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The magnetoexciton spectrum of wurtzite-type GaN in high magnetic field parallel to the crystal c axis is
studied theoretically. The magnetic field dependence of the interband absorption spectra for various polariza-
tions of light is obtained by solving the multisubband exciton equation in the Landau orbitals representation
using the Lanczos reduction technique. Our theoretical model takes into account the hexagonal symmetry of
the wurtzite GaN crystal and includes the coupling between different valence subbands. It is shown that the
proposed method consistently reproduces experimental data in the wide range of magnetic fields. By compar-
ing our results with experimental data we were able to estimate the valence band Luttinger constant �
�0.35.
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I. INTRODUCTION

Recent interest in studying optical properties of III-V ni-
trides is due to their potential applications in optoelectronic
devices operating in the short-wavelength spectral region.
Although these materials have already been used in commer-
cial laser diodes emitting light in the blue-violet spectral re-
gion, the detailed knowledge of their electronic band struc-
ture is still far for complete.

Wurtzite GaN is a direct band gap semiconductor. The
valence band at the � point �k=0� is split by the crystal-field
and spin-orbit interaction into three subbands commonly de-
noted A, B, C and related to the �9, �7+, �7− symmetry
levels, respectively. Although the band structure in the vicin-
ity of the � point is well described using the standard k ·p
method,1 the necessary band structure parameters have to be
determined experimentally or obtained from the ab initio cal-
culations. Optical spectroscopy in the magnetic field supplies
a wealth of data from which the key band structure param-
eters can be inferred with great accuracy. However the inter-
band transitions in semiconductors are usually associated
with excitonic effects and therefore an accurate model which
involves both electron-hole interaction and the structure of
the conduction and valence bands has to be employed in
order to describe such measurements.

The purpose of this study is to provide theoretical under-
standing of the excitonic spectra in GaN in high magnetic
field including the effect of built-in strain. Magnetoreflec-
tance measurements for various light polarizations in the
magnetic field B �c configuration show that the Zeeman split-
ting of excitons A and B is negligibly small for heteroepi-
taxial GaN layers grown on sapphire up to the magnetic field
of 23 T. A strong broadening of the lowest C exciton transi-
tion line associated with the coupling to the continuum states
of excitons A and B was also observed. The experimental
data were quite well parametrized by the hydrogenic model
for decoupled A, B, and C excitons in a magnetic field as-
suming identical effective Rydberg value for all three exciton
branches.2

To understand this result we have developed a multiband
exciton model of absorption in the presence of the magnetic

field parallel to the crystal c axis, taking into account the
built in biaxial strain caused by the lattice mismatch with the
substrate layer. Since the energy separation between valence
subbands of GaN is comparable to the exciton binding en-
ergy, the intersubband coupling should play an important
role in the exciton absorption, especially in the regime of
high magnetic fields. Consequently, unlike in a simple, two-
band semiconductor model, there are no exact solutions for
the excitonic eigenstates neither in zero nor in high magnetic
fields available. It turns out, however, that the electron-hole
pair k ·p, wurtzite symmetry Hamiltonian at zero Coulomb
coupling can be exactly diagonalized for arbitrary magnetic
fields. These exact eigenstates form a natural basis set in
which the exciton Hamiltonian can be diagonalized. Our
technique is therefore complementary to the approximation
assuming the dominant role of the Coulomb interaction and
treating the magnetic field as as small perturbation as dis-
cussed recently in Ref. 3.

II. EXCITON HAMILTONIAN IN THE MAGNETIC FIELD

According to the linear-response theory the absorption co-
efficient can be written as �we employ atomic units �=e
=m0=1 throughout this paper�4

���� =
4�

cnr��
Re �

0

�

��P̂	�t�, P̂	
+�0��−	ei��+i0+�tdt , �1�

where � is the system volume, nr—the refractive index, and
the angular brackets represent ensemble averaging. We will
use the abbreviation 1
�m1 ,k1 ,s1� to denote an electron
state with the wave vector k1 and spin s1 in the band m1. In
the following analysis the indices 1 will be limited only to
the states in the conduction band and the indices 2 will de-
note the states in the valence subbands. If we define creation
a1

+ and annihilation a2 operators for electron band states 1
and 2 respectively then the part of the momentum operator
promoting electrons from the valence to the conduction band

has the form P̂	
†�t�=�1,2P1,2

	 a1
+�t�a2�t�, where P1,2

	 = �1�p̂	�2	
is equal to the matrix element of p̂	—the projection of the
one-particle momentum operator onto the light polarization
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vector 	. The expectation value of the commutator in Eq. �1�
can be conveniently evaluated using the correlation function


1,2ª��t���a2
+�t�a1�t� , P̂	

†�0��−	 for which we can write the
exciton equation of motion as

i
�

�t

1,2�t� = �

1̄,2̄

�H
1,1̄

c
�2,2̄ − H

2,2̄

v
�1,1̄�
1̄,2̄�t�

− �
2̄,1̄

V1,2̄,2,1̄
1̄,2̄�t� + i��t�P1,2
	 . �2�

Here we have assumed that the valence band is fully oc-
cupied and the conduction band states are empty so the sum-

mation is carried over empty conduction states 1̄ and occu-

pied valence states 2̄. The kinetic energy part of the exciton
Hamiltonian is represented by the operator H

1,1̄

c
which de-

scribes the conduction band states, and the valence band
term H

2,2̄

v
which is equal to the transposed valence band

Hamiltonian matrix. In our approach the single-particle
Hamiltonians H

1,1̄

c
and H

2,2̄

v
are expressed in the representa-

tion obtained from the Luttinger-Kohn functions by the k ·p
perturbation theory.5 Coulomb interaction screened by the
anisotropic static dielectric matrix is described by V1,2̄,2,1̄ ma-
trix elements.

III. KINETIC PART OF THE ELECTRON-HOLE
HAMILTONIAN

Optical and transport phenomena in semiconductors in-
volve the electronic structure near the band edges. According
to the theory of Luttinger and Kohn,5,6 and Bir and Pikus7

the Hamiltonian for the electron-hole �e-h� pair in the pres-
ence of an external magnetic field is given by a 66 matrix
operator

H0 = Hc�pe� − Hv�ph� . �3�

The first term which describes the electron motion in the
conduction band is treated in the parabolic and spherical
band approximation. Including the Zeeman splitting with
g0=2 and the magnetic field directed along the z-axis, it can
be written as Hc�pe�=pe

2 /2me
*+g0�BBzsc,z+Eg, where sc,z and

Eg denote the z component of the conduction band spin op-
erator and the energy gap respectively while �B denotes the
Bohr magneton. The second term corresponds to the hole in
the valence band and takes into account the dispersion of the
three subbands in the vicinity of the valence band edge. The
kinetic momentum of the electron is given by pe=−�i /���e

+eA�re� �e�0� with the vector potential assumed in the
form A= 1

2rB. Using the hole momentum which is defined
as ph= �i /���h+eA�rh� the valence band contribution to the
kinetic-energy in wurtzite structure reads1,7

Hv�ph� = �1�Iz
2 − 1� + �2�Iz�z − 1� + 2�3�I+�− + I−�+�

+ �A1 + A3Iz
2�phz

2 + �A2 + A4Iz
2��phx

2 + phy
2 � − A5�I+

2ph−
2

+ I−
2ph+

2 � − 2A6pz��Iz,I+�+ph− + �Iz,I−�+ph+�

+ g0�BBzsv,z − �B�3� + 1�BzIz. �4�

The terms proportional to the Bzsv,z and BzIz describe the
coupling of the valence electron spin sv,z and angular mo-
mentum Iz with the magnetic field. The 33 matrices Ix,y,z
represent the components of the angular momentum operator
with I=1. Furthermore I±= �1/2��Ix± iIy�, ph±= phx± iphy,
and �±= 1

2 ��x± i�y�, where �x,y,z are standard Pauli matrices.
The brackets �Iz , I±�+= 1

2 �IzI±+ I±Iz� denote symmetrized
product. The band structure constants A1¯6 and �1,2,3 are
extracted either from experimental data or from ab initio
band structure calculations. The effect of biaxial strain �xx
introduced by the lattice mismatch between the GaN layer
and the substrate is incorporated into the renormalized en-
ergy gap Eg and the crystal field parameter �1:

Eg = Eg
0 + 2�a2 − D4 −

C13

C33
�a1 − D3���xx

�1 = �1
0 + 2�D4 −

C13

C33
D3��xx, �5�

where Eg
0 and �1

0 are equal to the values of those parameters
in the absence of strain. The deformation potentials a1 and a2
describe the band gap renormalization due to the combined
rigid shift of the conduction band and valence subbands
while D3 and D4 are responsible for the change in the rela-
tive splitting of the valence band sublevels due to the biaxial
strain. The relationship between the parallel and perpendicu-
lar components of the strain tensor with respect to the layer
plane involves the ratio of the stiffness coefficients C13 and
C33.

8

In order to describe the relative motion of the electron and
hole we introduce the new set of center-of-mass and relative

coordinates R= �re+rh� /2, P=pe+ph and r=xî+y ĵ+zk̂=re

−rh, p= �pe−ph� /2. Then using the Lamb transformation9

and considering only the states with zero center-of-mass mo-
mentum P=0, it could be easily verified that the whole trans-
formation amounts to substitution pe→�a and ph→�b in the
Hamiltonian �3�, where �a=−�i /���r+eA�r� and �b=
−�i /���r−eA�r� refer only to the relative position r. Finally
the Hamiltonian which represents the relative motion of a
free e-h pair becomes simply Hc��a�−Hv��b�.

It is convenient to change variables into dimensionless
form and rewrite the Hamiltonian in terms of the operators

a =
i

2
�1

2
�̄ + 2��� and b =

i
2

�1

2
� + 2��̄� , �6�

where �= �x+ iy� / l, �̄= �x− iy� / l and l= �� /eB�1/2 denotes the
magnetic length. It is easily verified that �a ,b�−= �a ,b†�−

= �a† ,b�−=0, �a ,a†�−= �b ,b†�−=1 and the e-h kinetic energy
becomes
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H0 = Eg + ��e�aa† +
1

2
� − �1�Iz

2 − 1� − �2�Iz�z − 1�

− 2�3�I+�− + I−�+� + � 1

2me
* − A1 − A3Iz

2�k2

− 2l−2�A2 + A4Iz
2��b†b +

1

2
� + 2l−2A5�I+

2b2 + I−
2�b†�2�

− 22l−1A6k��Iz,I+�+b + �Iz,I−�+b†� + g0�BBzscz

− g0�BBzsvz + �B�3� + 1�BzIz. �7�

We have introduced the conduction band cyclotron fre-
quency �e=eB /me

* and defined k as the eigenvalue of the z
component of the relative momentum pz�k	=�k�k	. The rela-
tive motion can be therefore described in the basis set of
Landau orbitals multiplied by a plane wave in the z direction.
Our basis set states �n ,s ,k	 in the cylindrical coordinates
�� ,�� are then defined by

�nsk��,�,z� =
1

n!s!
eizk�a†�n�b†�s�000��� , �8�

for n ,s=0,1 ,2 , . . ., and the ground-state wave function is
given by

�000��� =
1

l2�
exp�−

�2

4l2� . �9�

Clearly the basis functions Eq. �8� are also eigenstates of the

z axis component of the angular momentum Lz=�����− �̄��̄�
with the magnetic quantum number m=n−s. Direct inspec-
tion shows that the eigenstates of the free e-h pair Hamil-
tonian have four good quantum numbers: the Landau level
number n, the z component of the momentum k, the z com-
ponent of the electron spin sc,z, and the z component of the
total angular momentum Fz=n−s+sc,z−sv,z− Iz. It is then
convenient to characterize the valence band Bloch states at
the � point with their total angular momentum J=I+sv with
eigenstates corresponding to J=1/2 or J=3/2 and Jz= Iz
+sv,z �Appendix A�. The eigenfunctions of the e-h Hamil-
tonian Eq. �7� are then obtained as linear combinations of
products of the valence band states �J ,Jz	 and the conduction
band spinors �sc,z= ± 1

2 	:

�
	 = �
J=1/2,3/2

�
Jz=−J

J

�fJ,Jz
�n,s,k	�J,Jz	�sc,z	 . �10�

The prime at the summation sign means that only the states
with s�0 are defined and are included in the expansion. The
coefficients fJ,Jz

are obtained by diagonalizing the Hamil-
tonian �7� projected onto at most six-dimensional subspaces
spanned by the states corresponding to fixed values of n, k,
sc,z, and Fz, subject to the additional condition s=n+se,z

−Jz−Fz�0 as described in Appendix A. The solutions give
combined e-h Landau levels as a function of the magnetic
field. In our calculations we specialized only to the optically
active states for which the electron-hole Hamiltonian can be
easily diagonalized.

In Fig. 1 we present theoretical transition energies with
Fz= ±1 corresponding to the �± polarization of light for n
=0. The calculations were performed for the set of data taken
from Ref. 10 and listed in Table I. The values of the defor-
mation potentials and stiffness coefficients taken from the
same reference are as follows: a1=−4.9 eV, a2=−11.3 eV,
D3=8.2 eV, D4=−4.1 eV, C13=106 GPa, and C33
=398 GPa. We have assumed compressive biaxial strain �xx
=�yy =−0.0019. Three families of curves correspond to the
transitions associated with the A, B, and C valence subbands.
The Luttinger parameter �=0.35 was chosen in such a way
that the lowest transition energies for �−↑ and �+↓ are nearly
degenerate. The transition energies are measured with re-
spect to the energy gap in the strained layer.

For a fixed Landau orbital number n=0 there are three
allowed transition for each family. In the case of the lowest-
energy transitions from the topmost valence subband A, two
of them correspond to the final electron state with spin down
and one with the final electron spin up. For the other two
families �B and C� we have two transitions with the final
state electron spin up and one with electron spin down. The
interband optical transitions in the magnetic field parallel to
the c axis are allowed only for the relative electron-hole
angular momentum m=n−s=0. Therefore the absorption se-
lection rules are determined by the symmetry of the conduc-

FIG. 1. Transition energies minus the energy gap for GaN as a
function of the magnetic field for �+ �circles� and �− �triangles�
polarizations of light for the Landau level n=0. Transitions to the
final states with spin down and spin up are marked with empty and
filled symbols, respectively. The Coulomb interaction is neglected.

TABLE I. Band parameters for GaN from Ref. 10. The values of Ai are given in the units of �2 /2m0.

�1
0 �meV� �2 �meV� �3 �meV� A1 A2 A3 A4 A5 A6 me

10 5.67 5.67 −7.21 −0.44 6.68 −3.46 −3.40 −4.90 0.20
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tion and valence bands at the � point. The topmost valence
subband associated with the exciton A has a twofold degen-
erate symmetry �9 with two basis states �11	↑ and �1−1	↓,
where �IIz	 denote basis functions of the rotation group rep-
resentation corresponding to the total angular momentum I.
Therefore the absorption in �− polarization of light leads to
the final electron state in the conduction band with spin up
and the �+ polarization gives the final state with spin down.
The lower valence levels B and C have both �7 symmetry.
The corresponding basis states are given by the linear com-
binations uB

+ = ia�11	↓−ib�10	↑, uB
− =a�1−1	↑ +b�10	↓ for the

B level and uc
+= ib�11	↓ + ia�10	↑, uc

−=b�1−1	↑−a�10	↓ for
the C level.3 Consequently the transitions with �+ and �−
polarizations lead to the final states with spin up and down,
respectively. For the Landau level n=0 the term proportional
to the A5 coefficient in the Hamiltonian �7� couples the va-
lence band states �1−1	↓ with Landau subband s=2 and op-
tically active state �11	 with s=0 opening a new absorption
channel for the A level in the light polarization �− and the
final state spin down. Similarly, coupling between the states
�1−1	↑, s=2 and �11	↑ with s=0 leads to the additional tran-
sitions in the �− polarization to the final state with spin up
for the B and C levels.

IV. COULOMB INTERACTION

We consider the Coulomb interaction including aniso-
tropy of the dielectric constant in the form V�r�
=e2 /	0

�
	0

��x2+y2�+	0
�2z2 with 	0

� and 	0
� denoting the di-

electric constants in the direction perpendicular and parallel
to the layer plane respectively. By properly rescaling the z
coordinate axis we may bring this potential back to the
spherical symmetric form.3 The only effect of this rescaling
is to substitute k by k /� in the Hamiltonian �7�, where �
=	0

� /	0
� . With a typical value ��0.92 this procedure mostly

affects the electron effective mass in the z direction and
slightly modifies the coupling constant A6. Note that the pa-
rameters A1 and A2 which enter the coefficient in front of k2

in this Hamiltonian almost cancel each other.
Explicit formula for the effective Coulomb interaction in

the Landau level representation is derived by using the Fou-
rier transform of the Coulomb potential

�n,s,k�1

r
�n�,s�,k�� = �n,s�Vk−k�����n�,s�	 , �11�

where � denotes the projection of the three-dimensional vec-
tor r onto the xy plane and �n ,s ,k	 correspond to the basis set
wave function �nsk. We have defined

Vkz
��� =� d2q

�2��2

4�

q2 + kz
2eiq·�, �12�

where kz=k−k�. Due to the rotational invariance of the Cou-
lomb potential, the only nonvanishing matrix elements are
those with m=n−s=n�−s�=m�. Moreover in view of the
symmetry property �ns�Vkz

�n�s�	= �sn�Vkz
�s�n�	= �n�s��Vkz

�ns	
it is then enough to consider the case of m�0 and n�n�.
Following the derivation given in Appendix B for p=n−n�
�0 we obtain

�ns�Vkz
�n�s�	 = �− 1�s+s�n!s�!

n�!s!
n�!Ls�

p �− X0�

U�n� + 1,1 − p,X0� , �13�

where X0= l2kz
2 /2, U�a ,b ,z� is the confluent hypergeometric

function and Ls�
p �X� denotes the Laguerre polynomial.11

Coulomb interaction mixes states �n ,s ,k	 with different n
and k. Therefore the excitonic eigenfunction can be repre-
sented by


�r� = �
−�

+�

dk�
n

�
J=1/2,3/2

�
Jz=−J

J

�fJ,Jz,n,k�n,s,k	�J,Jz	�sc,z	 .

�14�

In our numerical calculations we discretize the wave vector k
and approximate the integral by the appropriate quadrature.
This procedure has to be applied with care due to the singu-
lar character of the Coulomb potential. To this end we ob-
serve at first that the confluent hypergeometric function
U�a ,b ,z� is limited in the vicinity of z=0 for b�0 and has a
logarithmic singularity at b=1:

U�a,1,z� = −
1

��a�
�ln z + ��a� + 2�� + O��z ln z�� , �15�

where ��a� represents the digamma function and � is the
Euler’s constant.11 Consequently all diagonal elements of the
Coulomb interaction for n=n� have a singularity at kz=k
−k�=0:

Vns�kz� = �ns�Vkz
�ns	 = n!Ls

0�− X0�U�n + 1,1,X0� = Vns
S �kz�

+ Vns
R �kz� � − �ln X0 + ��n + 1� + 2�� , �16�

where we have identified the singular part as Vns
S �kz�

=−ln X0 and the regular part is Vns
R = �ns�Vkz

�ns	−Vns
S . Note

that

Vns
R �kz = 0� = − ���n + 1� + 2�� . �17�

The quadrature approximation to the integral with respect to
kz representing the multiplication of the amplitudes f by the
Coulomb potential has a general form

�
kmin

kmax

dkz�Vns�kj − kz��fkz�
� �

i=1

N

wiVns�kj − ki�fki
, �18�

where �ki ,wi�i=1,. . .,N correspond to the nodes and weights of
the quadrature. To avoid an indefinite expression which
would result from kj =ki term we split the integral as follows:

�
kmin

kmax

dkz�Vns�kj − kz��fkz�
� �

i�j

N

wiVns�kj − ki�fki
+ �wjVns

R �0�

+ �
kmin

kmax

dkz�Vns
S �kj − kz��g�kz� − kj�

− �
i�j

N

wiVns
S �kj − ki�g�ki − kj�� fkj

.

�19�
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The value of Vns
R �0� is given by Eq. �17�, while g�k�

=Q0
2 / � 1

2 l2k2+Q0
2� is a regular function of k with properly cho-

sen cut-off parameter Q0
2. Finally then the integral

�
kmin

kmax

dqz�Vns
S �kj − kz��g�kz� − kj�

= − �
kmin

kmax

dkz� ln�1

2
l2�kj − kz��

2�


Q0
2

1
2 l2�kz� − kj�2 + Q0

2 �20�

can be easily calculated analytically so that the diagonal and
off diagonal matrix elements of the Coulomb potential are
treated using the same quadrature.

V. ABSORPTION COEFFICIENT

Following Eq. �1� the absorption coefficient can be ex-
pressed in terms of the eigenstates �f�	 of the exciton Hamil-
tonian and their energies ��

���� =
4�2

cnr��
�
�

��f��P		�2��� − ��� . �21�

Note that Fz and sc,z remain good quantum number
for each eigenstate �f�	. The overlap of the excitonic initial
state �P		 defined by the interband matrix elements of
the momentum operator and the exciton eigenstate in the
representation of basis states �nsk	 is given by �f� � P		
=�dk�n,J,Jz

f̄ J,Jz,n,kPJ,Jz,n,k, where the bar over fJ,Jz,n,k denotes
complex conjugation. Using the Landau orbitals representa-
tion we obtain PJ,Jz,n,k=�nsk�0��c��p�v	, where �p= �1/2�
�px± ipy� for a given total angular momentum Fz= ±1.
Since �nsk�0�=�sn / l2�, obviously only the states with the
orbital angular momentum m=0 contribute to the absorption.
All elements of PJ,Jz,n,k can be expressed in terms of the
single interband coupling parameter Ep= �2/m0���S�px�X	�2

�Appendix C�. To solve the excitonic eigenvalue problem we
employ Lanczos reduction technique. The basis set is con-
structed from the initial, polarization dependent state of the
exciton �P		. In the effective mass approximation we use the
Hamiltonian matrix containing both kinetic and potential
parts acting on the exciton amplitudes fJ,Jz,n,k. The Lanczos
method transforms the original Hamiltonian matrix to a tridi-
agonal form which is then truncated to a reasonable dimen-
sion. Diagonalization of the resulting matrix provides ap-
proximate eigen spectrum as a function of the magnetic field
for two circular polarizations of the light.

The expansion �14� of the excitonic states in the Landau
level basis set becomes more and more inaccurate in the
limit of small magnetic fields such that the magnetic length
is much larger than the characteristic Bohr radius of the ex-
citon. Therefore for all magnetic fields below critical value
B0 of the magnetic field for which Bohr radius and the mag-
netic length are comparable, we have employed the basis set
of Landau states corresponding to this fixed field. We have
applied this method to the problem of the hydrogen atom in

the uniform magnetic field setting B0 for which �
=��c /2E1= �aB / l�2=1, where E1 is the hydrogen atom Bohr
energy. The comparison of our results to the very accurate
numerical results of Ref. 12 for the lowest four even energy
levels is presented in Fig. 2. The small discrepancy between
our results �dots� and the data of Ref. 12 visible for the 3s
and 3d levels is caused mainly by the Lanczos approxima-
tion.

VI. RESULTS AND DISCUSSION

We have applied our theoretical method to the heteroepi-
taxial GaN layers grown by the MOCVD technique on
sapphire.2 The absorption spectrum for excitons A, B, C as a
function of the magnetic field �B �c� was obtained taking into
account full wurtzite symmetry Hamiltonian. In our analysis
we have determined both the energies and oscillator
strengths for excitonic transitions in the low energy part of
the absorption spectrum. All band parameters except for two
were taken from the literature �see Table I�. In order to obtain
a reasonable fit to the experimental data we have assumed
the strain free energy gap Eg

0=3.5015 eV and the Luttinger
parameter �=0.35. We have used the averaged static dielec-
tric constant 	0=8.9.14 It turned out that the theoretical spec-
trum is not very sensitive to the dielectric function aniso-
tropy. Applying the anisotropy factor �=0.92 we have found
that the energy of the lowest transition increases by 0.6 meV
at B=25T and the change is even smaller for higher energies.
It seems therefore that the fully spherical approximation to
the screening is quite accurate. The comparison between our
model with �=1 and the experimental data taken from Ref. 2
is presented in Fig. 3. The theoretical results represented by
dots reproduce fairly well the positions of experimental tran-
sition energies depicted by squares. We have included 70
Landau levels to describe the electron-hole motion in the xy
plane and 31 plane waves in the z direction in our calcula-
tions. For the critical magnetic field we have assumed B0
=9T. The transitions to the A and B excitonic ground states

FIG. 2. The lowest four electron energy levels corresponding to
even states of the hydrogen atom in the uniform magnetic field.
Dots: present model, solid line: results of Ref. 12. Here �
=��c /2E1 is equal to the cyclotron frequency expressed in atomic
units.
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and their Zeeman splittings are quite accurately described up
to B=25 T confirming to some extend the reliability of band
parameters given in Ref. 10. Due to the resonant coupling of
the C exciton to the scattering states of the lower excitons A
and B, the theoretical predictions for this exciton can be only
observed as a series of a great number of avoided crossings
of theoretical lines for energies in the vicinity of 3.53 eV.
Proper visualization of this resonant transition requires plot-
ting the spectral density for absorption including the broad-
ening of the resonant lines which is not experimentally avail-
able. An example of theoretical absorption curves for various
magnetic field values is given in Fig. 4. We have assumed the
lorentzian line shape for each half absorption line with con-
stant half width at half maximum equal to 0.7 meV.

Having determined the absorption curves and using the
Kramers-Krönig transformation we may also calculate the
frequency dependent refractive index and therefore the re-
flection coefficient. However, this calculation is very sensi-
tive to the accuracy of the line shape model for each transi-
tion.

In conclusion we have presented a theoretical model of
the near-band-edge magneto-optical absorption spectrum of
three almost totally decoupled excitons A, B, C associated
with split valence bands �9, �7, and �7 symmetries. To ob-
tain the absorption spectra we have formulated exciton equa-
tions in the framework of the k ·p approximation. We have
first evaluated the kinetic and potential part of the Hamil-
tonian in the Landau orbitals basis set. It turned out that the
exact values of the free electron-hole transition energies in
the magnetic fields can be obtained by diagonalizing simple
66 effective Hamiltonian matrices. For obtaining the mag-
netoexciton absorption spectra we have employed Lanczos
reduction for solving a large eigen-value problem. By com-
paring theoretical and experimental results for a given
sample we were able to estimate the Luttinger coupling pa-
rameter �. Our method successfully reproduces not only the

excitonic ground state but also the excited state transitions.
In particular we are able to model the behavior of the reso-
nant transitions related to the exciton C.
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APPENDIX A: MATRIX REPRESENTATION OF THE
KINETIC ENERGY HAMILTONIAN

The valence band states �J ,Jz	 are constructed from the
Bloch states �I , Iz	 at the � point transforming according to
the rotation group representation I=1 and valence band
spinors �sv,z	= �± 1

2 	:

�
�3

2
, ±

3

2
�

�3

2
, ±

1

2
�

�1

2
, ±

1

2
� � = �

1 0 0

0
1
3

2

3

0 ±2

3
�

1
3

��
�1, ± 1	� ±

1

2
�

�1, ± 1	� �
1

2
�

�1, ± 0	� ±
1

2
� .
� .

�A1�

The kinetic energy matrix elements in the representation
�� 3

2 , 3
2
	 , � 3

2 ,− 3
2 	 , � 3

2 ,− 1
2 	 , � 3

2 , 1
2 	 , � 1

2 ,− 1
2 	 , � 1

2 , 1
2 	� for given n, sc,z,

k, and Fz are most conveniently expressed by defining s0
=n+sc,z−Fz. According to the condition s0−Jz=s�0, only
states with Jz�s0 exist in the expansion �10� and �14�. Be-
low we give general expressions for the kinetic energy ma-
trix elements for s0�

3
2 . The matrices for s0�

3
2 are obtained

by removing the rows and columns corresponding to Jz�s0:

FIG. 3. Magnetic field dependence of excitonic transition ener-
gies in GaN for �+ and �− polarization. Experimental data from
Ref. 2 are shown as black squares, and the calculated results are
represented by dots.

FIG. 4. Theoretical interband absorption coefficient in the po-
larization �−, in the magnetic fields B=0–25 T increasing from
bottom to top in increments of 1 T.
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APPENDIX B: COULOMB MATRIX ELEMENTS

Below we outline the derivation of the Coulomb matrix
elements in the Landau levels basis set. We employ the iden-
tity

�n1s1�eik·��n2s2	 = �− 1�s1+s2i�n1−s1−n2+s2�e−i��n1−s1−n2+s2�In1n2

�1

2
�K�2�Is1s2

�1

2
�K�2� , �B1�

where K= �kx+ iky�l and �=arg�K�. The function Ins�x� is
given by �Ref. 13, Eq. �A1.5��:

Ins�X� =
1

n!s!
X�s−n�/2eX/2 ds

dXs �Xne−X� = �− 1�n−sIsn�X� .

�B2�

Then simple change of the integration variable and using the
definition �B2� yields

�ns�Vkz
�n�s�	 = �− 1�s+s� s�!

n�!n!s!

�
0

� dX

X + X0
Ls�

p �X�
dn�

dXn�
�Xne−X� , �B3�

where Ls�
p �X� denotes the Laguerre polynomial

Ls�
p �X� =

1

n!
eXX−p ds�

dXs�
�Xs�+pe−X� , �B4�

and p=s−s�=n−n��0, X0= l2kz
2 /2. Integrating by parts n�

times leads to

�ns�Vkz
�n�s�	 = �− 1�s+s� s�!

n�!n!s!
n�!Ls�

p �− X0�X0
�n−n��

�
0

� Xne−XX0dX

�1 + X/X0�n�+1
. �B5�

The latter integral is related to the hypergeometric confluent
function ��a�U�a ,b ,z�=�0

�e−ztta−1�1+ t�b−a−1dt so that

�ns�Vkz
�n�s�	 = �− 1�s+s�n!s�!

n�!s!
n�!Ls�

p �− X0�X0
�n−n��

U�n + 1,p + 1,X0� . �B6�

Using the property U�a ,1−N ,z�=zNU�a+N ,1+N ,z� we ar-
rive at the final expression �13�.

APPENDIX C: SELECTIONS RULES

The selection rules follow from the fact that the only non-
vanishing elements of the initial vector �P		 correspond to
m=0. It can be shown that in the basis set given by Eq. �A1�
for the electron spin �c= ± 1

2 and Fz=1 the nonvanishing el-
ements are, respectively,

� 1
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2
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1
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2
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2
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2
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2
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2
−

3

2
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and for Fz=−1.
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3

2
� = − �S�p̂x�X	 ,

�−
1

2
� 1
2
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2
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