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Optical properties of photonic crystals composed of metal-coated spheres
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We consider the optical properties of photonic crystals composed of metal-coated dielectric spheres. The
calculations are performed using the multiple-scattering theory as well as a model of coupled dipole resonators
that gives an intuitive understanding of band dispersions. The low frequency dispersions are found to originate
from the hybridization of the dipolar resonance with the free-space propagating electromagnetic modes. We
derived a wave-vector dependent effective-medium theory that can describe the low frequency resonating
behavior very well. Within this new formulation, the effective constitutive parameters become k-dependent. In
contrast to the standard Maxwell-Garnett type effective medium theory, which gives a gap near the resonances,
the wave-vector dependent effective-medium theory can give the dispersion of the resonance bands. The very
robust directional band gap between the second and the third band in the face-centered-cubic metallo-dielectric
photonic crystals is found to originate from the dipole resonance of the coated spheres. The directional gap of
the simple cubic structure also originates from the dipole resonance and the coupling to higher order reso-

nances leads to an absolute gap.
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I. INTRODUCTION

Metallo-dielectric photonic band gap systems, composed
of metal spheres or metal-coated spheres embedded in a di-
electric host, have attracted some attention.!= These systems
are found to exhibit rather robust photonic band gaps,
strongly modified dispersion surfaces and density of states.
While the photonic band gaps of conventional dielectric pho-
tonic crystals are the consequences of Bragg scattering, the
gaps of metallo-dielectric photonic crystals can result from
resonances of the individual spheres as well. We will trace
the origin of the lowest frequency band gap and show that
the lowest photonic band gap is derived from dipolar reso-
nance. In order to give a more comprehensive picture, we
have considered coated spheres with varying thicknesses of
metal coating. The resonance frequencies, and hence the
photonic band gap and the dispersions, can be tuned by vary-
ing the thickness of the coating, and the overall size of the
spheres. We note that there are significant advances in the
synthesis of metal-coated dielectric particles or hollow me-
tallic nano-shells in recent years®~ and the optical properties
of both a single nano-shell or a nano-shell cluster are also
investigated experimentally and theoretically.!%-20

In addition to the fully fledged multiple-scattering and the
coupled resonator approach, we also formulated a new
k-dependent effective medium theory, which gives a good
description of the optical properties of such systems in the
low frequency regime. This extended effective medium for-
mulation may be useful in other applications, and details of
the mathematics are given in the Appendices.

II. METHODS OF CALCULATION

In this paper, we will use different methods to consider
the optical properties of a crystal of metal-coated micro-
spheres. These methods are namely (i) the effective medium
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Maxwell-Garnett (MG) method, (ii) k-dependent effective
medium method, and (iii) multiple-scattering method. The
purpose of using a hierarchy of methods is to expose the
physics of the problem at different levels of complexity.
Since the MG theory is well-known, and the mathematical
details of the multiple-scattering method have been docu-
mented in the literature,?! they will not be discussed here
except by noting that the multiple-scattering theory gives an
essentially exact solution. The k-dependent effective medium
theory can be summarized in Egs. (5) and (7), and the math-
ematical details that lead to these equations are given in Ap-
pendix B. We will see that the k-dependent effective medium
theory reduces to the standard MG theory near the Brillouin
zone center and is equivalent to a multiple-scattering method
with maximum angular momentum index of L, =1 in the
low frequency limit, so it bridges the two formulations.

III. EFFECTIVE MEDIUM RESULTS

We first note that the limitations of Maxwell-Garnett type
effective medium in the context of the optical properties of
plasmon spheres have been examined previously.?>?? In this
section, we apply the MG theory to obtain the optical prop-
erties of metal-coated spheres and then we consider its ex-
tension.

Here, we examine a colloidal crystal of Ag-coated glass
spheres. The optical properties of small metallic particles
embedded in a dielectric host are quite well known. This
type of composite material, in the low frequency regime
where the wavelength in the dielectric background is much
larger than the average inter-particle distance “a,” is well
modeled by the effective medium theory in which the com-
posite is replaced by a homogeneous material with an effec-
tive permittivity €. In the lowest order dipole approxima-
tion (valid for small volume filling ratio f), €. can be found
by the Maxwell-Garnett (MG) formula,>* which states that
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FIG. 1. Dispersion of an FCC structure of Ag-coated glass
spheres (rgjass=84 nm, r,,=88 nm) with a volume filling ratio f
=0.2584 from the Maxwell-Garnett formula. We choose to label the
k-vectors with that of a FCC Brillouin zone for easier comparison
with subsequent figures.

€eff — €Em _ €&~ €n

- ’
Eetf T 2Em €+ 26-m

(1)

where €, (¢,) is the permittivity of the dielectric background
(particle) relative to vacuum.

If €, is negative, as in the case of metals, € will have
resonating behavior. It implies that the composite material
will have poor transmission and strong absorption. Within
the context of MG theory, there is a plasmon absorption band
(a peak when we measure the attenuation coefficient of the
material) in the frequency range when the MG formula gives
negative values of €. ranging from minus infinity to zero. It
in turns requires a resonance in the right-hand-side of the
MG formula, which is proportional to the polarizability of a
single particle. When the filling ratio approaches zero, the
frequency range collapses to a single frequency wg, which
denotes the Frohlich surface mode? of a single metallic par-
ticle, given by

ev(wF) == 26m' (2)

Therefore, the material can be engineered through modifying
the wg. Here, we employ metal-coated dielectric particles
which can support a Frohlich surface mode at an even lower
frequency than the solid metallic particle.

As an example, Fig. 1 shows the dispersion of a colloidal
crystal of spherical Ag-coated glass particles with the radius
of the glass core being 84 nm and the radius of the outer
surface of the Ag coating being 88 nm using the MG formula
in the form

Kz—k(z) e—1

K2+2ké_fes+2’ ®)
where =k €.z ko=w/c, and c is the speed of light in
vacuum. The dielectric function of Ag is taken from experi-
mental values.”® Since we want to study the dispersion of
such a system, we will just take the real part of the dielectric
function of Ag for the moment. The issue of absorption will
be considered in later parts of the paper. As the MG formula
depends only on the filling ratio, there is no need to specify

the arrangement of the spheres. But for more straightforward
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comparison with the results in the following sections, we
will label the k-space with that of the Brillouin zone of a
FCC lattice in Fig. 1. In the low frequency regime where
only the dipolar response of the particle is important, the
coated particle is effectively equivalent to a homogeneous
particle with an effective permittivity (€,) of a chosen radius
(r,, which is usually taken as the actual radius of the par-
ticle). Details are given in Appendix A. The ¢, [to be substi-
tuted into Eq. (3)] is governed by

€. +2 1 ik
== 47'rr3<— + —0) “4)

-1 Na 67

where €ya is defined as the electric polarizability of the
coated particle in vacuum and €, is the permittivity of
vacuum. From the dispersion, we see that a band gap appears
from about 1.1 to 1.4eV. It is the plasmon absorption
“band” (which perhaps should be called the plasmon gap)
centered at the resonance due to the Frohlich surface mode.
In fact, for the coated particle, there are exactly two frequen-
cies in which the condition of Frohlich surface mode [Eq.
(2)] is satisfied where €, now means the effective permittivity
of the whole particle with coating. It is the result of the
coupling between the sphere plasmon on the outer surface
and the cavity plasmon on the inner surface of the metal. The
one having a smaller frequency is the sphere-like mode while
the one having a higher frequency is the cavity-like
mode.!”'® From now on, the Frohlich surface mode will
mean the sphere-like mode as the cavity-like mode is at a
frequency high enough that the effective medium approxima-
tion is not appropriate and it is also too sensitive to the
absorption of metal in the systems we are considering. We
note that there is a dispersion-less (flat) band at 1.4 eV. It is
the nondegenerate longitudinal mode supported at the fre-
quency where the effective permittivity is zero. All the other
bands are doubly degenerate transverse modes due to the
assumed effective medium. The dispersion-less longitudinal
band meets at the bottom of the parabolic band since there is
no way to distinguish a transverse and a longitudinal mode
exactly at the I" point in the Brillouin Zone.

We note that the MG formula is only valid when the in-
duced dipole profile varies slowly from particle to particle
(ka<<1 with a being the lattice constant). It means that if we
have an ordered crystalline array of spheres, in which case
we can talk about a band structure, MG formula is valid only
near the zone center. On the other hand, when the particles
are assembled into an ordered lattice, we can treat it as a
photonic crystal and its optical properties can be calculated
using the multiple-scattering method.?” In this way, propagat-
ing solutions far from the Brillouin zone center can also be
obtained accurately and the effect of higher multipoles can
also be included.

The dispersion calculated by the multiple-scattering
method is shown as open circles in Fig. 2. The coated
spheres are arranged into an FCC structure, with a volume
filling ratio of f=0.2584 in Fig. 2(a) and f=0.15 in Fig. 2(b).
Figures 1 and 2(a) can be compared directly as they have the
same filling ratio. The multiple-scattering method expands
the fields using a linear combination of vector spherical har-
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FIG. 2. Dispersion of an FCC structure of Ag-
coated glass spheres (ryj,s=84 nm, r,,=88 nm)
with a volume filling ratio f of (a) 0.2584 and (b)
0.15, respectively. The open circles show the
multiple-scattering results up to the dipole ap-
proximation (L,,c=1). The lines show the disper-
sion from the extended Maxwell-Garnett formula
in Eq. (7).
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monics, and for the moment, we restrict the expansion to an
angular momentum index of L, =1 (i.e., dipole contribu-
tions only). In fact, the contribution from the higher multi-
poles is very small in the low frequency regime that we are
focusing on. By comparing Figs. 1 and 2(a), we see that near
the zone center where the dipoles are slowly varying from
particle to particle, the MG formula is a good approximation
except for a small numerical discrepancy due to a dynamic-
structure-correction term on the near field (see Appendix B
for the details). With the MG formulation, the particles out-
side the Lorentz sphere are treated as a continuum while the
contribution from particles within the Lorentz sphere is taken
as zero, which is assumed to be correct for a random (uncor-
related) distribution, and is true for a cubic lattice at the
quasi-static limit.

The comparison of Figs. 1 and 2(a) shows that MG results
capture some salient features of the multiple-scattering
theory, except that the forbidden frequency range in MG
theory (from about 1.1 to 1.4 eV) becomes a set of 3 bands
in the multiple-scattering result, which are flat near the zone
center, and becomes dispersive at the zone boundary. Al-
though the multiple-scattering result shown in Fig. 2(a) is
restricted to the dipole order, there is still a difference be-
tween the MG and the multiple-scattering result because the
MG theory is essentially a continuum model with no struc-
tural information, while multiple-scattering naturally builds
in structural information. By comparing Figs. 2(a) and 1, we
can attribute the rather flat bands near 1.4 eV to the reso-
nance due to the coating of the individual spheres. In Fig.
2(b), we show the multiple-scattering calculated dispersion
for the same spheres, but at a lower filling ratio of f=0.15 (at
an expanded lattice constant). We see that the features are
very nearly the same as that in Fig. 2(a), in particular that the
flat bands are at about the same frequency, except that the
bandwidth is smaller. This is expected from a resonance-
driven mechanism. We note that if the dispersion originates
from Bragg scattering, it will depend on the lattice constant
and thus the filling ratio.

Far from the zone center, the photonic band structure
found from the multiple-scattering method shows that the
first two transverse bands are rather dispersive instead of
becoming flat. They are split near the U point. The gap be-
comes smaller in size in general in the region far from the
zone center and it closes at the W point. In the original dis-
persion from the MG formula, the first doubly transverse
band becomes flat far away from the I" point, representing an
effective permittivity of negative infinity. The MG formula

X WK

does not work far from the I point. In other words, it is not
expected to work in the current case because the dispersion is
not linear anymore. The surface plasmon resonance of the Ag
coating causes resonance bands which cannot be described
by the MG theory. We will now attempt to extend the MG
formula so that it can cover the full Brillouin zone.

By solving the Bloch eigenstates under the dipole ap-
proximation in the low frequency regime, it can be proved
(see Appendix B) that we can define a wave vector-
dependent effective permittivity tensor €(x) (a 3 X3 ma-

trix) by
-1,
F T | + 3kl
4ar

where the transform F is defined by

Eerr(K) + or

Eupr(r) =1

(5)

Ry
FAOI = lim Q, 3 fR)e=R - f drf(r)e™T,

Ro—=  0<|R|<R, 0

(6)

In the above two formulas, I is the identity tensor (a 3 X3
matrix), R is any Bravais lattice vector and (), is the volume
of a primitive unit cell. Note that the second term on the left
hand side of Eq. (5) becomes zero for the local effective
medium (x— 0) while the third term becomes zero at the
quasi-static limit. Therefore, Eq. (5) returns to the MG for-
mula if we are considering the local effective medium at the
quasi-static limit. Now, the dispersion curve can be obtained
from solving the Maxwell equations for a homogeneous me-
dium with permittivity €.(«) and V— ik while the perme-
ability is set to one as the magnetic response for small me-
tallic particles can be neglected. For any cubic lattices (FCC,
BCC, or SC), it can be further approximated (see Appendix
B) by

1 K~ k(z) _fes -1
3 kati(re) + (1 = k) Ni(re) + K1)~ €+ 2

(7)
where

Uy(k) - ;=\ (#) P,

ti(K)Zﬁi'(;’—Rk)'ﬁi,
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TABLE 1. Functional values of \;(k), t;,(r), 7;(s) at the various
high-symmetry points for the FCC structure.

\; t; 7
r +0.333 33 1 -2.400 30
+0.333 33 1 -2.400 30
—-0.666 67 0 -2.400 30
X +0.172 45 1 -1.811 06
+0.172 45 1 -1.811 06
-0.344 90 0 -1.918 69
w +0.12542 0.80008 -1.622 17
-0.062 69 1 -2.126 30
-0.062 73 0.19992 —1.486 24
K +0.213 27 1 -1.640 99
-0.033 12 0 —1.258 53
-0.180 15 1 -2.431 84
U +0.213 27 1 —-1.640 99
-0.033 08 0.88895 -2.048 70
-0.180 19 0.11105 —1.641 67
L +0.287 69 1 —1.565 58
+0.287 69 1 —-1.565 58
-0.575 39 0 -2.279 59
n(n)=ﬁ,~F{””} P, (8)
87r

\; and #; (i=1,2,3) are the eigenvalues and the “transverse
factor” ranging from O (longitudinal) to 1 (transverse) for the
three eigenmodes of the Fourier transformed static dipole
propagator lZ(K)=QaER>0[(SI§I€’—7)/4WR3]ei“'R. The term
k(z)Ti(K) is called the dynamic-structure-correction term here.
All these quantities are purely real for cubic crystals and the

eigenvectors P; are normalized to have unit magnitude.
From Appendix B, we see that Eq. (7) differs from the
exact L,..=1 multiple-scattering formulation in the sense
that it assumes the existence of a Lorentz sphere within
which we can expand the exact Green function by Taylor
series in frequency. Both are good in the low frequency re-
gime. The frequency dependent single particle property only
appears on the right hand side of Eq. (7) such that the Bloch
state eigenvalue problem is reduced to an eigenvalue prob-
lem which is structure dependent only. The eigenvalue prob-
lem of the static dipole propagator?’ from Eq. (8) can be
solved in the whole first Brillouin zone beforehand to get
\(k), 1;(x), and 7,(k) which are now regarded as some kinds
of special functions of the wave vector. Their values at the
high-symmetry points are listed in Table I. Comparing with
the MG formula in Eq. (3), we see that Eq. (7) has a similar
mathematical form, but its left hand side has the structure
dependence and it is now valid in the whole Brillouin zone.
The band structures obtained from Eq. (7) is shown as a solid
line in Fig. 2. We see that it agrees very well with the actual
band structure calculated from the multiple-scattering
method. Equation (7) can reproduce both the transverse and

PHYSICAL REVIEW B 73, 075117 (2006)

2.0

-
(3]
)

Frequency (eV)
5

o
i

0.0 T T T
r X R M T

FIG. 3. Dispersion of an SC structure of Ag-coated glass spheres
(Fglass=84 nm, ry,=88 nm) with a filling ratio of 0.2584. The open
circles show the multiple-scattering result up to L,,,=1. The lines
show the dispersion calculated using the extended Maxwell Garnett
formula in Eq. (7).

the longitudinal bands. When the Bloch wave vector ap-

proaches the zone center, U(k) —1/3— kK, both 3\; and ¢;
approaches the value one independent of lattice structure for
the doubly degenerate transverse band, and Eq. (7) returns to
the MG formula if we neglect the dynamic-structure-
correction term. While the MG formula gives the same re-
sults for different structures (as long as filling ratio is the
same), and is not valid if the dispersion is not linear; Eq. (7)
gives the correct structural dependence and can describe cor-
rectly the dispersion when there are resonances, in which
case the dispersion cannot be linear.

When the same kind of Ag-coated glass particles with the
same radii are assembled into a simple cubic (SC) structure
instead of an FCC structure with the same filling ratio, the
photonic band structure calculated by the multiple-scattering
method (with L,=1) is compared with the extended MG
formula in Fig. 3. The extended Maxwell Garnett formula
predicts the exact band structure very well and also the di-
rectional gap due to plasmon resonance.

For different cubic lattices, we found that there are degen-
eracies at the zone boundary. These three bands for different
cubic lattice meet at some point near the Brillouin zone edge.
For example, the bands cross at the W point for FCC and the
R point for SC structure. Therefore, from the band structure
in the dipole approximation, the resonance gap is not an
absolute gap. However, it is an omnidirectional gap since it
is a gap for propagating wave of any incidence angle. Cou-
pling to higher multipoles may open an absolute gap.

When the wave vector is far from the Brillouin zone cen-
ter (k> k), the interaction between the single particle reso-
nance and the light line can be neglected. We take the ap-
proximation that the speed of light approaches infinity
(without retardation), the dipolar band structure from Eq. (7)
can be approximated by the eigenvalues of the static dipole
propagator as

I &-1
M) e +2]

)

Figure 4 shows the dispersion of the FCC structure using Eq.
(9). The dispersion of these bands can be understood from
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FIG. 4. The dispersion of an FCC structure of
Ag-coated glass spheres (rgms=84 nm, ra,
=88 nm) according to Eq. (9) with a filling ratio
of (a) 0.2584, and (b) 0.15, respectively. This dis-
persion can be regarded as the bands formed out
of the resonance of the individual spheres. A
higher filling ratio gives a wider band width.
Near the zone center, the upper band is a longi-
tudinal mode, and the lower band is a twofold
degenerate transverse mode. Hybridization of
these resonance bands with the linear dispersion

T T T
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the point of view of a tight binding picture that the Frohlich
surface mode of single particles in the lattice couple together
to form the bands. The coupling is taken to be without retar-
dation in this picture because we neglect the interaction be-
tween the Frohlich surface mode and the light line. By com-
paring Figs. 4 and 2, Eq. (9) gives the salient feature of the
band structure in the region far from the Brillouin zone cen-
ter. The lower two bands are transverse and the upper band is
longitudinal in nature. In the hybridization picture, the two
transverse bands in Fig. 4 hybridize with the vacuum states
(light line) to give the dispersion in Fig. 2. We should note
that within a MG description, a resonance opens an absolute
gap. However, it is actually not true in a more accurate de-
scription. The lowest three bands in an FCC structure are the
result of the coupling between the “tight-binding” bands
shown in Fig. 4 with the free space EM mode. We see that
the resonance ensures a gap near the zone center. However,
the tight-binding bands derived from the dipolar resonance
actually have no gap at some zone boundary points (due to
the particular symmetry of the lattice). The resonance thus
opens up omni-directional gaps, but not absolute gaps.

IV. PHOTONIC BAND GAP CALCULATION BY THE
MULTIPLE-SCATTERING APPROACH

For pure Ag particles in air, the photonic band gap created
by the Frohlich surface mode is approximately at 3.5 eV
(wavelength in vacuum around 350 nm). It is usually far
beyond the low frequency regime so that an effective me-
dium description of the material is not accurate unless the
spacing of the particles is very small (say less than 30 nm).
However, from the last section, the Frohlich frequency of the
particle can be shifted downwards from the one of a pure Ag
particle (~3.5 eV) to the one of an Ag-coated glass particle
(~1.25 eV). When the coating is thin enough, the Frohlich
frequency can be pushed to a very low frequency so that
effective medium theory becomes quantitatively correct.
Therefore, by varying the coating thickness we can tune the
gap frequency. In fact, this photonic band gap only depends
on the resonating behavior of a single particle. The frequency
of the resonance gap will not shift with the lattice constant in
contrary to photonic band gaps that are derived from Bragg
scattering.

In the last section, within the dipole approximation, we
know that a resonance on the right hand side of Eq. (7) opens
a gap in the photonic band structure. In fact, it can be ex-

of the vacuum gives the band structure in Fig. 2.

tended to the intermediate frequency regime (beyond the low
frequency regime) that a dipolar resonance of the single par-
ticle is responsible for the opening of a photonic band gap at
that particular frequency, although the effective medium de-
scription losses its accuracy due to the influence of the
higher multipoles. Equation (7) can still be used to calculate
the band structure qualitatively. Note that €, on the right hand
side of Eq. (7) remains real even if we move away from the
low frequency regime. This can be proved from Eq. (4) by
considering the absorption power of a nonabsorbing particle.

To examine this resonance photonic gap in detail, the
transmission and reflection spectra for normal incidence on
the (111) surface of a photonic crystal in an FCC structure
consisting of Ag-coated spherical glass particles at a fixed
filling ratio of 0.577 is shown in Fig. 5. The frequency is
given in normalized frequency units defined as wa/c where
a (fixed at 250 nm) is the sphere-to-sphere distance on the
(I11) surface and ¢ is the speed of light in vacuum. The
radius of the glass core is varied so that the coated sphere can
change from a pure glass particle to a pure Ag particle, while
the outer radius of the coated particle is fixed at ry,
=115 nm (0.46). The results are calculated by the multiple-
scattering method (with high enough multipole terms, up to
an angular momentum index of 19, to be included to guar-
antee full convergence). For the case of a very thin coating
(Folass=0.455@), the dispersion agrees very well with the
band structure for the first photonic band gap obtained from
the dipole approximation in Eq. (7). In the thin coating limit,
the physics can thus be fully accounted for by the dipole
model. When the coating thickness increases, this photonic
gap shifts progressively to higher frequencies into the inter-
mediate frequency regime. In particular, we have plotted the
exact band structure of the case g, =0.44« in Fig. 6 and the
same band structure only up to the dipole approximation in
Fig. 7 as well. At the intermediate frequency, the salient fea-
tures in the lowest three bands can still be explained by the
dipole approximation. When we plot the extinction cross-
section efficiency of a single sphere, we see that the first
peak (indicating the dipolar resonance) in fact coincides with
the gap. It verifies that the gap in the band structure is due to
dipolar resonance (not due to Bragg scattering). In order to
predict the gap position accurately, we should use the polar-
izability of a finite-size sphere instead of the one at quasi-
static limit (which corresponds to a point dipole). The higher
multipole terms only shift the band position below and above
the gap in the intermediate frequency regime while they al-
most have no effects on the bands at low frequencies. From
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FIG. 5. Reflection spectrum (solid line) for normal incidence on
16 layers of an FCC (111) surface consisting of Ag-coated glass
spherical particles at a volume filling ratio of 0.577 calculated by
the multiple-scattering method. The outer radius of the coated par-
ticle is fixed at 115 nm (0.46«). The dashed lines show the corre-
sponding absorbance.

the band structure, we see there are a bundle of bands lying
above the first gap. These flat bands come from the reso-
nances of higher multipoles. At even higher frequencies, the
band structure returns to the one of pure glass sphere. In that
frequency regime, Ag has a large skin depth so that the inci-
dent wave can probe the glass core. The whole particle be-
haves like a dielectric sphere very similar to glass. Thus, the
directional gap (also shown in the transmission spectrum) in
that frequency regime is in fact due to the Bragg scattering of
the glass spheres. We note that Eq. (7) can only predict the
resonance gap in the band structure but not the Bragg gap.
Moreover, while Eq. (7) predicts the position of the dipolar
resonance gap, it neglects the higher multipolar response of
the system. The higer multipolar bands usually lie above the
dipolar resonance gap but we also note that for systems of
higher filling ratio (especially near the touching-sphere limit
and Frohlich surface mode of further lower frequency), the
dipolar approximation becomes inappropriate and the multi-
polar bands can even lie inside the dipolar resonance gap.>®

As we further decrease the radius of the glass core until
the whole sphere becomes pure Ag, we found that the extinc-
tion cross section efficiency of a single sphere still has a peak
due to the dipolar term centered at the first photonic band
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FIG. 6. Photonic band structure of the case r,j,5,=0.44a of pho-
tonic crystal as described in Fig. 5 with L,,,,=7. The right panel
shows the extinction cross-section efficiency of a single particle.

gap of the crystal as shown in Fig. 8. Normally, a very small
Ag sphere should have its Frohlich surface mode at a very
high frequency (3.5 eV), but due to finite size effect, it is
now shifted downwards in frequency to about 2 eV. There-
fore, for the whole series of photonic crystal of Ag-coated
glass spheres, the first photonic gap (a directional gap) is
indeed due to the dipolar resonance of a single particle. It is
known that the first photonic band gap of the FCC structure
is very robust against disorder. This is because the gap is
derived from resonance.

We now consider the simple cubic structure. For a simple
cubic structure of Ag-coated glass particles with high enough
filling ratio, the first photonic band gap is already an absolute
gap.! Figure 9 shows the transmittance for normal incidence
on the (110) surface of a series of such photonic crystals with
the filling ratio fixed at 0.435, the outer radius of the coated
particles fixed at 117.5 nm (0.47«, «=250 nm is the lattice
constant) and the glass core radius is again varied so that we
can go from a pure glass sphere to a pure Ag sphere. The
polarization of the E-field is aligned with the [100] direction.
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FIG. 7. Photonic band structure of the case ryj,5=0.44a of pho-
tonic crystal as described in Fig. 5 with L, ,,=1. The right panel
shows the extinction cross-section efficiency of a single particle.
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FIG. 8. Photonic band structure of photonic crystal as described
in Fig. 5 in the case of pure Ag particles with L,.=7. The right
panel shows the extinction cross-section efficiency of a single
particle.

With this polarization, the transmission spectra are probing
the directional gap for the lower (slower velocity) branch of
the dispersions along the [110] direction. For the SC struc-
ture, we note that the absolute gap is much smaller than the
directional gap. By examining the exact band structures, the
absolute gap only appears when the glass core radius is
smaller than 0.44«. For this whole series of photonic crys-
tals, the first peak of the extinction cross-section efficiency
of a single sphere correctly predicts the position of the reso-
nance gap. The band structure for the case of ry,,=0.43a is
shown in Fig. 10. By comparing with the band structure only
up to the dipole term (in which the gap is closed at R), and
then increasing the L, step by step, we conclude that the
dipole term opens a directional gap at the resonance fre-
quency and the quadruple term (L=2) is responsible for the
further gap opening at the R point to get an absolute gap.
Since the dipolar resonance of a single metal particle
opens a gap at that particular frequency, this can be useful in
the design of photonic band gap materials. Here, we provide
a map of the resonance condition (defined as the frequency
of maximum polarizability) of metal-coated dielectric par-
ticle in Fig. 11. We note that the slope of the curves for
different ratios between the radii of glass core and Ag coat-
ing is nearly zero at the regime of very small outer radius. It
is because the resonance condition does not depend on the
size of particle at the quasi-static limit. For example, the
resonance condition of a small metallic particle at quasi-
static limit is always given by its permittivity being minus
two. On the other hand, as the outer radius of the particle
increases, all the curves converge to a straight line passing
through the origin corresponding to the case of a homoge-
neous perfect conducting particle. This resonance photonic
gap should be more robust than the photonic gap arising
from Bragg scattering under disorder since it is due to the
resonance of a single particle, the Frohlich surface mode.
To summarize, we have examined the optical properties of
a photonic crystal composing of Ag-coated glass spheres.
The origin of the first photonic band gap is due to the single
sphere dipolar resonance, which is the Frohlich surface mode

PHYSICAL REVIEW B 73, 075117 (2006)
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FIG. 9. Reflection spectrum (solid line) for normal incidence
with E-field polarized along the [100] direction on 16 layers of SC
(110) surface consisting of Ag-coated glass spherical particles at a
volume filling ratio of 0.435. The outer radius of the coated particle
is fixed at 117.5 nm (ro,=0.47a). The dashed lines show the cor-
responding absorbance.

in our case. However, it should be pointed out that this pic-
ture and the formulas derived in this work are also applicable
to other kinds of single particle resonance in the low fre-
quency regime. For metallic shells or metallic particles in
nano-scale in which the classical bulk description of the
metal fails, our formulation is still applicable by first calcu-
lating the dipolar response using nonlocal theory. The band
structure in the whole Brillouin zone can be obtained by an
extended effective medium theory we introduced. The reso-
nance picture is generally a good approximation so that it
can be a guidance principle in the design of metallo-
dielectric photonic crystal. Photonic band gaps due to reso-
nance are expected to be more robust than those arising from
Bragg scattering.
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APPENDIX A: EFFECTIVE PERMITTIVITY OF A
COATED PARTICLE

In the low frequency regime where only the dipolar re-
sponse is significant, a particle of isotropic electric polariz-
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FIG. 10. Photonic band structure of photonic crystal as de-
scribed in Fig. 9 in the case of ryj,,,=0.43a. The right panel shows
the extinction cross-section efficiency of a single particle.

ability ya(w) can be effectively replaced by a homogeneous
spherical particle of permittivity €,(w) of an arbitrarily cho-
sen volume (), (which should be small compared to the
wavelength). By expanding the polarizability of the effective
homogeneous particle in a Taylor series of frequency and
taking only the leading order terms in its real and imaginary
parts, the effective permittivity of the particle can be ob-

tained from
+2 1 ik
S 395(— ¥ ’—°> .

€—1 a 6w

(A1)

Equation (A1) is the basic equation to obtain the effective
permittivity of the particle. Note that €, is purely real for a
nonabsorbing particle from this equation. Suppose we are
dealing with a coated spherical particle at the quasi-static
limit (i.e., the local wavelength in each layer of the particle is
much bigger than the radius of the particle), the polarizabil-
ity of the particle does not need to be explicitly calculated
using the spherical Bessel functions. We choose the volume
of the effective homogeneous particle to be the same as the
one of the original coated particle, Eq. (Al) can be further
simplified to become

) <r1)3 €16

€+2¢ - r) € +2¢€’
where r|/r, is the radius of the core/coating and €,/ ¢, is the
permittivity of the core/coating. Equation (A2) has the same
form as the Maxwell-Garnett formula. For more than one
layer of coating, the formula can be first employed to replace
the two innermost layers and this process can be iteratively
carried out until the whole particle is effectively homoge-

neous. In the quasi-static limit, the resonance condition be-
comes independent on the size of the particle.

(A2)

APPENDIX B: DISPERSION OF A DIPOLAR CRYSTAL

For a lattice of dipolar units in vacuum, let there be a
Bloch state of wave vector k (meaningful only in the first

PHYSICAL REVIEW B 73, 075117 (2006)
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FIG. 11. Resonance condition for a Ag coated glass particle for
different values of outer radius of the particle. rja5/ra is the inner/
outer radius of the particle. (The “wiggles” at Tolass/ Tag=0.960 is
due to the noise in the Ag experimental data.)

Brillouin zone) so that we can write the dipoles as

p(R) = pye’*®, (B1)

where R is a real space lattice vector. Then the local field at
the origin site can be expressed as the macroscopic field (E)
minus the near field by continuum dipoles and add back the
near field by discrete dipoles:

1 P
EOEluwl = EO<E> + _F[kéG(r)](K) *Pos (BZ)

where the macroscopic field is defined as the filtered version
of the corresponding microscopic quantity such that only the
spatial frequency components within the first Brillouin zone
is retained. In the formula (B2), the Green’s tensor for the
background vacuum is given by

- - 1 elkor
G(r)= 1+EVV , (B3)

0 d7r

where [ is the identity tensor and k; is the wave number in
vacuum. (), is the volume of a single lattice site and the
transform F is defined by

lim Q, > f(R)e*R-

Ro—=  0<|R|<R,

Ry
FLAE (0 = f 0P ()T
0

(B4)

In the low frequency regime, we have the wavelength in
vacuum much larger than the lattice constant (a). There ex-
ists a finite value for R, the radius of the Lorentz sphere, to
have the formula (B4) convergent. The radiation to the origin
from the dipoles within the Lorentz sphere can be well ap-
proximated by the static propagator so that we can expand
the Green’s tensor within the Lorentz sphere in Taylor series
of frequency and Eq. (B2) can be well approximated (up to
the third order of frequency) in low frequency regime by
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1 371
e_OElacalz €0<E> +7 Po F|: i :| : &

— 4+
3Q, 4r? Q,
T+ | py ik
+KF 2y, B5
0 l 8’777‘] Q, 677p0 (B5)

On the other hand, the single particle response can be ex-
pressed in terms of the frequency-dependent polarizability
ea(w) by
Po= €0a(®)Ejcq- (B6)
By combining Egs. (B5) and (B6) together with the defi-
nition of &, from the constitutive relationship
1

QP =@ -D-E).  (B)

(P)=

and also the definition of €, in Appendix A, we obtain the
wave-vector dependent permittivity given by

3pp—1| | T+#| 1e+2-
F = | +3KF =———]
4ar 8mr fe—1

(B3)

Earlr) + 21

Eeri(K) =1

with volume filling ratio f=,/(},. By solving the Maxwell
equations with the wave-vector dependent permittivity, the
corresponding eigenvalue problem is

- ky - ) {7+W]> 1 g+2
U.(k)+ I — KK) + ki F “Po=— s
(A(K) Kz—ké( k) + ki 8mr Po 3fes—1p0
(B9)

where the Fourier transformed dipole propagator is defined
by U,(k)=Q,Sr-o[ BRR-1)/47R*]e"*R. On the left hand
side of Eq. (B9), the second term is small for x far away

PHYSICAL REVIEW B 73, 075117 (2006)

from the Brillouin zone center and it commutes with ﬁs(l{)
for K near the Brillouin zone center if the lattice is one of the
cubic lattice type (FCC/BCC/SC). The third term is always

small. Therefore, we use the eigenvectors of 175(:() as the
unperturbed states and the dispersion can be further approxi-
mated by
1 K —kp 5= 1
3 ket (1) + (17 = k) \i(1) + Kyri(a) €42
(B10)

where

U(k) - P;=N(w)P; with P,-P,=1,i=1,2, or 3,

1) = P, (I- RR) - P,

A DYl
7(r)=P;- F - P
87r

(BI11)

By considering « approaching the Brillouin zone center
for a transverse mode (¢;(«)=1,\;(k—0)=1/3) and neglect-
ing the dynamic-structure-correction term given by kéri(O),

Eq. (B10) becomes
K- k3 -1

K+2ky T E+2]

(B12)

which is the Maxwell-Garnett formula. Therefore, formula
(B10) derived here is an extended version of Maxwell-
Garnett formula since it contains the dynamic-structure-
correction term and it covers the whole Brillouin zone. On
the other hand, formula (B10) is compatible with the
multiple-scattering approach except that it expands the band
structure in the low frequency limit.
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