whose spin is polarized
orthogonal to the plane, emerge here because of the bound-
aries of the finite-size device—in infinite Rashba SO coupled
2DEG’s such out-of-plane polarized equilibrium spin cur-
rents are found to be zero, Jx

z =Jy
z �0, while the in-plane

polarized ones satisfy the relations19 Jx
x=Jy

y �0 and
Jy

x =−Jx
y.

To investigate manifestations of in-plane polarized equi-
librium spin currents in finite-size multiterminal devices, we
plot in Fig. 2 the spatial profiles of the corresponding equi-

librium bond spin currents �Ĵmm�
Sx�eq�
 and �Ĵmm�

Sy�eq�
 obtained
from Eq. �31� with V=0 and integration over the whole
Fermi sea �i.e., from the band bottom to the Fermi energy
EF�. While these spatial profiles do not satisfy the simple
symmetry properties found by Rashba19 in infinite 2DEG’s,
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the total spin currents within the SO coupled region obey
similar relations, Itrans

Sx�eq��my�=−Ilong
Sy�eq��mx�. We conclude the

story of equilibrium spin currents in multiterminal nanostruc-
tures by stressing that microscopic picture offered by Figs.
1�a� and 2 yields direct visual proof of the fact that no equi-
librium total spin currents, conjectured in Ref. 36, can actu-
ally appear in the leads of an unbiased �Vp=const� mesos-
copic device in thermodynamic equilibrium, as demonstrated
recently16,55 within the Landauer-Büttiker approach �which
operates only with measurable total charge and spin currents
in the leads�.

In Fig. 1�b� we apply low �i.e., linear response; see Sec.
V� bias voltage eV=10−3to� �EF−Eb�=0.2to between the
longitudinal leads and integrate expression �32� from the bot-
tom of the band to the chemical potential EF+eV /2 of the
left reservoir. In contrast to the equilibrium spin-current den-
sity from Fig. 1�a�, the vortex pattern is now distorted and
nonzero total spin current Itrans

Sz �my��0 in Eq. �49� emerges

in the transverse direction, as expected in the phenomenol-
ogy of the spin Hall effect.

One of the highly unconventional features of the intrinsic
spin Hall current density is its dependence on the whole SO
coupled Fermi sea,13,14 even when the infinite system is
driven out of equilibrium by the applied external electric
field, thereby limiting the charge transport �or the extrinsic
spin Hall response� to the Fermi level through the nonequi-
librium part of the distribution function.21 However, such a
property for physically relevant and experimentally measur-
able total currents �through some cross section� would be
alien to the spirit of the Fermi-liquid theory where transport
involves only quasiparticles whose energies are within kBT
of the Fermi level.

While the spin currents crossing the transverse bonds in
Fig. 1�b� are apparently carried by the whole Fermi sea, we
now separate the integration in Eq. �32� for Sz bond spin
current into two parts:

FIG. 1. �Color online� The spatial distribution of local spin currents in ballistic four-terminal bridges where the central 2DEG region, with
the Rashba SO coupling tSO=0.1to and the corresponding spin precession length LSO=�toa /2tSO�15.7a �typically a�3 nm�, is attached to
four ideal �tSO�0� leads. The magnitude of the bond spin current is proportional to the length of the arrow. The device is in equilibrium
�Vp=0� in �a� and out of equilibrium in �b�, �c�, and �d� due to the applied bias voltage eV=10−3to which drives the linear response
longitudinal charge current and the transverse spin Hall current induced by its passage through the SO coupled region. The local spin current
in �b�, which is “carried” by all states from −4to �band bottom� to EF+eV /2 �EF=−3.8to�, is the sum of equilibrium �persistent� spin current

�Ĵmm�
Sz�eq�
 in �c�, carried by the fully occupied states from −4to to EF−eV /2, and the nonequilibrium �transport� spin current �Ĵmm�

Sz�neq�
 in �d�
carried by the partially occupied states around the Fermi energy from 
R=EF−eV /2 �electrochemical potential of the right reservoir� to


L=EF+eV /2 �electrochemical potential of the left reservoir�. Note that the sum of �Ĵmm�
Sz�eq�
 in �c� over arbitrary transverse cross section

�orthogonal to the y axis� gives zero total spin current through that cross section, while the same sum of �Ĵmm�
Sz�neq�
 in �d� defines the total spin

current which flows into the leads and is, in principle, experimentally measurable.

NIKOLIĆ, ZÂRBO, AND SOUMA PHYSICAL REVIEW B 73, 075303 �2006�

075303-8



�Ĵmm�
Sz 
 =

to

2
�

Eb

EF−eV/2 dE

2�
Trs�	̂z�Gm�m

� �E� − Gmm�
� �E���

+
to

2
�

EF−eV/2

EF+eV/2 dE

2�
Trs�	̂z�Gm�m

� �E� − Gmm�
� �E���

= �Ĵmm�
Sz�eq�
 + �Ĵmm�

Sz�neq�
 . �51�

The states from the band bottom Eb to EF−eV /2 are fully
occupied, while states in the energy interval from the elec-
trochemical potential EF−eV /2 �eV�0� of the right reser-
voir to the electrochemical potential EF+eV /2 of the left
reservoir are partially occupied because of the competition
between the left reservoir which tries to fill them and the
right reservoir which tries to deplete them. The profile of the

first term �Ĵmm�
Sz�eq�
 in Eq. �51� is shown in Fig. 1�c�, while the

spatial profile of the second term, representing the local spin

current �Ĵmm�
Sz�neq�
 carried by the states around the Fermi en-

ergy, is shown in Fig. 1�d�.

The spatial distribution of the microscopic spin currents in
Fig. 1�c� is akin to the vortexlike pattern of bond spin cur-
rents within the device in equilibrium in Fig. 1�a� and, there-
fore, does not transport any spin between two points in real
space. Thus, Fig. 1 convincingly demonstrates that nonzero-
spin Hall flux through the transverse cross sections in Figs.
1�b� and 1�d� is due to only the wave functions �or Green
functions� at the Fermi energy �as T→0�, in accordance with
the general paradigms of the Landau’s Fermi-liquid theory
where transport quantities are expected to be expressed as
the Fermi-surface property.35,56

We recall here that a similar situation appears in charge
transport in an external magnetic field where equilibrium �or
persistent� current density,35 or bond charge currents in the
lattice formalism,39,44 can be nonzero even in the unbiased
devices in thermal equilibrium due to the breaking of time-
reversal invariance by an external magnetic field. However,
such circulating or diamagnetic currents carried by the Fermi
sea, which in Landauer-Keldysh formalism can be subtracted
by separating the integration39 in a fashion similar to our Eq.
�51�, do not contribute to the net charge transport �i.e., to the
total charge current measured in experiments� through any
cross section of the device.35,39 Thus, early “Fermi-sea” ex-
pressions for the linear response transport coefficients in,
e.g., the quantum Hall effect theory35 or in the anomalous
Hall effect theory56 were eventually recast in terms of the
Fermi-surface-determined quantities. Similarly, Fig. 1 dem-
onstrates that spin Hall current carried by the “bulk” of the
Fermi sea, which is an equilibrium current and does not re-
ally transport spin between two points in space, should be
subtracted19 to obtain a theory for the intrinsic spin Hall
conductivity that could be related to experimentally observ-
able quantities.

One of the basic tests for theories of the spin Hall effect is
to predict the direction of the spin Hall current or the corre-
sponding sign9,11,31 of nonequilibrium spin Hall accumula-
tion deposited by such current on the lateral boundaries of
experimental devices.1,2 The nonequilibrium �linear re-
sponse� spin Hall current in Fig. 1�d� flows from the top to
the bottom transverse lead because the spin-↑ electrons are
deflected to the right. This feature can be understood using
the semiclassical picture based on the SO force operator57,58

generated by the Rashba Hamiltonian, Eq. �4�, for the finite-
size 2DEG:

F̂SO =
2�2m*

�3 �p̂ 
 z� � 	̂z −
dVconf�ŷ�

dŷ
y . �52�

The apparently simple picture brought by the expectation
values of Eq. �52� in the spin-polarized wave packet states
��
 � �↑ 
 also explains why the transverse spin Hall current
density bends toward the right in Fig. 1 while passing
through the SO coupled region.

However, this expectation value �i.e., the SO “force”� os-
cillates along the sample due to the precession of the de-
flected spin in the effective Rashba magnetic field which is
nearly parallel to the y axis because of transverse confine-
ment effects.57 In ballistic strongly coupled SO structures
such an �2-dependent SO “force,” which oscillates on the

FIG. 2. �Color online� The spatial profiles of equilibrium local

spin currents with in-plane spin polarization �a� �Ĵmm�
Sx�eq�
 and �b�

�Ĵmm�
Sy�eq�
 in unbiased �Vp=0� ballistic four-terminal bridges where

the central 2DEG region, with the Rashba SO coupling tSO=0.1to

and the corresponding spin precession length LSO=�toa /2tSO

�15.7a, is attached to four ideal �tSO�0� leads. These equilibrium
bond spin currents are “carried” by the whole Fermi sea �i.e., they
depend on all states from the band bottom at −4to to the Fermi
energy EF=−3.8to�.
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mesoscale set by the spin precession length LSO
=��2 /2m*�=�toa /2tSO �on which spin precesses by an
angle �; i.e., the state �↑
 evolves into �↓
�, will lead to a
change of the sign15 of spin Hall current as a function of the
system size L /LSO. Also, since the mesoscopic spin Hall ef-
fect sensitively depends on the measurement geometry,15 the
sign of the transverse spin Hall current can change when
nonideal leads17 are attached to the sample.

To highlight the mesoscopic features35 �such as the effect
of the measuring geometry and the properties of the attached
probes� of the spin Hall effect in multiterminal ballistic SO
coupled structure,15 we plot in Fig. 3 the spatial profile of
microscopic spin currents for the four-terminal bridge at-
tached to the leads where Rashba SO coupling is switched on
adiabatically �via a linear function� within the finite region of
the leads adjacent to the 2DEG sample in the center of the

FIG. 3. �Color online� �a� The spatial distribution of nonequilibrium local spin currents �Ĵmm�
Sz�neq�
 in ballistic four-terminal spin Hall

bridges where the central finite-size 2DEG �of size 8a
8a� with the Rashba SO coupling tSO=0.1to �LSO�15.7a� is attached to four leads
containing a region �adjacent to the sample� of length 8a within which the SO coupling is switched on adiabatically �using a linear function�
from tSO=0 to tSO=0.1to. Panel �b� shows the corresponding spatial profiles of the steady-state local spin density �Ŝm

z 
, while panel �c� plots

the spatial profiles of the local charge currents �Ĵmm�
 at each site. Upon reversing the bias voltage V→−V driving the linear response
�eV=10−3to�, spatial profiles in the left column turn into the profiles of the right column where both the total longitudinal charge current and
the total transverse spin Hall current change their direction �Ref. 2�.

NIKOLIĆ, ZÂRBO, AND SOUMA PHYSICAL REVIEW B 73, 075303 �2006�

075303-10



device. In this measuring setup, the reflection59 at the inter-
face separating zero and nonzero SO coupling regions is
greatly suppressed, thereby enhancing the spin Hall current15

�as encoded by longer arrows in the profiles of Fig. 3 when
compared to Fig. 1�d��.

Since local spin current within the central region is not
conserved, as manifested by the total spin current changing
magnitude between different transverse cross sections �see
Sec. V for total spin current profiles� separated by long dis-
tances �LSO, the spatial profiles of the local spin current
density appear not to be directly measurable.3 However, the
nonequilibrium spin density �i.e., the related spin magnetiza-
tion� is a well-defined and measurable quantity.1,2 Therefore,
we plot the spatial distribution of the stationary flowing spin

density �Ŝm
z 
 Eq. �42� in Fig. 3 to gain additional insight into

the microscopic details of the spin Hall quantum transport.
These pictures convincingly demonstrate how spin-↑ and
spin-↓ densities flow in opposite transverse directions
through the attached leads, without any net charge flow in
the transverse direction, thereby giving rise to a pure trans-
verse spin Hall current. When we reverse the direction of the
longitudinal charge current �by reversing the bias voltage V
→−V�, the transverse spin current and spin densities flip
their sign, as exploited in experiments to confirm the strong
signatures of the spin Hall effect.2 The spatial profiles of the
local charge currents in Fig. 3�c� also provide insight into the
spin Hall effect–induced modifications of the longitudinal
charge flow.60

Thus, in contrast to the arguments21 suggesting the impos-
sibility of spin Hall transport and accumulation via mecha-
nisms driven solely by the intrinsic SO coupling terms in the
effective Hamiltonian of spin-split semiconductors, Fig. 3
demonstrates that the spin Hall effect originating in ballistic
multiterminal devices �without the necessity for impurity-
induced effects� generates genuine nonequilibrium spin flux
that can be used for spin injection and spintronics
applications.5

To complete the microscopic picture of spin density flow,
we examine in Fig. 4 the spatial profiles of the in-plane com-

ponents �Ŝm
y 
 and �Ŝm

x 
 of stationary spin density which dem-
onstrate the possibility of nonzero total spin polarization

�m�Ŝm
y 
�0 within paramagnetic ideal leads with no external

or SO-coupling-induced magnetic fields. This can be under-
stood as a consequence of the magnetoelectric effect dis-
cussed in the context of homogeneous �infinite� systems,
where longitudinal charge current passing through a 2DEG
orients spins along the y axis due to the presence of Rashba
SO coupling.61 In inhomogeneous systems, such spin accu-
mulation within the 2DEG will, in turn, push the spin current
�which, in contrast to the spin Hall current, carries only ↑
spins polarized along the y axis� into any normal lead at-
tached to 2DEG due to the difference in respective spin-

dependent chemical potentials.15,29 The nonzero �Ŝm
x 
�0

�with total polarization �m�Ŝm
x 
=0� appearing around the

lead-2DEG interface is due to the scattering at non-SO-
coupled-region/SO-coupled-region boundary.

Another mesoscale-driven property of the spin Hall effect
in ballistic nanostructures is its finite-size scaling being gov-

erned by the processes on the spin precession length LSO: one
can differentiate the “mesoscopic” regime L�LSO where
spin Hall current oscillates with increasing 2DEG size
�changing sign with increasing size L
L of the 2DEG for
strong enough Rashba SO coupling tSO�0.04to� and the
“macroscopic” regime L�LSO where it saturates at some
average value.15 While spatial profiles of local spin currents
and spin densities are easy to interpret for L�LSO �as in Fig.
1�, Fig. 5 divulges how they become increasingly more in-
tricate in the samples of size LSO
LSO �for which the spin
Hall current reaches its maximum15� or in the macroscopic
regime L�LSO where the expectation value of spin com-
pletes many full precessions along the sample. Nevertheless,
quantitative inspection of the profiles in Fig. 5 shows that the
total spin Hall current exists only in the transverse leads �the
sum of bond Sz-spin currents over any cross section within
the longitudinal leads is equal to zero� where its magnitude
and sign are identical to the terminal spin currents obtained
from the Landauer-Büttiker formalism15 �see Sec. V for
quantitative comparison�.

FIG. 4. �Color online� The spatial distribution of the nonequi-

librium stationary flowing in-plane spin densities �a� �Ŝm
y 
 and �b�

�Ŝm
x 
 in ballistic bridges consisting of four charge and spin

interaction-free �tSO�0� leads attached to a finite-size 2DEG with
the Rashba SO coupling tSO=0.1to and the corresponding spin pre-
cession length LSO�15.7a. The spin densities are determined by
the states within eV=10−3to around the Fermi energy EF=−3.8to at
which longitudinal unpolarized linear response charge current is
injected from the left lead.
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IV. BULK vs EDGE LOCAL SPIN CURRENTS IN
DISORDERED FOUR-TERMINAL RASHBA COUPLED

NANOSTRUCTURES

A surprising21 feature of the early predictions for the in-
trinsic spin Hall effect in hole-doped13 or electron-doped14

infinite homogeneous SO coupled semiconductor systems is
apparent insensitivity of the spin Hall conductivity 	sH to
mean-free-path and relaxation rates �motivating the introduc-
tion of the term “intrinsic”13�. This has provoked intense the-
oretical scrutiny62 of the effects which spin-independent scat-
tering off static impurities imposes on the intrinsic spin Hall
current, leading to the conclusion that, in fact, 	sH→0
vanishes23–26 for arbitrary small disorder in any model with
SO coupling linear in momentum �such as the Rashba
Hamiltonian of the spin-slit 2DEG� due to accidental
cancellations.18,24,29 In the general case, where SO coupling
contains higher-order momentum terms,25,63 	sH can be resil-
ient to sizable disorder strengths.64 In mesoscopic Rashba
spin-split 2DEG’s, the value of the spin Hall conductance �as
opposed to the bulk spin Hall conductivity� set in the ballistic
transport regime can survive up to the rather large dis-
order strengths15,17 �SO� /�=2�kF� /�=2�tSO�� / �toa��10−1,

where � is the semiclassical elastic mean free path and �
=vF�.

Further exploration of the disorder effects on the intrinsic
spin Hall current density has led to the conjecture that mac-
roscopic inhomogeneities facilitate spin currents3,27 so that
transverse edge spin current Jy

z would survive at the sample/
electrode interfaces28,29 even in systems where it is expected
to be suppressed in the bulk.23 However, quantitative support
for the picture of edge spin Hall currents is based on analysis
of semiclassical diffusive transport through a rather abstract
structure, where 2DEG, infinite in the transverse direction, is
attached to two massive electrodes in the longitudinal
direction.28 On the other hand, the presence of SO couplings
makes the dynamics of transported spin and spin relaxation
in experimentally relevant confined structures strongly de-
pendent on the properties of their interfaces, boundaries, and
the attached electrodes,59 even for semiclassical spatial
propagation of charges which carry spins evolving according
to quantum dynamical laws.65 Thus, handling of all boundary
conditions relevant for experimental spin Hall bridges is es-
sential in both quantum transport15,17,32 and semiclassical dif-
fusion regimes.29

FIG. 5. �Color online� �a� The spatial distribution of the nonequilibrium local spin currents �Ĵmm�
Sz�neq�
 and �b� the flowing spin density �Ŝm

z 

in ballistic bridges consisting of four ideal leads �tSO�0� attached to a finite-size 2DEG with the Rashba SO coupling tSO=0.1to and the
corresponding spin precession length LSO�15.7a. The 2DEG central region is of the size 15a
15a�LSO
LSO in the left column and

60a
60a in the right column. Note that the linear response �eV=10−3to� total transverse spin Hall current Itrans
Sz �my�=�mx

�Ĵ�mx,my��mx,my+1�
Sz 
 in

the leads flows along the negative y axis �i.e., from the top to the bottom transverse lead� for both device sizes.
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For example, heuristic arguments based on the Keldysh
formalism applied to an infinite two-terminal structure �lack-
ing actual lateral edges� of Ref. 28 suggest that nonequilib-
rium spin Hall accumulation �Sm

z 
�0 will appear only in the
four corners at the lead/2DEG interfaces �due to Jy

z �0 ex-
isting within a spin relaxation length LSO wide region around
such interfaces�, in contrast to the Keldysh formalism ap-
plied to finite-size 2DEG in the Landauer two-terminal setup
where nonzero spin accumulation �with opposite sign on the
two lateral edges1,2� is found along the whole lateral edge
both in the ballistic9 and in the diffusive10 transport regimes.

Within the formalism of bond spin currents of Sec. II
�which represents the lattice version of the same quantity Jy

z

analyzed in Ref. 28� these issues can be resolved through the
exact �i.e., nonperturbative in both the disorder and SO cou-
pling strength� evaluation of the retarded and lesser Green
functions for a noninteracting particle propagating through a
random potential in a finite-size multiterminal SO coupled
device of a given geometry. Thus, we plot in Fig. 6 the
spatial distribution of the local spin currents and spin densi-
ties for a single disordered Rashba SO coupled 2DEG, as
well as their disorder averages �which are the counterpart of
the macroscopic system analysis based on the diffusion

equation28�. The disorder strength is tuned to ensure the dif-
fusive transport regime ��L, while the magnitude of the
spin Hall current in the leads at this concentration of impu-
rities is still about 80% of its maximum value set in the clean
limit for the same four-terminal nanostructure.15 Due to the
presence of the disorder, we assume that potential landscape
is eUmx

=eV /2 for mx�10 in the left longitudinal lead,
eUmx

=eV /2−eV�mx−10� /L within the 2DEG sample, and
eUmx

=−eV /2 for mx�70 in the right longitudinal lead �the
corresponding homogeneous electric field within the sample
is sufficient to capture linear response transport
properties28,35,53�.

In this mesoscopic bridge geometry, we find that nonzero-
spin fluxes are not confined to the region around 2DEG/
longitudinal-lead interfaces. The conclusion based on the
spatial profile of microscopic spin currents �i.e., visual dis-
tribution of arrows in Fig. 6�a�� is further corroborated in
Fig. 7 by plotting one-dimensional longitudinal profiles of
the bond spin currents over different transverse cross sec-
tions within the SO coupled sample and in the leads. Thus,
both Figs. 6 and 7 suggest that precessing spins continues to
propagate through the bulk of the diffusive Rashba SO
coupled 2DEG.

FIG. 6. �Color online� �a� The spatial distribution of the nonequilibrium local spin currents �Ĵmm�
Sz�neq�
 and �b� the steady-state �flowing�

spin density �Ŝm
z 
 in the disordered 2DEG of the size L=60a with static spin-independent impurities which set the mean free path �=7a. The

Rashba SO coupling within the 2DEG region is tSO=0.1to �tSO�0 in ideal leads� and the corresponding D’yakonov-Perel’ spin relaxation
length �Ref. 5� is LSO�15.7a. The applied bias voltage eV=10−3to between the longitudinal leads drives the linear response longitudinal
charge transport �determined by the states at the Fermi energy EF=−3.8to� in the diffusive regime L��. Panels in the left column correspond
to a single sample with specific configuration of impurities, while panels in the right column show disorder-averaged profiles over an
ensemble of 500 different impurity configurations.
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V. TOTAL vs LOCAL SPIN HALL CURRENT: LANDAUER-
BÜTTIKER vs LANDAUER-KELDYSH PICTURE

The traditional charge transport experiments measure total
current I and the conductance I=GV relating it to the voltage
drop V, rather than local current density j and the conductiv-
ity j=	E relating it to the externally applied electric field E
�note also that in ballistic transport or quantum-coherent
transport through a diffusive conductor conductivity ceases
to exist as a local quantity35�. Since realizations of total pure
spin current have been detected experimentally in optical
pump-probe experiments66 and several theoretical schemes
are proposed to detect them indirectly via various electrical
measurements,7,32,67 we focus in this section on the proper-
ties of the total spin Hall current Itrans

Sz �my� at different trans-
verse cross sections �specified by coordinate my� of our four-
terminal devices, as obtained from Eq. �49� by summing the
corresponding bond spin currents.

As shown in Fig. 8, the total pure spin current in the
transverse leads, obtained by summing the nonequilibrium

bond spin currents �Ĵmm�
Sz�neq�
 over an arbitrary transverse cross

section of the ideal leads �where SO coupling vanishes�,
flows through them in a conserved fashion, Itrans

s �my�=const
for any my� lead. However, the same summation over the
transverse cross sections within the 2DEG yields a quantity
which is not conserved, except on the short length scales
�LSO. This is due to the fact that, e.g., injected eigenstate �↑

of 	̂z will precess in the effective magnetic field of the
Rashba SO coupling �along the y axis�, thereby changing the
amplitude of the spin current measured with respect to the z
axis as the spin quantization axis. Additional quantitative in-
formation about the microscopic details of spin fluxes is pro-
vided by Fig. 9 which plots the one-dimensional longitudinal
profiles of the bond spin currents over the selected transverse

cross sections �in the leads and in the 2DEG sample� cutting
through the full spatial distributions of Figs. 1 and 5. Note
that the sum of these longitudinal profiles yields the corre-
sponding total spin current at the cross section my in Fig. 8.

The total spin currents in the leads in the linear response
regime V→0 can also be calculated using the spin-
dependent Landauer-Büttiker scattering formalism for spin
currents in multiprobe geometries.15,16,36 For example, the
zero-temperature T→0 spin Hall conductance for a geo-
metrically symmetric15 four-terminal bridge with a perfectly
clean Rashba 2DEG central region is given by15,17

FIG. 7. �Color online� The longitudinal profile of the disorder-
averaged �over 500 samples� nonequilibrium bond spin currents,
whose full two-dimensional profile is shown in the right panel of
Fig. 6�a�, across the transverse cross sections in the ideal bottom
lead �my =5� and inside the diffusive 2DEG �my =20 and my =40�
with static spin-independent impurities and Rashba SO coupling
tSO=0.1to. Note that the length of the my =5 cross section within the
bottom transverse lead is 60a, while the length of my =20 and my

=40 transverse cross sections is 80a �60a inside the 2DEG+10a
within each of the two longitudinal leads�. Vertical lines define the
spin-relaxation-wide edges around longitudinal-lead/2DEG
interfaces.

FIG. 8. �Color online� The total spin current Itrans
Sz �my� at trans-

verse cross sections across the ideal bottom and top transverse leads
�with no SO coupling� and the Rashba SO coupled 2DEG with
tSO=0.1to �LSO�15.7a�. The linear response longitudinal charge
transport �at zero temperature� is driven by the applied bias voltage
eV=10−3to between the longitudinal leads of the four-terminal
structures where unpolarized electrons are injected from the left
longitudinal lead at the Fermi energy EF=−3.8to. The total pure
transverse spin current in panel �a� is obtained by summing the
bond spin currents in Fig. 1�d� over a cross section my; similarly,
panels �b� and �c� correspond to such sums for the profiles in the
left and right columns of Fig. 5, respectively.
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GsH
z�LB��EF� = lim

V→0

I2
Sz

V
= −

e

4�
�
ij

��tij,↑↑
21 �EF��2 + �tij,↑↓

21 �EF��2

− �tij,↓↑
21 �EF��2 − �tij,↓↓

21 �EF��2� , �53�

where the spin-resolved Landauer transmission matrix t21

connecting asymptotic spin-polarized scattering states at the
Fermi energy EF in the left longitudinal lead �denoted as 1�
and the top transverse lead �denoted as 2� in Fig. 1 is given
by

t21�EF� = ��2�EF� · G21�EF� · ��1�EF� . �54�

The sum �ij�tij,		�
21 �2 in this Landauer-type formula goes over

the orbital conducting channels59 in the leads and gives the
probability for a spin-	� electron incident in lead 1 to be
transmitted to lead 2 as a spin-	 electron. The spin quanti-
zation axis for ↑, ↓ is chosen to be the z axis. The submatrix
G21�E� of the retarded Green function matrix G�E� in Eq.
�44� is composed of only those elements Gmm�,		� which
connect the sites m on the edge of the sample adjacent to the
left lead to the sites m� on the edge adjacent to the top lead.
Thus, the computation of the spin-resolved transmission ma-
trices does not require any knowledge of the elements of the
retarded Green function matrix, Eq. �44�, between the sites
within the sample �such formulas in terms of only the re-
tarded Green function elements between the sample edges
are obtained also for the total charge currents after summing
the corresponding bond charge currents43,47�.

We demonstrate in Fig. 10 that the spin Hall conductance
obtained from the Landauer-Büttiker formalism GsH

z�LB�, Eq.
�53�, is almost identical to the spin Hall conductance
GsH

z�LK�= Itrans
Sz �my� /V obtained by summing the bond spin cur-

rents over a cross section my in the top transverse ideal lead,
on the proviso that the applied bias voltage be small, eV
�EF, and the spin current be carried only by states at the
Fermi level. This equivalence further justifies the introduc-
tion of the nonequilibrium bond spin-current formula, Eq.
�32�, for the z component of spin, which although not con-
served in the sample, reproduces conserved terminal spin
currents in the ideal leads. Note that the nonconserved nature
of conventionally defined spin current within the SO coupled
sample �as demonstrated by Fig. 8� is partially responsible
for discrepancy between the exact Landauer-Büttiker spin

FIG. 9. �Color online� The longitudinal profile of the nonequi-
librium bond spin currents along the transverse cross sections my in
the ideal bottom lead �solid curves� and inside the SO coupled
ballistic 2DEG �dashed and dotted curves�. The Rashba SO cou-
pling is tSO=0.1to �LSO�15.7a� within the central 2DEG region
and tSO�0 in both the longitudinal and transverse leads of the
four-terminal bridge. The sum of the longitudinal profiles gives the
total transverse spin Hall current in Fig. 8. Note that profile in panel
�a� corresponds to the bond spin current magnitude represented by
arrows in Fig. 1�d� and, similarly, panels �b� and �c� correspond to
the left and right columns in Fig. 5, respectively.

FIG. 10. �Color online� The spin Hall conductance of a Rashba
SO coupled four-terminal 2DEG, obtained from the Landauer-
Büttiker linear response transmission formalism as GsH

z�LB�

=limV→0 I2
Sz /V �where I2

s denotes the terminal spin current in the top
transverse lead in Fig. 5�a��, vs the spin Hall conductance GsH

z�LK�

= Itrans
Sz �my� /V obtained within the Landauer-Keldysh formalism by

summing the bond spin currents over the transverse cross section in
the top lead of structure in Fig. 5�a� for low bias voltage eV
=10−3to or high bias voltage eV=0.1to applied between the longi-
tudinal leads. The size of the central 2DEG region is 15a
15a
�LSO
LSO, for which the spin Hall conductance GsH

z�LB��L , tSO�
reaches maximum when increasing the sample size at fixed SO
coupling �Ref. 15�.
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Hall conductance of the four-terminal bridge and attempts to
obtain the spin Hall conductivity from the Kubo formula in
exact state representation applied to finite-size samples.68

VI. CONCLUDING REMARKS

In conclusion, we have demonstrated how to define the
bond spin current, describing the spin flux across a single
bond between two sites of the lattice model of an SO coupled
semiconductors, and evaluate it in terms of the Keldysh non-
equilibrium Green functions for the Landauer setup where
finite-size sample is attached to many semi-infinite ideal
leads to form a theoretical model of experimentally acces-
sible spin Hall bridges. Although spin current is not con-
served within the SO coupled region �i.e., on the length
scales comparable to the spin precession length LSO on which
the SO coupling manifests itself�, the microscopic spin fluxes
are nearly conserved on short scales. Thus, the bond spin
currents make it possible to obtain their spatial distribution
by following the dynamics of transported spin on the scale of
the lattice spacing, a�LSO. Such profiles of �the lattice ver-
sion of� local spin-current density, together with stationary
flow profiles of physically transparent and measurable local
spin densities, allow us to demonstrate microscopic details of
how pure transverse spin Hall current emerges in clean
Rashba SO coupled 2DEG through which the unpolarized
longitudinal charge current flows ballistically �where elec-
trons do not scatter off impurities and do not feel the electric
field�. These spatial profiles are highly dependent on whether
the 2DEG size is smaller or greater than the spin precession
length and can be affected by nontrivial measurement geom-
etries, as discussed in the theory of the mesoscopic spin Hall
effect.15 The bond spin current within the bulk of the 2DEG
is also resilient to weak disorder so that spin fluxes remain
nonzero in the bulk of the sample and are not localized near

the edges �as found in macroscopic 2DEG’s28,29� of the dif-
fusive mesoscopic Rashba spin-split 2DEG.

Using the spatial profiles of bond spin currents we explic-
itly demonstrate that nonequilibrium total spin current can be
carried only by the states around the Fermi energy, while the
Fermi sea contributes to local persistent spin currents which,
however, do not transport any spin through a given cross
section. The nanometer-scale details of the spin Hall flow in
multiterminal mesoscopic �quantum-coherent� structures
convincingly show that the SO couplings intrinsic to the
crystal can be used to generate spin fluxes and spin accumu-
lation and ultimately be employed to construct all-electrical
spin injectors which do not require any ferromagnetic ele-
ments �thereby avoiding ferromagnet/semiconductor mis-
match problems3,5 and stray magnetic fields� and which are
compatible with existing semiconductor technologies.

Finally, while the local spin current density within the
sample is not conserved in the presence of SO couplings and
has not been the subject of any proposed experimental mea-
surement procedure,3,18 here we propose to image the sta-
tionary but flowing spin densities whose detection is within
the reach of present optical techniques.41 The experimental
observation of their spatial profiles in four-terminal bridges
�as predicted in Figs. 3–6� within the samples would lead to
deep insight into the spin dynamics within the sample which
leads to pure transverse spin Hall currents outflowing from
the sample into the attached external electrodes.
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