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In this paper, we study the three-dimensional Nf-flavor CP1 model �a set of Nf CP1 variables� coupled with
a dynamical compact U�1� gauge field by means of Monte Carlo simulations. This model is relevant to
two-dimensional s= 1

2 quantum spin models, and has a phase transition line which separates an ordered phase
of global spin symmetry from a disordered one. From a gauge theoretical point of view, the ordered phase is
a Higgs phase whereas the disordered phase is a confinement phase. We are interested in the gauge dynamics
just on the critical line, in particular, whether a Coulomb-like deconfinement phase is realized there. This
problem is quite important to clarify low-energy excitations in certain class of quantum spin models. If the
gauge dynamics is in the deconfinement phase there, spinons, which transform in the fundamental represen-
tation of the SU�Nf� symmetry, appear as low-energy excitations. By Monte Carlo simulations, we found that
the “phase structure” on the criticality strongly depends on the value of Nf. For small Nf, the confinement phase
is realized, whereas the deconfinement phase appears for sufficient large Nf�14. This result strongly suggests
that compact QED3 is in a deconfinement phase for sufficiently large number of flavors of massless fermions.
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I. INTRODUCTION

Some recent experiments of strongly correlated electron
systems indicate that the usual Fermi liquid theory breaks
down in certain cases, and the low-energy quasiexcitations
carrying a fractional or exotic quantum number appear there.
The fractional quantum Hall effect �FQHE�1 is a typical ex-
ample, in which composite fermions appear as relevant ex-
citations. Another example may be quantum spin models in
low spatial dimensions, which have been studied quite inten-
sively. For certain class of s= 1

2 antiferromagnetic �AF� spin
models in two dimensions, it is argued that low-energy exci-
tations at a quantum phase transition point are spinons.2,3

For studying the above “deconfined critical point” and the
quantum phase transition itself, gauge theory is quite useful.
Concept of confinement and deconfinement in the gauge
theory is suitable for understanding the change of particle
picture happening at deconfined critical points.

In a previous paper,3 we showed that the phase transition
from the Néel state to the dimer state in the AF magnet
corresponds to a Higgs �deconfinement� to confinement
phase transition in the simple CP1 model. There we were also
interested in the gauge dynamics at the critical point. If the
three-dimensional �3D� Coulomb-like phase is realized there
as a simple loop expansion predicts, quasiexcitations are
massless spinons. As the low-energy excitations are magnons
�spin waves� in the Néel state and spin-triplet excitations in
the dimer state, the existence of spinons at the criticality
indicates a breakdown of the traditional Ginzburg-Landau
�GL� theory of phase transition. This is because the GL
theory uses an �a set of� order parameter to describe both a
phase transition by its expectation value and low-energy ex-
citations by its fluctuations in space and time.

To study the gauge dynamics of a class of spin models in
a more general framework, we introduced the 3D CP1

+U�1� lattice gauge theory in Ref. 4. The model contains
two parameters, the spin stiffness c1 and the gauge coupling
c2, and describes the O�3��CP1� and O�4� spin models in the
specific limits, �c2=0 and c2=�, respectively�. However,
from the calculation of both instanton density and gauge-
boson mass, we concluded there that the confinement phase
is realized on its critical line.5

In this paper, we continue to study the gauge dynamics of
these spin systems defined in two spatial dimensions at zero
temperature by generalizing the above 3D CP1+U�1� model
to the 3D multiflavor CP1+U�1� model. In particular, we
explore the possibility of change of particle picture on the
criticality by controlling the flavor number Nf as an adjust-
able parameter.

The rest of the paper is organized as follows. In Sec. II,
we explain the model and its relation to the AF Heisenberg
model. In Sec. III, results of Monte Carlo simulations are
shown. We calculated the specific heat, the gauge-boson
mass, and the instanton density for various values of Nf, and
found that the deconfinement phase is realized on the critical
line for sufficiently large Nf. Section IV is devoted to con-
clusions.

II. MULTIFLAVOR CP1+U„1… MODEL ON THE 3D
LATTICE

Let us first define the model on the cubic lattice, and
explain its relation to quantum spin models. Hereafter we use
x as the site index and �=1,2 ,3 as the direction index. On
each site x, we put Nf-flavor CP1 variables zx

�, where � is the
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flavor index and takes �=1, . . . ,Nf. zx
� is a two-component

complex field,

zx
� � �zx1

�

zx2
� �, zx1

� ,zx2
� � C , �2.1�

satisfying the so-called CP1 constraint,

z̄x
�zx

� = �
a=1,2

�zxa
� �2 = 1 for each x and � . �2.2�

On each link �x ,x+�� we put a U�1� gauge variable, Ux�

=exp�i�x����x�� �−� , +��	. The action of the model S is
given as

S = −
c1

2 �
x,�,a,�

�z̄x+�,a
� Ux�zxa

� + H.c.�

−
c2

2 �
x,��	

�Ūx	Ūx+	,�Ux+�,	Ux� + H.c.� , �2.3�

where c1 and c2 are real parameters of the model. It is obvi-
ous that the action �2.3� has a local U�1� gauge symmetry as
well as SU�2� and SU�Nf� global symmetries;

zxa → zxa� = exp�i
x�zxa,

Ux� → Ux�� = exp�i
x+��Ux� exp�− i
x� , �2.4�

zxa
� → �zxa

� �� = �
b=1

2

Vabzxb
� , V � SU�2� , �2.5�

zxa
� → �zxa

� �� = �
�=1

Nf

W��zxa
� , W � SU�Nf� . �2.6�

Hereafter we call the above SU�2��SU�Nf�	 symmetry the
spin symmetry �flavor symmetry�. The partition function Z is
given by

Z =
 �dU	U�1��dz	CP1 exp�− S� . �2.7�

There are many gauge-invariant quantities composed of
zx

� and Ux�. Among them, typical local combinations are a
set of Nf O�3� �real three-component� spins nx

�,

nx
� = z̄x

��zx
�, nx

� · nx
� = 1, �2.8�

where �= ��1 ,�2 ,�3�t are the Pauli matrices. For Nf=1, the
model reduces in the limit of c2=0 to the O�3� spin model
described by the field nx with nearest-neighbor interactions.4

For Nf
1, there are other local gauge-invariant objects M� x
��,

which are four-component O�4� vectors,

M� x
�� =

1
�2

�z̄x
��1zx

�, z̄x
��2zx

�, z̄x
��3zx

�, z̄x
�zx

��t ,

M� x
��* · M� x

�� = 1, M� x
�� = M� x

��*. �2.9�

M� x
�� are complex for ���, while M� x

�� are real. In the limit
of c2=0, one can integrate over Ux� link by link to obtain

Zc2=0 =
 �dz	CP1 exp��
x,�

log I0��x��
 ,

�x�
2 =

c1
2

4 �
�,�=1

Nf

M� x+�
�� · M� x

�� + H.c., �2.10�

where I0��x�� is the modified Bessel function. We note that

M� x
�� are not all independent, so one needs to include extra

interactions associated with the change of variables from zxa
�

to M� x
�� to treat them as independent O�4� complex spin vec-

tors. For finite c2, the model involves nonlocal and/or non-

polynomial interactions among M� x
��.

On the other hand, in the limit of c2→�, the gauge con-
figuration is restricted to Ux�=1 up to gauge transformations
�2.4�. Then the model reduces to an ensemble of independent
Nf O�4� nonlinear sigma models,

Zc2=� =
 �dR	O�4� exp�c1 �
x,�,�

R� x+�
� · R� x

�� ,

�dR	O�4� = �
x,�

�
k=1

4

dRxk
� �

x,�
��R� x

� · R� x
� − 1� ,

zx1
� = Rx1

� + iRx2
� , zx2

� = Rx3
� + iRx4

� , �2.11�

where R� x
� is a four-component real O�4� vector, R� x

�

= �Rx1
� , . . . ,Rx4

� �t.
In a previous paper,4 we investigated the phase structure

of the Nf=1 model and found that there exist two phases, the
ordered phase of the symmetry �2.5� and the disordered
phase which are separated by the second-order transition line
c1=c1c�c2�. �See Fig. 1.� These two phases correspond to the
Higgs and the confinement phases in the U�1� gauge dynam-
ics, respectively. In the ordered phase c1
c1c, there is a
nonvanishing “spin magnetization” �z̄x�zx��0, and as a re-
sult the low-energy excitations are the massless components
of zxa, which corresponds to the spin waves in the AF mag-
nets �see later discussion�. On the other hand, in the disor-
dered phase c1�c1c, the confinement phase is realized, and
the low-energy excitations are the “spin-triplet� vector field
which is nothing but the composite field, nx= z̄x�zx. Just on
the critical line c1=c1c, there is no spontaneous symmetry

FIG. 1. Phase structure of the 3D CP1+U�1� model �Nf=1� in
the c1−c2 plane obtained by the measurement of the specific heat.
�Ref. 4�. The Higgs and confinement phases correspond to the Néel
and dimer state of the quantum spin model, respectively.
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breaking of the internal spin symmetry and zxa�a=1,2� be-
have as gauge-interacting massless bosons. Thus one may
naturally expect that a 3D Colulomb-like phase with a po-
tential 1 /r may be realized there because of the screening
effect by the massless bosons zxa. In such a phase on the
critical line, the low-energy excitations are to be “weakly
interacting massless spinons” zxa. With this possibility in
mind, we studied the gauge dynamics on the critical line, and
found that the confinement phase is realized there. This result
means that the CP1 model coupled with the dynamical gauge
field �2.3� belongs to the same universality class as the O�3�
nonlinear � model.

The Nf=1 case of the CP1 model �2.3� is known to be a
low-energy effective field theory of the nonuniform s= 1

2 AF
Heisenberg model on a square lattice,3,6,7

HAF = �
x,j

JxjŜx · Ŝx+j + ¯ , �2.12�

where j is the spatial direction index �j=1,2�, Ŝx is the quan-
tum spin operator at site x, and Jxj is the nonuniform ex-
change coupling. �See Fig. 2.� The ellipses in Eq. �2.12�
represent other multispin interactions. By varying the cou-
plings Jxj, the ground state of the Hamiltonian �2.12�
changes from the Néel state to the dimer state.8 In the Néel
state, there exists an AF long-range order and the low-energy
excitations are the spin waves. On the other hand, the ground
state of the dimer state consists of spin-singlet pairs on
nearest-neighbor �NN� sites, and low-energy excitations are
the spin-triplets. �See Fig. 3.�

The quantum spin operator Ŝx is expressed by the
Schwinger boson, i.e., the CP1 boson operator, as follows;

Ŝx =
1

2
zx

†�zx, �2.13�

and the CP1 constraint, �azxa
† zxa�phys�= �phys�, restricts the

magnitude of the spin to 1
2 . It was shown that the above

Néel-dimer phase transition is nothing but the transition of
the CP1 model discussed above.3 Therefore, our investigation
on the critical behavior of the CP1 model4 indicates that the
quantum phase transition in the system �2.12� belongs to the
same universality class with the classical phase transition in
the 3D O�3� nonlinear � model.9

The above result supports the traditional idea for quantum
phase transition that a quantum system in d spatial dimen-
sions belongs to the same universality class of a certain clas-
sical system in d+z dimensions, where z is called dynamical
critical exponent.10 In recent years, however, it has been rec-

ognized that the above idea of the dynamical exponent
breaks down in some cases; nontrivial physics appears at the
criticality of quantum phase transitions. The spinons, as it
was explanied above, are a typical example of such interest-
ing possibility.

In order to see the above interesting phenomenon of quan-
tum phase transition, we shall extend the model. The CPN

model in the 3D continuum space-time is certainly such a
model, which can be studied by the 1/N expansion.11 In the
leading order of the 1/N, a nontrivial infrared fixed point
appears. On this fixed point, i.e., on the critical point, a non-
local term for the gauge field A��x�, such as

N
 d3x
 d3y�
�,	

F�	�x�
1

�x − y�2
F�	�y� ,

F�	 = ��A	 − �	A�, �2.14�

appears in the effective action due to the vacuum polariza-
tion of the massless zx. At long distances, the above term
dominates the usual Maxwell term which may exist in the
original action. From �2.14�, it is straightforward to calculate
the potential energy V�r� between the two charges separated
by a distance r as V�r��1/r. Then it is quite interesting to
study the CPN models on the lattice for various values of N,
in particular, to investigate the change in their critical be-
havors.

Below we shall study the multiflavor CP1 model �2.3�
numerically instead of the CPN model. The reason to choose
the multiflavor CP1 model is simply a matter of simplicity
and shorter computing time in Monte Carlo simulations. In
the large-N limit, it is expected that the both models exhibit
similar behavior.12

III. NUMERICAL RESULTS

In this section, we present the results of our numerical
study of the model on the 3D cubic lattice of the system size

FIG. 2. Two-dimensional �2D� square lattice; crosses are odd
sites, and filled circles are even sites. Solid bonds indicate that their
exchange couplings are stronger than those on the dotted bonds.

FIG. 3. Ground states and excitations of the nonuniform AF
Heisenberg model of Eq. �2.12�. Each arrow represents one of the
two spinon states zx= �1,0�t and zx= �0,1�t. Each oval represents a
singlet pair of NN spins. �a� dimer state, �b� spin-triplet excitation
in the dimer state, �c� two-spinon state having the energy propor-
tional to their distance �confinement phenomenon�, �d� Néel state
with an AF long-range order.
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N=L3, L=8,12,16 with the periodic boundary condition for
the flavor number Nf=1, 2, 3, 4, 5, 10, 14, and 18. We mea-
sured the internal energy, the specific heat, the mass of the
gauge boson, and the instanton density. We observed no hys-
teresis in the internal energy �S� /N.

A. Specific heat

We first show the results of the specific heat C�Š�S
− �S��2

‹ /N measured in order to determine the phase struc-
ture.

In Fig. 4 and Fig. 5 we present C at the gauge coupling
c2=2 for Nf=2 and 14, respectively. These results show a
typical behavor of the second-order phase transition. To con-
firm the transition is of second order, we fit these data by the
finite-size scaling hypothesis �FSSH�.13 To this end, we in-
troduce a parameter ���c1−c1�� /c1� where c1� is the criti-
cal coupling in the infinite system �L→��. Then we assume
that the correlation length at L→� scales as ���−	 with a
critical exponent 	. We also assume that the maximum of C
at L→�, C� diverges as C���−� with another exponent �.
Then FSSH predicts that the specific heat CL��� for the sys-
tem size L scales as

CL��� = L�/	��L1/	�� , �3.1�

where ��x� is the scaling function.13 The scaling function
obtained from the data in Fig. 5 is shown in Fig. 6. The
parameters are estimated as 	=1, c1�=1.01 and �=0.2. The
function ��x� is well determined, and it is obvious that the
FSSH is satisfied quite well. We investigated the phase struc-
ture of the CPN �N=2,3 ,4� models and also Nf=2 ,3 cases of

the multiflavor CP1 models by calculating the specific heat.
We conclude that the phase structures of both the multiflavor
CP1+U�1� model and the CPN+U�1� model are similar to
that of the CP1+U�1� model shown in Fig. 1.

B. Mass of gauge boson

Now let us turn to the gauge-boson mass. We calculate the
gauge-invariant gauge-boson mass MG as follows.4,14 To de-
fine MG we first introduce a gauge-invariant operator O�x�,

O�x� = �
�,	=1,2

��	 Im�Ūx	Ūx+	,�Ux+�,	Ux�� = �
�,	

��	 sin�− �x	

− �x+	,� + �x+�,	 + �x�� , �3.2�

where ��	 is the antisymmetric tensor. Then we intorduce the

Fourier transformed field Õ�x3� as follows:

Õ�x3� = �
x1,x2

O�x�eip1x1+ip2x2. �3.3�

We define the gauge correlation function,

DG�t� =
1

L3�
x3

�Õ�x3�OD �x3 + t�� . �3.4�

In the continuum, DG�t� is expected to behave as

DG�t� =
 dp3
eip3t

p�2 + MG
2 � e−�p1

2+p2
2+MG

2 t. �3.5�

Typical behavor of the correlator DG�t� is shown in Fig. 7.
We determine MG by fitting the data DG�t� by the exponen-

FIG. 4. Specific heat C vs c1 at c2=2 for the Nf=2 case. The
system size is 83, 123, and 163. C shows typical behavor of the
second-order phase transition.

FIG. 5. Specific heat C vs c1 at c2=2 for the Nf=14 case.

FIG. 6. Finite-size scaling function ��x� of Eq. �3.1� determined
by using C of Fig. 5. All the data of L=8, 12, and 16 are fitted well
by the single function ��x�.

FIG. 7. Gauge correlation function DG�t� of Eq. �3.4� for Nf

=18 at c1=0.9 and c2=2 with L=16.
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tial form �3.5�. For practical calculations, we set p1= p2
=2� /L.

In Fig. 8 and Fig. 9, we plot MG for Nf=1�5 and Nf
=10,14,18, respectively. From the results in Fig. 8, it is
obvious that the gauge-boson mass has the minimum in the
region close to the phase transition point. The minimum of
the value of MG decreases as Nf increases as expected, but it
is still nonvanishing. In a previous paper,4 we observed simi-
lar behavior of MG in the CPN+U�1� model for N
=1,2 ,3 ,4.

On the other hand, MG for Nf=10,14,18 in Fig. 9 shows
that MG vanishes at the criticality for Nf�14. This indicates
that a deconfinenemt phase is realized on the critical line for
large Nf. Appearance of the deconfinement phase stems from
the shielding effect by the massless bosons zx

�. On the critical
line, low-energy excitations are massless zx

� and massless
gauge boson �x�. Furthermore, we expect that topological
nontrivial excitations, i.e., instantons, become irrelevant on
the critical line due to a large number of the massless zx

�.
�See later discussion.�

From the data of Fig. 8 and Fig. 9, one can locate the
minimum value of MG along the line c2=2 for each Nf.
These minima are presented in Fig. 10. The minimum value
of MG seems to decrease continuously as Nf increases. By
making the linear extrapolation of the data for Nf=1�5 and
10, we estimate that MG starts to vanish at Nf�13.5. This
value is regarded as the critical flavor number at which the
phase on the criticality changes continuously from the con-
finement phase to the deconfinement Coulomb-like phase.

C. Instantons

Instantons play an important role in compact U�1� gauge
theories.15 Their proliferation �condensation� enhances fluc-
tuations of U�1� gauge field and induces the confinement
phase of the gauge dynamics. In the present 3D case, the
instantons are just the magnetic monopoles and their conden-
sation puts the system into the “dual� superconducting phase.
The dual Meissner effect squeezes electric fluxes one-
dimensionally and, as a result, a pair of oppositely charged
point particles separated by a distance r have the energy
propotional to r, i.e., they are confined.

In order to measure the instanton density, let us define
instanton charge as in Ref. 16. The magnetic flux �x,�	 pen-
etrating plaquette �x ,x+� ,x+�+	 ,x+	� is given as

�x,�	 � �x� + �x+�,	 − �x+	,� − �x	, �− 4� � �x,�	 � 4�� .

�3.6�

We decompose �x,�	 into its integer part 2�nx,�	 �nx,�	 is an

integer� and the remaining part �̃x,�	��x,�	 �mod 2��,

�x,�	 = 2�nx,�	 + �̃x,�	, �− � � �̃x,�	 � �� . �3.7�

Physically, nx,�	 describes the Dirac string. The instanton

charge Qx at the cube around the dual site x̃=x+ �1̂+ 2̂

+ 3̂� /2 is defined as

Qx = −
1

2 �
�,	,�

��	��nx+�,	� − nx,	�� =
1

4�
�

�,	,�
��	���̃x+�,	�

− �̃x,	�� , �3.8�

where ��	� is the complete antisymmetric tensor. Then it is
obvious that Qx measures the total flux emanating from the
monopole �instanton� sitting at x̃. The instanton density � is
defined as

� = �
x

�Qx�/N . �3.9�

In Fig. 11, we show the instanton density � at c2=2 as a
function c1 for the Nf=1 and Nf=18 cases. As snapshots of
instanton configurations in Ref. 4 show, some of instantons
form pairs with anti-instantons located at NN sites, i.e.,
instanton–anti-instanton dipoles. These dipoles are not effec-

FIG. 8. Gauge-boson mass MG vs c1 at c2=2 for Nf=1 , . . . ,5.
MG do not vanish for these Nf’s.

FIG. 9. Gauge-boson mass MG vs c1 at c2=2 for Nf=10, 14, and
18. The data show that MG vanishes in the critical region for Nf

=14 and 18. The case of MG�0 implies that the square of exponent
of Eq. �3.5�, ��MG

2 + p1
2+ p2

2 is smaller than 2�2� /L�2 and we de-
fined MG�−�2�2� /L�2−�	1/2.

FIG. 10. The minimum value of gauge-boson mass MG for c2

=2 vs the flavor number Nf. The straight line interpolates the data
for Nf=1�5,10, which intercepts MG=0 at Nf=13.54.
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tive for disordering the gauge-field dynamics and do not con-
tribute to confinement. In fact, the confinement phase of the
gauge dynamics is nothing but the plasma phase of the in-
stantons as first shown by Polyakov.17 On the other hand, the
insulating phase of the instantons, in which almost all instan-
tons form dipoles, is the deconfinement phase of the gauge
dynamics. Then the density of isolated (single) instantons is
a physical quantity which monitors whether the system is in
the �de�confinement phase. Therefore, in Fig. 11, we also
show the density of isolated instantons �is,

�is � � − 2�dp, �3.10�

where �dp is the density of NN instanton–anti-instanton di-
poles defined similarly as in Eq. �3.9� �The factor 2 in front
of �dp in Eq. �3.10� comes from the fact that a dipole is
composed of an instanton and an anti-instanton�.

In Fig. 11, both � and �is almost vanish for c1
c1c in the
Nf=18 case in which MG vanishes at the critical point. How-
ever, in the Nf=1 case, there remains a finite instanton den-
sity at the critical point. This result and the calculation of MG
indicate that the Coulomb phase is realized on the critical
line for Nf�14.

It is interesting to see how the instanton density changes
as a function of the flavor number Nf. Results are shown in
Figs. 12 and 13 for c1=0.1 and c2=2. From the results, it is
obvious that � scales as ��e−ANf for Nf�5, where A is a
certain constant. This means that the main contribution in the
effective gauge theory comes from the vacuum polarization
of zxa

� ��=1, . . . ,Nf ,a=1,2�. In fact, the effective gauge

theory Seff�U� obtained by integrating out the CP1 variables
in Eq. �2.7� has the following form:

Z =
 �dU	U�1� exp�− Seff� , �3.11�

where

Seff = NfSz −
c2

2 �
x,��	

�Ūx	Ūx+	,�Ux+�,	Ux� + H.c.� ,

exp�− Sz� =
 �dz	exp� c1

2 �
x,�,a,�

�z̄x+�,a
� Ux�zxa

� + H.c.�� .

�3.12�

In Eq. �3.12�, ��dz	 denotes the intergal over single CP1

field. From the above form of Seff�U�, it is expected that
Sz�U� dominates over the single-plaquette term for suffi-
ciently large Nf and it determines the constant A in the fitting
� as actually observed in Fig. 13.

IV. CONCLUSION

In this paper we studied the multiflavor CP1 model in
three dimensions by Monte Carlo simulations. In particular,
we are interested in the gauge dynamics on the critical line
which separates the Higgs �Néel� and confinement �dimer�
phases. On the critical line, “spinons� zx

� are massless. Their
fluctuations shield the confining gauge force at least partly. If
the number of these spinons is sufficiently large, the confin-
ing forces may be completely shielded by them and the de-
confining �Coulomb-like� force may appear instead. By cal-
culating the gauge-boson mass and the instanton density, we
found that the Coulomb-like deconfinement phase is actually
realized for Nf�14. The low-energy excitations on the criti-
cal line are the massless “spinons” zx

� and massless gauge
boson. Similar deconfinement phase is expected to appear on
the critical points of the large-N solution of the CPN model.

As far as the shielding phenomenon is concerned, mass-
less fermions give a similar effect as massless bosons. Thus
the present result indicates that the parity-preserving QED3
with massless four-component-spinor fermions should have a
deconfinement phase for sufficiently large flavor number of
fermions, as long as the chiral symmetry is not spontane-
ously broken to avoid the generation of the dynamical mass.

FIG. 11. Density of instantons � and that of isolated instantons
�is at c2=2 vs c1 for Nf=1 and Nf=18. It is obvious that both � and
�is for Nf=18 tend to vanish for c1�c1c, whereas � and �is for Nf

=1 remain finite at the critical point.

FIG. 12. Instanton densities � and �is at c2=2 and c1=1 as a
function of Nf.

FIG. 13. Log-plot of instanton densities � and �is at c2=2 and
c1=1 as a function of Nf. It is obvious that ln �, ln �is� �−Nf�.
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For example, in perturbation theory, gauge-interacting fermi-
ons generate the nonlocal terms, such as Eq. �2.14�. Recently,
3D U�1� gauge theories coupled with gapless matter fields
have been studied quite intensively, in particluar, to answer
the question whether a confinement-deconfinement phase
transition takes place.18 The results of the present paper are
in agreement with those obtained in these works.

One may wonder how the results in this paper are applied
to the dynamics of realistic quantum spin models. The cor-
responding quantum model for the Nf-flavor CP1 model is

the SU�2��SU�Nf� “spin” AF magnets, whereas for the CPN

model that is SU�N+1�� “spin” AF magnets. Unfortunately,
as far as we know, there are no materials which have the
above internal quantum degrees of freedom. However, as we
explained in the introduction and also in the above, study of
the strongly correlated electron systems often reduces to the
study of certain gauge models of gapless matter fields. The
results in the present paper should give an important insight
into the phase structures of these gauge systems and the re-
lated strongly correlated electron systems.
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