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We calculate the adiabatic contributions to the free energy due to the electron-phonon interaction at inter-
mediate temperatures 0�kBT��F for the elemental metals Na, K, Al, and Pb. Using our previously published
results for the nonadiabatic contributions we show that the adiabatic contribution, which is proportional to T2

at low temperatures and goes as T3 at high temperatures, dominates the nonadiabatic contribution for tempera-
tures above a crossover temperature, Tc, which is between 0.5Tm and 0.8Tm, where Tm is the melting tempera-
ture of the metal. The nonadiabatic contribution falls as T−1 for temperatures roughly above the average
phonon frequency.
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I. INTRODUCTION

The crystal free energy consists of contributions from the
static-lattice potential, the phonons, the electronic excita-
tions, phonon-phonon interactions, and electron-phonon in-
teractions �Wallace,1 Eq. �20.1��. The last term is generally
the smallest, but little is known about the size of this contri-
bution except at very low temperatures. We, therefore, study
the electron-phonon free energy Fep in order to assess its
contribution to the thermodynamic properties of metals at all
temperatures to melting.

The total electron-phonon free energy was derived by
Eliashberg2 in a paper on superconductivity. In this formula-
tion, the electron-phonon interaction in the crystal ground
state is double counted. The ground state subtraction, which
corrects for the ground state double counting, was derived in
Wallace,3 Eq. �25.26�. It is well known that electron-phonon
interactions contribute to the low-temperature electronic spe-
cific heat Cel, according to

Cel = �bs�1 + ��T . �1�

The bare electron contribution is �bsT, where �bs is propor-
tional to the electronic density of states at the Fermi level
determined by band structure. The nonadiabatic electron-
phonon contribution gives the term in �, and can be quite
large, e.g., ��1.5 for lead.4,5 In earlier years, many theoret-
ical calculations of � were carried out for the simple metals,
showing rather good agreement between theory and experi-
ment. These results were reviewed by Grimvall,6 Tables III–
VI; see also Wallace,3 Tables 27 and 28. Grimvall6 evaluated
the Eliashberg formula for lead, and concluded that Fep van-
ishes at temperatures above the phonon characteristic tem-
perature. This conclusion will be revised in the present paper.

The adiabatic approximation7 rests on the expansion of
the coupled nuclear-electron Hamiltonian in powers of m /M,
the ratio of electron to nuclear mass. When terms of order
m /M are neglected, the electronic wave functions do not see
the nuclear motion, and depend only on the static nuclear

positions.7 The case of lattice dynamics is treated by Born
and Huang,8 p. 171. In the partition function, the same prop-
erty is revealed by treating the operation of the nuclear ki-
netic energy on the electronic wave functions as a small
effect.9 When this operation is neglected entirely, which is
appropriate at high temperatures where the nuclear motion is
classical, only the adiabatic part Fad survives in Fep
�Wallace,1 pp. 91–93�. It is, therefore, seen that the electronic
states are not mixed in the adiabatic part, and also that Fad is
the dominant part at high temperatures. The nonadiabatic
part F1

na+F2
na arises from the mixing of electronic states by

the nuclear kinetic energy, and becomes unimportant at high
temperatures.

Allen and Heine10 separated electron-phonon effects into
adiabatic and nonadiabatic contributions, and studied the
adiabatic part of the electron energy shifts. For the Eliash-
berg formulation, Allen and Hui11 studied the adiabatic con-
tribution to the high-temperature specific heat. Present re-
sults will be compared with Allen and Hui in Sec. III. The
leading correction to the linear temperature dependence in
the specific heat given in Eq. �1� is a nonadiabatic term
which goes as T3 ln T. This has been studied extensively in
the literature starting with Buckingham12 and Buckingham
and Schafroth.13 See Refs. 14 and 15, and references therein
for more recent work.

We have previously addressed the problem of calculating
the contribution to the free energy from the electron-phonon
interaction.5 We found the nonadiabatic part of this contribu-
tion, F2

na, to second order in the interaction. We calculated
F2

na for four nearly-free-electron metals, Na, K, Al, and Pb,
for temperatures between zero and roughly 1.5 times the
melting temperature.

As in the calculation of the nonadiabatic contribution, our
calculations are done for a constant density � to eliminate
concern for the density dependence of phonon frequencies
and electron-phonon interaction matrix elements. The den-
sity is that at the temperature T�, where the phonon frequen-
cies are measured. The melting temperature at this density is
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higher than the customary zero-pressure melting tempera-
ture. Our calculations cover the range from T=0 to above
Tm.

The paper is organized as follows. In Sec. II we present
the expression for the adiabatic and nonadiabatic parts of
Fep, and we discuss the formulation for metals in general, the
simplification for the nearly-free-electron metals studied
here, and the ground state subtraction. Asymptotic tempera-
ture dependences are derived for the adiabatic part. In Sec.
III our results are presented with a detailed discussion of the
numerical methods used, the adiabatic and nonadiabatic parts
are compared, and our results are compared with previous
work. Our conclusions are summarized in Sec. IV.

II. ADIABATIC CONTRIBUTION TO THE ELECTRON-
PHONON FREE ENERGY

A. Analytic form of the free energy

The electron-phonon contribution to the free energy can
be written in three pieces, Fep=Fad+F1

na+F2
na,

Fad

N
= �

p�k�Q� �

�2

N2M

nk�� + 1
2

�	k��

�fp� − gp��


���k� + Q� � · �̂k���2�U�k� + Q� ��2

�p� − �p�+k�+Q�
−

�Q� · �̂k���2�U�Q� ��2

�p� − �p�+Q�
� ,

�2�

F1
na

N
= �

p�k�Q� �

�2

N2M
�	k��	nk�� +

1

2





fp�

�p� − �p�+k�+Q�

��k� + Q� � · �̂k���2�U�k� + Q� ��2

��p� − �p�+k�+Q� �2 − ��	k���2 , �3�

F2
na

N
= �

p�k�Q� �

�2

2N2M
fp��1 − fp�+k�+Q� �

��k� + Q� � · �̂k���2�U�k� + Q� ��2

��p� − �p�+k�+Q� �2 − ��	k���2 .

�4�

Our results are calculated and quoted per atom. Throughout
this paper we will use the following nomenclature: fp� is the
Fermi-Dirac distribution function at finite temperature and gp�

is the same at T=0. nk�� is the Bose-Einstein distribution
function at finite temperature and �̂k�� is the polarization vec-
tor of the phonon branch � for wave vector k� which is inside

the Brillouin zone. Q� is a reciprocal lattice vector and 	k�� is

the frequency of a phonon mode. U�k� +Q� � is the Fourier
transform of the pseudopotential for momentum transfer k�

+Q� .
To remind the reader of the physical meaning of the three

terms in Eqs. �2�–�4� �a more detailed discussion can be
found in Bock et al.5� a quick summary: Eq. �2�, Fad, ex-
presses the thermally averaged vibrational contributions to
the excited electronic energies. Equations �3� and �4�, F1,2

na ,
describe the nonadiabatic corrections to all electronic energy

levels and take into account the mixing of electron states due
to the ion motion.

In the free energy formulation, the electron-phonon inter-
action is treated in a second order perturbation
theory.1–6,10,11,14,15 For a general metal, the electrons are pre-
sumed to have band structure, and the energy denominators
are band electron energies Ek�. For nearly-free-electron met-
als, band structure effects may be treated in pseudopotential
perturbation theory, where in zeroth order the electron ener-
gies are the free-electron energies �k�. This is why free-
electron energies appear in the denominator of Eqs. �2�–�4�.
In these equations, the band structure effects, to second order
in the pseudopotential, are contained in the last term in
brackets in Eq. �2�. Pseudopotential perturbation theory has
been extensively developed over many years, and pseudopo-
tential parameters have been calibrated to experimental data
such as equilibrium density and bulk modulus. We use these
calibrated pseudopotentials here, so that our models have no
free parameters.

Finally, we need to clarify the problem of ground state
double counting. The potential for the nuclear motion, the
“adiabatic potential,” is precisely the electronic ground state
energy as a function of static nuclear positions. Since this
potential has been put into the phonon Hamiltonian, the elec-
tronic ground state energy has to be subtracted from the
electron-phonon Hamiltonian. In this way the electronic sta-
tistical mechanics expresses only electronic excitations from
the ground state. The ground state subtraction is an adiabatic
effect, and is expressed by the term �−gp�� in Eq. �2�. The
decomposition of the total Hamiltonian for a metal crystal,
and derivation of the corresponding free energy, including
Eqs. �2�–�4�, is given in Wallace.1

B. Analytic temperature dependence

The temperature dependence of Fad, Eq. �2�, arises from
the product of the Fermi-Dirac factor �fp� −gp�� and the pho-
non factor �nk��+ 1

2
�. The value at T=0, i.e., the constant term

in Fad, vanishes because �fp� −gp�� vanishes at T=0. Using a
Sommerfeld expansion �e.g., p. 45 in Ashcroft and
Mermin16� of Eq. �2�, the Fermi-Dirac factor gives a qua-
dratic temperature dependence in leading order, plus higher
order terms which are of relative order �kBT /�F�2 and so can
be neglected at temperatures to well above Tm. The phonon
factor reduces to the constant 1

2 at very low temperatures,
i.e., at kBT� the mean phonon energy ��	�, so that the net
dependence at very low temperatures is

Fad = B2�kBT�2. �5�

At higher temperatures, i.e., at kBT ��	�, each phonon fac-
tor can be expanded as

	nk� +
1

2

 =

1

��	
+

��	

12
+

���	�3

720
+ ¯ . �6�

Hence the temperature dependence at kBT ��	� becomes

Fad = B3�kBT�3 + ¯ . �7�

As we will show in a later section, our numerical results
confirm this analytic temperature dependence.
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III. RESULTS

A. Phonon model

When we calculated the nonadiabatic contributions we
found that we could replace the phonon dispersion with a
constant frequency with high accuracy which simplified our
numerical evaluation. In fact, we found that the result of our
calculation was not sensitive to the value of this frequency,
	E, and that an Einstein model gives the correct temperature
dependence. We reasoned that this insensitivity is due to the
fact that the integrands of F1,2

na are finite and well-behaved as
a function of 	k��. The adiabatic contribution, on the other
hand, diverges as 	E→0 as illustrated in Fig. 1 and is, there-
fore, very sensitive to the choice of 	E. Although the Ein-
stein model will give the correct temperature dependence at
low and high temperatures, as listed in Eqs. �5� and �7�, we
have no way of finding the Einstein frequency which will
give us the correct magnitude without doing a calculation
with the full phonon dispersion. This is a serious problem as
can be seen from the extreme dependence on 	E as shown in
Fig. 1. Since in the case of Fad the calculation using the full
phonon dispersion is not prohibitive, we chose for this paper
to use a fully k�-dependent phonon dispersion.

In the following we calculated the phonon dispersion and
eigenvectors from Born–von Kármán force constants to get a
more realistic representation of the real phonon spectrum
with its three branches �the force constants were taken from
Dederichs et al.17�.

B. Numerical techniques

Equation �2� is written in terms of sums over the electron
and phonon momenta. We are using a free-electron disper-
sion spectrum which is isotropic in the electron momentum.
This combined with the fact that p�  is bounded by �fp� −gp��
from above and below to p� � pF to within a few kBT makes
it numerically more convenient for us to rewrite �p� as an
integral,

�
p�

=
NVA

�2��3 � d3p . �8�

The sum over phonon momenta however is evaluated more
conveniently as a sum because of the two terms in the curly

brackets in Fad. The momentum transfer k� +Q� enters the sec-

ond term only with the reciprocal lattice vector Q� . Were we

to integrate over the final electron momentum p�� = p� +k� +Q� ,
the second term would introduce discrete steps into the inte-

grand as we change p�� . This is very difficult to handle nu-

merically. Summing over k� and Q� instead converges much
faster. The expression we evaluated is given by

Fad

N
=

VA

�2��3P� dp� �
k�Q� �

�2

NM

nk�� + 1
2

�	k��

�fp� − gp��


���k� + Q� � · �̂k���2�U�k� + Q� ��2

�p� − �p�+k�+Q�
−

�Q� · �̂k���2�U�Q� ��2

�p� − �p�+Q�
� ,

�9�

where P denotes the Cauchy principal value.
At this point we would like to address the question of

convergence in our calculation since the sum on k� +Q� is not
obviously bounded by an upper limit. We had found for the
two nonadiabatic parts strong convergence as a function of

p�� due to a combination of the pseudopotential factor and the
energy denominator. In the case of the adiabatic contribution,
however, this is not quite so obvious. The energy denomina-
tor is only linear in the energy difference and we, therefore,
expect the convergence of the two single terms in Fad to go
as Q−2, which is quite weak. We do suspect, however, that
the two terms in the curly brackets will exhibit cancellation
to some degree and might improve the convergence behavior
of Fad. In Fig. 2 we plot the two terms separately and com-

bined as a function of magnitude of Q� . Despite the slow
convergence behavior of the terms by themselves, their com-
bination converges strongly.

C. Comparing the adiabatic with the nonadiabatic results

As mentioned earlier, we calculated Fad using force con-
stant models for the phonon dispersion for the elemental
metals Na, K, Al, and Pb. Our result for Na is shown in Fig.

FIG. 1. �Color online� 	E dependence of Fad for Na at T
=200 K.

FIG. 2. �Color online� Convergence behavior of Fad for Na at
T=200 K. The inset shows the combined terms.
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3. A polynomial fit of the temperature dependence in the
low- and high-temperature regime shows that our initial
analysis was correct and Fad�T2 for low temperatures and
that it turns into �T3 for higher temperatures.

The sign of Fad for all metals studied here except Al is
positive. It is not obvious from Eq. �9� why this is the case.
We can speculate that the sign is determined by the relative
magnitudes of the two terms in parentheses in Fad since we
know from our convergence study �Fig. 2� that the two terms
are roughly of equal strength but of opposite sign. The dif-
ference between the two terms is the scattering momentum
which is the full phonon momentum in the first term �k�

+Q� � and the reciprocal lattice vector only in the second term

�Q� �.
The Fermi-Dirac factor �fp� −gp�� ensures that the first elec-

tron momentum, p� , is essentially confined to the Fermi sur-
face, pF. For the denominators to be small, the second elec-

tron momentum, �p� +k� +Q� � and �p� +Q� �, has to, therefore, lie
close to the Fermi surface. Although the exact shape of the
Fermi surface can be quite complicated we would like to
restrict this argument to a spherical Fermi surface since we
are using the pseudopotential formalism in this calculation
and do not take separate bands into account. In this case it is
plausible to speculate that a change of the radius of the Fermi
surface might be able to effect an overall sign change in Fad.

We explore this possibility by means of a “simplified
Fad,” given by Eq. �9� with the pseudopotential set to a con-
stant and with a “fictitious pF” that is allowed to vary. This
amounts to pretending that we can change the number of free
electrons, hence change the size of the Fermi surface, with-
out changing anything else. In this case the essential part of
the second term in Eq. �9� is the p�-angle average of ��p�

−�p�+Q� �−1 with p�  equal to the fictitious pF and with Q any
reciprocal lattice vector. This integral diverges as the ficti-
tious pF passes through pn= 1

2Qn, where Q1 is the magnitude
of the first reciprocal lattice vector, and so on for Q2, etc. At
the same time, the first term in Eq. �9� is well behaved as a
function of the fictitious pF. Numerical evaluation of the sim-
plified Fad is shown in Fig. 4 for Na and Al, and reveals the
expected logarithmic discontinuities at pn= 1

2Qn. Figure 4
supports the view that the sign of Fad depends directly on the

size of the Fermi surface relative to the Brillouin zone sur-
face.

Our results for Na for Fad including our previous results
for F2

na are shown in Fig. 5. At low temperatures, the adia-
batic contribution vanishes and the nonadiabatic contribution
approaches a constant. In the low-temperature regime, the
free energy is dominated by the nonadiabatic contribution. In
the high-temperature regime, the adiabatic contribution in-
creases as T3 and the nonadiabatic contribution slowly van-
ishes. The adiabatic contribution dominates in this tempera-
ture regime. At about �320 K there is a crossover between
the two contributions. For reference we included the tem-
perature of an average phonon frequency and the melting
temperature of Na in the graph. The crossover temperature is
well between either one of these two temperatures.

Figure 6 shows our results for K. We find the same quali-
tative behavior. The crossover temperature is always well
between the two reference temperatures. The same is seen
for our results for Pb, shown in Fig. 7.

In the case of Al we repeated the calculation for both
pseudopotential models. Our results are shown in Fig. 8. The

FIG. 3. �Color online� Fad for Na using full phonons. FIG. 4. �Color online� Dependence of the sign of Fad as a func-
tion of pF for Na at T=200 K and for Al at T=500 K. For illustra-

tion purposes, the lengths p1,2= 1
2 Q� 1,2 of the first two reciprocal

lattice vectors are shown.

FIG. 5. �Color online� Fad and F2
na for Na. The crossover tem-

perature is shown.
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different pseudopotentials effect a slightly different curvature
of the temperature dependence in the adiabatic contribution.
As we found previously, the nonadiabatic contribution is
shifted in energy by about 5
10−5 eV. The net result of
these two effects on the crossover temperature �between the
magnitudes of Fad and F2

na� is to shift this temperature by
only roughly 20 K. The difference between the two pseudo-
potential models is presumable well within the accuracy of
the pseudopotential method and our calculation itself. It does
not make any difference which model is chosen.

All of the crossover temperatures are summarized in
Table I.

In order to assess the overall importance of the adiabatic
electron-phonon free energy at high temperatures, we com-
pare it with the bare electron free energy Fel. The leading
order Sommerfeld expansion of Fel, which is quite accurate
to Tm for the nearly-free-electron metals, is

Fel = − 1
2�bsT

2. �10�

Since Fad increases approximately as T3 at high T, the ratio
Fad /Fel has its maximum magnitude at Tm. This ratio is listed

in Table I, based on our calculations and the electronic den-
sity of states of Moruzzi et al.18 Our corresponding values
for Sad /Sel at Tm, and Cad /Cel at Tm, are also listed in Table I.
These results allow us to make estimates for nearly-free-
electron metals, of whether or not the adiabatic electron-
phonon contribution is significant in a given property of a
given metal.

D. Comparison with previous work

Previous work on the electron-phonon contribution was
done on the entropy instead of the free energy �see Fig. 9�.
The thermodynamic relation

S = −
�F

�T
�11�

relates the two quantities. In order to see how our result for
the free energy affects the entropy, we took the derivative of
the adiabatic and nonadiabatic contributions and plotted the
entropy for temperatures between 100 and 1000 K for lead in
Fig. 10. The nonadiabatic entropy slowly vanishes with in-
creasing temperature, whereas the adiabatic contribution in-
creases. The electron-phonon contribution to the entropy in
lead was calculated by Grimvall.19 We found previously that

FIG. 6. �Color online� Fad and F2
na for K. The crossover tem-

perature is shown.

FIG. 7. �Color online� Fad and F2
na for Pb The crossover tem-

perature is shown.

FIG. 8. �Color online� Fad and F2
na for Al. Note that Fad is

negative but drawn here as −Fad. The crossover temperature is
shown. Both pseudopotentials are used. The inset shows the cross-
over region. The data sets are labeled as in the larger plot.

TABLE I. Crossover temperatures and other quantities.

Na K Al Pb

Structure bcc bcc fcc fcc

��	� �meV� 10.53 6.42 25.79 5.90

Tmelt �K� 407 368 1234 722

Tmelt
P=0 �K� 371.0 336.4 933.5 600.6

Tc �K� 325 194 609 �A�, 627 �H� 563

Fad /Fel�Tm� −0.03 −0.03 0.19 �A�, 0.22 �H� −0.13

Sad /Sel�Tm� −0.045 −0.045 0.26 �A�, 0.30 �H� −0.20

Cad /Cel�Tm� −0.09 −0.09 0.45 �A�, 0.50 �H� −0.39
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for temperatures up to T�1.4TE the nonadiabatic contribu-
tion to the free energy is sufficient to achieve good agree-
ment with Grimvall’s entropy calculation. We now see why.
The adiabatic contribution is too small to contribute notice-
ably to the total entropy. At higher temperatures, however,
this will not be the case anymore and the adiabatic contribu-
tion will become important. As we see from Fig. 10, Sad

increases with temperature and at around T=240 K Sad
� S2

na. Grimvall’s conclusion that Sep�T→��=0 is therefore
not correct. We also notice that, maybe not surprisingly, the
crossover temperature for the free energy is higher than the
crossover temperature for the entropy.

Allen and Hui11 studied the adiabatic electron-phonon
specific heat as derived from the Eliashberg free energy.
They argued that for A15 metals, which have narrow peaks
in the electronic density of states, the adiabatic contribution
can be as large as the bare electronic specific heat at high
temperatures. Our results in Table I are not inconsistent with
this possibility. Differences in our procedure and theirs pre-
vent a further comparison of results. First, their electron-
phonon free energy does not contain the ground state sub-
traction. We note, however, that while the ground state

subtraction contributes to the free energy and entropy at all
temperatures, its contribution to the specific heat vanishes at
high temperatures. Second, our adiabatic specific heat is
Cad=−T��2Fad /�T2�V, while Allen and Hui remove certain
terms from this Cad, to be placed in the bare phonon and bare
electron specific heats. This, of course, is not an error but a
matter of choice. Nevertheless all the terms in question arise
from Eq. �2� for Fad and are, therefore, genuine electron-
phonon interaction terms.

IV. CONCLUSIONS

A. Structure of the free energy

The exact free energy of a crystalline elemental metal can
be expressed as1,5

F = �0�V� + Fel�V,T� + Fep�V,T� + Fph�V,T� + Fanh�V,T� ,

�12�

where �0 is the static-lattice potential, Fph represents quasi-
harmonic phonons, Fanh represents phonon-phonon interac-
tions, Fel represents static-lattice electronic excitations, and
Fep is the remainder of the free energy expressed in terms of
interactions between electronic excitations and phonons. Fep
is the smallest and most complicated term in Eq. �12�. In the
leading order thermodynamic perturbation theory, Fep is
composed of a nonadiabatic part, Fna=F1

na+F2
na, and an adia-

batic part, Fad. The nonadiabatic part arises from the mixing
of electronic states due to the motion of the ions, and
strongly affects the lowest electronic excitations. Hence Fna

dominates Fep at low temperatures. The adiabatic part, Fad

expresses the averaging over the thermal motion of the ions
of each electronic excited state, and is formally the leading
contribution to Fep at high temperatures, where the ion mo-
tion is classical. Hence there exists a crossover temperature
Tc, below which the major contribution to Fep is Fna, and
above which it is Fad.

B. Sign and magnitude estimates

The following properties are characteristic of our results
for Na, K, Al, and Pb. We suppose these properties are com-
mon but not without exception among metals, in general.

�1� F1
na is negligible compared to F2

na for 0�T�Tm.
�2� F2

na is positive at all T. From a positive value at T=0,
F2

na decreases as T2 at first, then decreases ever more slowly
with increasing T �Figs. 4, 6, 8, and 9 of Bock et al.5�.

�3� At very low temperatures, F2
na is the only significant

contribution to Fep, and has the form F2
na=C2+A2T2, where

C2�0 and A2�0. C2 constitutes an entirely negligible con-
tribution to the electronic ground state energy. The tempera-
ture dependence is the same as Fel=−� 1

2
��bsT

2 at low tem-
peratures, so that F2

na causes the well-known electron-phonon
correction to the bare electronic specific heat. We have Cel
+Cep= ��bs−2A2�T, where 2A2 /�bs ranges from a few per-
cent to around 2.

�4� Fad can be of either sign. Fad is negligible compared to
F2

na at low temperatures, but Fad�F2
na at T�Tc. This is

because of the strong temperature dependence of Fad

FIG. 9. �Color online� The free energy contributions Fad and F2
na

for Pb.

FIG. 10. �Color online� The entropy contributions Sad and S2
na

for Pb. The free energy is shown for comparison in Fig. 9.
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=B3�kBT�3 at kBT ��	�. Though Fad /F2
na increases with

temperature, F2
na it not always negligible at Tm �Figs. 5–8�.

On the other hand, S2
na is negligible compared to Sad at high

temperatures �Fig. 10�.
�5� The ratio Fad /Fel reaches its maximum at Tm, where

it ranges from a few percent to 0.2 �Table I�. The ratio
Sad /Sel is larger, and Cad /Cel is larger still �Table I�, so that
the adiabatic contribution to the specific heat can become
important at high temperatures.

�6� The theory is a complex mixture of electronic excita-
tions and phonons, hence the crossover temperature Tc does
not scale with either �F or ��	�. From our calculations, kBTc

is well above ��	�, and Tc /Tm is in the range 0.5–0.8.
�7� Based on our results shown in Fig. 4, we expect to see

a significant dependence of Fad on the concentrations of the
constituents in a real system in which the number of elec-
trons in the conduction band can be controlled, as in an in-
termetallic compound, for instance.

It is possible to carry out an accurate numerical calcula-
tion of the low-temperature nonadiabatic coefficient A2 �see,
e.g., Eq. �25.83� of Wallace3�. A good estimate can also be
obtained from an Einstein approximation with 	E determined
from �	E= ��	� �Bock et al.5�. As shown here �Sec. III A�,
an accurate calculation of Fad requires the use of realistic
phonon frequencies and eigenvectors. While an Einstein
model does give the correct temperature dependence of Fad,
it does not give a reliable magnitude �Eqs. �28.44� and
�28.52� and line 3 of Table 27 of Wallace3�. Based on a
numerical evaluation for Pb to around 100 K, Grimvall6 con-
cluded that Sep is negligible for temperatures above the mean
phonon energy. Our results show that this is not the case,
however, since at higher temperatures the adiabatic contribu-
tion starts to dominate and the total entropy rises, as shown
in Fig. 10. Allen and Hui11 argued that Cad can become as
large as Cel for certain metals at high temperatures. Our re-
sults for nearly-free-electron metals are not inconsistent with
such behavior.
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