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This paper deals with the influence of many-body effects on the electron-positron �e-p� momentum density
in simple and transition metals. Five theoretical approaches to calculating e-p momentum densities are con-
fronted with three-dimensional densities, reconstructed from two-dimensional angular correlation of annihila-
tion radiation experimental spectra in Mg, Cd, Cu, and Y. It is shown that a proper description of e-p
correlations has to include the lattice-periodical crystal potential as is done, e.g., in the Bloch-modified ladder
theory. Moreover, it is demonstrated that electron-electron correlations are visible not only in Compton scat-
tering but also in positron annihilation experiments.
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I. INTRODUCTION

For a reliable interpretation of any positron annihilation
experiment in metallic solids �lifetime measurements, angu-
lar correlation, or Doppler broadening measurements�, an un-
derstanding of the role of many-body correlations among the
electrons and positrons is of vital importance. From the the-
oretical point of view, one has to deal with a system consist-
ing of Ne electrons and Np positrons moving within a crystal
lattice. If one takes into account neither effects of the crystal
surface nor the influence of lattice defects, and if one con-
siders the experimental situation that Ne�Np, one has to
investigate a fermionic system of a large number of electrons
and very few positrons, interacting among each other and
with a perfect crystal potential. Consequently, an ideal theo-
retical description of the electron-positron �e-p� annihilation
in metals should include both e-p and electron-electron �e-e�
correlations �positron-positron interactions can be neglected,
due to the small number of these particles in the crystal�.

Taking into account that the comparably simple many-
body problem of electrons moving within a lattice potential
�i.e., without positrons� is treated by using one-electron theo-
ries, it is evident that our problem can be solved only by
strongly approximative approaches. Some theories which are
commonly used for the interpretation of experimental data
are briefly described in Sec. II; all of them are based on the
fundamental statement of Carbotte and Kahana1 that an e-p
pair, seen from outside, behaves like a neutral quantity
whose coupling to the environment is strongly reduced. Con-
sequently, typical many-body correlation effects of the mo-
mentum distribution as smearing at the Fermi momentum pF
and high-momentum tails are expected to be negligible. This
argumentation is contradicted by another theory of Arponen
and Pajanne2 �AP� where the physics of positrons in an in-
teracting electron gas is described by a system of Sawada
bosons. Applied on jellium, this theory predicts a significant
tail of the e-p momentum density beyond pF. The existence

of such tails has experimentally been observed for �-Sn, Li,
and Al.3,4 In Ref. 5, it was demonstrated by a simultaneous
analysis of high-resolution Compton profiles and two-
dimensional angular correlation of annihilation �2D-ACAR�
data that in Y, e-e correlations of same strength become vis-
ible in both experiments. On the other hand, however, the
theory of AP yields an increasing momentum-dependence of
the enhancement factors with increasing electron density, a
result that strongly disagrees with experimental evidence.
Therefore, most theories in the literature are based on the
work of Kahana and Carbotte.

The e-p interactions have a considerable influence on ob-
servables of positron spectroscopy, first of all on the total
annihilation rate, but also on the momentum dependence of
the e-p densities, provided—as will be demonstrated in the
following—that the lattice effects are not too strong. For the
present paper, we focus our attention on this momentum de-
pendence, measured by 2D-ACAR experiments �for more
details, see Sec. III�.

In Sec. IV, the e-p momentum densities in p space for fcc
copper and hcp magnesium, cadmium, and yttrium, calcu-
lated by using various theoretical approaches, are compared
with corresponding experimental data. In this section, we
also study e-e correlations showing that they can be observed
not only in Compton scattering but also in positron annihila-
tion experiments. However, such a finding needs a particular
analysis, and this is the reason that such correlations were
not observed in most positron annihilation experiments.

II. THEORETICAL BACKGROUND

Most theoretical approaches to describe the momentum-
dependent annihilation rate are based on the well-known re-
lation between the e-p momentum density ��p� and the two-
particle e-p Green’s function Gep�xtx ,x�tx� ;yty ,y�ty�� which
reads1
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��p� = �− i�2�
�

d3x d3y e−ip·�x−y�Gep�xt,xt;yt+,yt+� �1�

where � is the volume of the crystal and �p means the total
momentum of the annihilating e-p pair.

It is clear that, due to the complicated system of electrons
and positrons interacting among each other and moving
within a lattice-periodical crystal potential, it is impossible to
get an exact solution for Gep. The first successful attempt to
calculate Gep is Kahana’s ladder approximation6 which is
based on the integral equation

Gep�x,x�;y,y�� = Ge�x,y�Gp�x�,y�� +
i

�
� dzdz�Ge�x,z�

�Gp�x�,z��Vep�z,z��Gep�z,z�;y,y�� . �2�

Ge and Gp are the single-particle Green’s functions for an
electron and a positron, respectively, and Vep describes the
effective interaction potential.

In case of a homogeneous electron gas, the numerical
evaluation of Eqs. �1� and �2� �see, e.g., Ref. 7�, leads to
enhancement curves showing the typical Kahana shape, i.e.,
a monotonic increase of the enhancement with increasing
momentum p. However, the original formulation of the Ka-
hana theory has several deficiencies, especially its non-
selfconsistency with respect to the effective e-p interaction
potential Vep which is simply described by the static random-
phase approximation �RPA� of the screened Coulomb poten-
tial. Therefore, the development of a self-consistent version
of the Kahana theory by Rubaszek and Stachowiak8 was a
great step forward.

The situation becomes much more complicated if the e-p
pairs annihilate in an inhomogeneous electron gas as it ex-
ists, e.g., within a metallic crystal. In this case, one has to
face the problem that both the electrons and positrons are
submitted to an external lattice-periodic crystal potential. As
a consequence, the ladder expansion �2� of the two-particle
Green’s function Gep has to be based on electron and posi-
tron one-particle Green’s functions with respect to the elec-
tron and positron Bloch states �k,j and 	k,j with the energies
Ek,j and Ek,j

+ , respectively,9

Ge�xtx,yty� =
1

2

�

−�

+�

d� e−i��tx−ty��
k,j

�k,j�x��k,j
* �y�

�� nk,j

� − Ek,j/ � − i

+

1 − nk,j

� − Ek,j/ � + i

� ,

�3�

Gp�xtx,yty� =
1

2

�

−�

+�

d� e−i��tx−ty��
k,j

	k,j�x�	k,j
* �y�

�� �kj,01

� − E0,1
+ / � − i


+
1 − �kj,01

� − Ek,j
+ / � + i


� .

�4�

nk,j is the occupation number �0 or 1� of the electron Bloch
state �k , j�, and Kronecker’s � in Eq. �5� indicates that there

is only one occupied positron state in the system.
Obviously, the first term of Eq. �2� means an approxima-

tion where the two annihilating fermions are considered as
independent particles, i.e., their mutual Coulombic interac-
tion is completely neglected. Consequently, by inserting it
into Eq. �1�, one gets the momentum density in the indepen-
dent particle model �IPM� which reads

�IPM�p� = − �
�

d3x d3y e−ip·�x−y�Ge�xt,yt+�Gp�xt,yt+� .

�5�

An insertion of Eqs. �3� and �4� into Eq. �5� leads to the
well-known formula

�IPM�p� = �
j

nk,j��
�

d3r e−ip·r�k,j�r�	+�r��2, �6�

where 	+�r� means the quantum-mechanical ground state
	0,1�r� of the positron. The vectors k and p are connected via
the relation k=p−G where G denotes a reciprocal-lattice
vector such that k lies within the first Brillouin zone �BZ�.

A more general expression for the e-p momentum density
can be written as

��p� = �
j

nk,j	�
�

d3r e−ip·r�k,j
ep �r,r�	2

. �7�

For the present paper, the following representations for the e-
p pair wave function �ep are used:

�k,j
ep �r,r� 
 �k,j�r�

means the electron momentum density �EMD�, and

�k,j
ep �r,r� 
 �k,j�r�	+�r�

leads directly to the IPM. A frequently used approach to take
into account e-p correlations is to combine �ep for IPM with
a local correlation function10 g�r ;k , j� as

�k,j
ep �r,r� 
 �g�r;k, j��k,j�r�	+�r� . �8�

Many proposals for the function g�r ;k , j� are based on the
local density approximation �LDA� where

g�r;k, j� = �hom�rs�r�;�k,j
 .

Here, �hom means e-p enhancement factors for the homoge-
neous electron gas, and rs�r� is a local density parameter. For
the present calculations, we used �hom according to Ref. 8.

Following Ref. 11, the state- and energy-dependent argu-
ment �k,j in function g is described by12–15

�k,j =�Ek,j − E0

EF − E0
�9�

where E0 and EF mean the bottom energy of the electron
conduction bands and the Fermi energy, respectively. In the
following, this theory is named LDA�E�.

Various enhancement theories of other authors are also of
the LDA-type but neglect the explicit energy dependence of
g, i.e., g�r�=�hom�rs�r�
. We use the formula of Boroński and
Nieminen16
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g�r� = 1 + 1.23rs + 0.8295rs
3/2 − 1.26rs

2 + 0.3286rs
5/2 + rs

3/6,

�10�

and the corresponding momentum density profiles are there-
fore denoted BN.

In 1996, one of us �H. S., see Ref. 17� published the

so-called Bloch-modified ladder (BML) theory, an approach
which is based on earlier papers of Carbotte,18 Fujiwara,19

and Sormann and Puff.20 Such a calculation of a Bloch-
modified version of Kahana’s ladder theory, based on Eqs.
�1�–�4�, leads to the following, rather complicated expression
for the e-p momentum density:

�BML�k + G� = �
n

��EF − Ekn���
K

akn�K�b01�G − K� +
1

�
�

i
�
k�

��Ek�i − EF��
j

�Ekn − Ek�i + E01
+ − Eqj

+ �−1�i,j;G
BML�k��

��
G1

�
G2

VG1,G2

ep �q���
K2

akn�K2�ak�i�K2 − G1 + L����
K3

b01�K3�bqj�K3 + G2���2

, �11�

including the Bloch-modified Bethe-Goldstone amplitude �BML which reads

�i,j;G
BML�k�� = �

K1

ak�i�K1�bqj�G − K1 + L� +
1

�
�

s
�
k�

��Ek�s − EF��
t

�Ekn − Ek�s + E01
+ − Eq�t

+ �−1�s,t;G
BML�k�� �

G�,G�

VG�,G�
ep �q��

���
K2

ak�i�K2�ak�s�K2 − G� + L�����
K3

bqj�K3�bq�t�K3 + G� − L + L� − L��� . �12�

The akn�K� and Ekn mean the Fourier coefficients of the
occupied electron states and the corresponding one-particle
energies, whereas the only occupied positron state is repre-
sented by b01�K� and E01

+ . All other Fourier coefficients and
energies belong to unoccupied particle states. In the BML
theory, the influence of the lattice potential on the e-p anni-
hilation process is taken into account by calculating both
interband and intraband transitions of the annihilating Bloch
particles. Matrix elements of such transitions appear explic-
itly in the BML equations �11� and �12�, but also implicitly in
the matrix of the effective e-p potential. For all details of the
BML theory including all its physical, mathematical, and nu-
merical aspects, we refer to Ref. 17.

More recent theoretical enhancement theories are the ap-
proach by Alatalo et al. and Barbiellini et al.21 and the so-
called weighted density approximation �WDA� by Rubaszek
et al.22 The former is based on a state-dependent correlation
factor g�k , j� �independent of r� which is inserted into the
IPM equation �6�. In what concerns the momentum depen-
dence of �, this approach leads to results similar to BN. The
WDA uses both non local and energy-dependent e-p corre-
lation functions, resulting a momentum dependence of the
enhancement which is similar to LDA�E� for simple metals.
For transition metals, the enhancement is somewhat reduced
with respect to LDA�E� but still very high compared to
BML.

Although the various approaches mentioned in this sec-
tion differ in many aspects, they have one common feature:
none of them �including BML� describes any dynamical cor-
relation between the interacting particles, but only a static e-
p correlation in the form of an enhancement factor. This
factor is given by the function g in Eq. �8� or, in case of
BML, by the solution of the Bethe-Goldstone equation �12�.

Recently, an important step forward has been made by a
paper of Tang et al.23 where the e-p momentum-density dis-
tribution is based on a formula of the BN type �given by Eqs.
�7� and �8�, and an enhancement function g�r� similar to Eq.
�10�
, but with the difference that the occupation numbers
nk,j have been renormalized by a self-energy correction, cal-
culated by the GW method. As the authors of Ref. 23 dem-
onstrated for Si, this inclusion of dynamical e-e correlations
into the theory leads to a significant reduction of the discrep-
ancies between calculated and measured 2D-ACAR distribu-
tions. These findings are quite valuable for us, because they
confirm the general conclusions of our present work as
pointed out in Sec. IV.

III. APPLIED TECHNIQUES

Theoretical results were compared with 3D e-p momen-
tum densities ��p� reconstructed from experimental 2D-
ACAR spectra which represent line projections of ��p� in the
extended �p� space:

J�py,pz� = �
−�

�

dpx��p� . �13�

For copper, experimental densities with an overall resolu-
tion of 0.11 a .u. were taken from Ref. 24 where two recon-
struction algorithms were used: both the filtered back projec-
tion technique �developed for medical tomography25� and the
direct Fourier transform applied to the 2D-ACAR data.

For yttrium, five projections were measured for directions
px changing by intervals of 7.5° between the directions �M
and �K.26 The spectra were measured with an overall reso-
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lution of about 0.15 a .u. and then deconvoluted by a maxi-
mum entropy algorithm.27 These data were interpreted from
the point of view of Fermi surface studies5,26 as well as e-e
many-body effects.5 Here we present them to test various
theoretical approaches for the e-p enhancement.

For Mg and Cd, only two spectra with an experimental
resolution of about 0.1 a .u. were measured for directions of
integration along �M and �K.28 However, various tests—one
of them is presented in the next section—showed that, in hcp
metals, densities can be reconstructed with reasonable accu-
racy even on a basis of only two line projections.

In the case of Mg, Cd, and Y, Cormack’s method29 has
been applied. As in all tomography algorithms, the recon-
struction of a three-dimensional �3D� density is reduced to
sets of reconstructions of 2D densities, performed indepen-
dently on parallel planes pz=const which are—for hcp
metals—perpendicular to the sixfold rotation axis. In such a
case, lattice harmonics reduce to a cosine series and on each
of the planes pz=const, one can derive independent 2D quan-
tities, described in the polar coordinate system

��p� � ��p,�� = �
m=0

�

�m�p�cos�m�� , �14�

J�py,pz = const� � J�p,	� = �
m=0

�

Jm�p�cos�m	� , �15�

with m=0,6 ,12,18, . . .. If Jm�p� is expanded into a series of
Chebyshev polynomials of the second kind �Ul�p�
, Eq. �13�
can be solved analytically and

�m�p� = �
k

�

�m + 2k + 1�am
k Rm

k �p� , �16�

where Rm
k �p� are Zernike polynomials.

This technique possesses the advantages that the Fourier
transforms involved in the standard approaches are circum-
vented and that the experimental statistical noise is effec-
tively smoothed due to the expansion of experimental data
into orthogonal polynomials �Eq. �15�
 which has the prop-
erties of a mean-squares approximation. This is illustrated in
Fig. 1 where we show how the anisotropic part of densities
in Mg �here �6�p�=0.5���K−��M�
, reconstructed from two

2D-ACAR spectra, depends on the number of orthogonal
polynomials �k in Eq. �16�
.

To estimate quantitative effects, we took into account re-
sults of Ref. 30 where the influence of the statistical noise on
densities reconstructed by Cormack’s method29 was studied.
According to these results when the total statistics for n pro-
jections corresponds to 1 100 000 counts at peak, for recon-
structed densities the noise in units of percent of �0�p=0� is
as follows: 3.5% for p=0 and 0.4% for momenta about
p= pF in the case of using 60 polynomials, and 6% for p=0
and 1.4% for momenta about p= pF in the case of 90 poly-
nomials.

The spectra of Mg were measured with a statistics of
about 70 000 counts at peak. Taking into account that they
were measured independently within the four quarters
�px , py�, the total experimental statistical uncertainty should
be about twice lower than that one reported in Ref. 30; how-
ever, the statistical noise observed in Fig. 1 in the case of 90
polynomials is much lower. This is connected with the fact
that in studies performed in Ref. 30 �and other papers de-
voted to this topic�, the instrumental resolution is not taken
into account. Because the statistical noise has an oscillatory
behavior, there is no doubt that this noise will be essentially
reduced by the resolution function. In addition, since we
used results for 60 orthogonal polynomials for the interpre-
tation of experimental data and studied densities around and
above the Fermi momentum, we can assume that—for our
investigation—the influence of the experimental noise can be
neglected, particularly as we estimate only qualitative and
not quantitative effects.

All theoretical results presented in the next section are
based on electron and positron wave functions obtained by
ab initio calculations using the WIEN2k implementation of the
full potential linearized augmented plane waves �FLAPW�
method31 within the LDA and including scalar-relativistic ef-
fects. The positron wave functions have been calculated by
using the negative Hartree part of the selfconsistent elec-
tronic crystal potential, e-p corrections to the positron crystal
potential have been neglected. Some parameters of our cal-
culation can be found in Table I.

IV. RESULTS AND DISCUSSION

In Fig. 2, we present electron and e-p momentum profiles
for the different theoretical approaches described in Sec. II
for Mg, Cu, Y, and Cd. The profiles for fcc copper are given
along the �L direction, and those for the three hcp metals
have the direction �M. In order to facilitate a comparison
between the metals, the momenta p are given in units of the
corresponding Fermi momenta pF. Additionally, as we focus
our attention on the momentum dependence of the densities,
all results shown in this figure are normalized to 1.0 at the
center of the BZ.

The electron momentum densities are displayed in the left
diagram of the upper row of Fig. 2. Mg, the most “jellium-
like” metal studied in this work, has two 3s electrons which
build up an almost spherical Fermi surface �FS�, and a mod-
erate core contribution coming from the strongly localized
�1s22s22p6
 electrons. Therefore, the EMD shows a marked

FIG. 1. Anisotropic part of momentum densities in Mg, recon-
structed from two 2D-ACAR spectra as a function of the number of
orthogonal polynomials.
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Fermi discontinuity at p / pF and a weak momentum depen-
dence before and after this Fermi step. The EMD profile of
cadmium has a shape similar to that of magnesium but the
completely filled 4d bands lead to a relatively larger contri-
bution to the EMD in the high-momentum region. Compared
to Mg and Cd, the densities for copper along �L are essen-
tially different. This is caused by the two facts that �i�, in this
direction, the FS sticks to the boundary of the BZ, and �ii�
the electrons in the 3d bands strongly contribute to the EMD.
The contribution of these completely filled bands is much
greater than in the case of Cd, and the reason for that is clear:
the 3d bands of Cu lie significantly closer to the Fermi en-
ergy than the 4d bands of Cd and, consequently, the s-type
valence electrons in the copper metal are much stronger hy-

bridized by the d electrons than in cadmium. However, the
strongest hybridization effects caused by d electrons appear
for yttrium. Unlike Cd and Cu, Y is a “real” transition metal
with the electronic structure �Kr
4d15s2, including d elec-
trons which intensively influence the 5s valence electrons. It
is this hybridization effect which leads—compared to the
other metals under investigation—to a significant negative
slope of the EMD for momenta below pF. Due to the fact
that, in Y, there is only one electron in the 4d band �in con-
trast to the 10 d electrons in Cd and Cu�, the genuine con-
tribution of the 4d band in Y to the EMD is rather moderate.
The greatest part of the high-momentum component is due to
the �relatively weakly localized� 4s and 4p core bands.

TABLE I. Parameters of the metals investigated. a is the lattice constant, c /a means the parameter of the
hcp structure, and pF is the Fermi momentum for the noted direction in momentum space.

Metal Z Electron structure a �a.u.� c /a pF �a.u.�

Mg 12 �He
2s22p63s2 hcp 6.0264 1.623 �M 0.7346

Cu 29 �Ne
3s23p63d104s1 fcc 6.8308 �L 0.7966a

Y 39 �Ar
3d104s24p64d15s2 hcp 6.8926 1.5711 �M 0.6694

Cd 48 �Ar
3d104s24p64d105s2 hcp 5.6100 1.8615 �M 0.7675b

aFor Cu along �L, the distance between � and L is taken as pF.
bFor Cd along �M, pF is defined by the point where the second occupied s-type valence band gets closest to
the Fermi energy.

FIG. 2. Momentum density in different metals for various theories �EMD, IPM, LDA�E�, and BML
 and for densities reconstructed from
2D-ACAR experimental spectra. The meaning of the curves is as follows: �empty circles� Mg along �M, �full circles� Cd along �M, �solid
line� Cu along �L, �triangles� Y along �M. The momenta p are given in units of the corresponding Fermi momenta pF �see Table I�.
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The inclusion of the positron into the theoretical ap-
proaches causes the well-known effect that, due to the less
probability for positron annihilation with energetically deep-
lying �core� electrons compared to annihilations with valence
electrons, the core contribution to the e-p momentum density
is strongly reduced. This is clearly to be seen in the IPM
diagram of Fig. 2 and shows that the d electrons in Cd, Cu,
and Y are less strongly localized as typical core states. This
observation is especially remarkable for Cd because it indi-
cates that the 4d bands of this metal lie energetically closely
above the bottom of the conduction band minimum.

Now we are going to discuss the first theory which ap-
proximately includes e-p correlation �enhancement� effects,
namely, the BN approach16 which is briefly described in Sec.
II. This state-independent LDA theory neglects any explicit
momentum dependence of the e-p correlation function; it is
successful in describing an overall enhancement of the anni-
hilation rate but fails to give proper information about
enhancement-relevant changes of the shape of the e-p mo-
mentum density distribution. Therefore, it is forseeable that
the normalized BN momentum densities will not signifi-
cantly differ from the IPM results. This is really the case, and
for this reason, we abandon to show an extra diagram for the
BN results.

The counterpart of the BN approach is the LDA�E�
theory10–15 which uses an e-p correlation function including
Kahana-like enhancement factors which are strongly mo-
mentum or �via Eq. �9�
 energy and state dependent. The
corresponding e-p momentum densities are presented in the
right diagram of the upper row of Fig. 2. Whereas for
p� pF, these curves are similar to the corresponding IPM or
BN results, enhancement effects appear for momenta in the
region 0� p� pF: for all metals investigated, the momentum
distributions show a typical Kahana-like behavior, i.e., a
monotonic increase of the enhancement with increasing p,
superposed by a more or less strong momentum dependence
of the IPM density. However, even for Y �the metal with the
strongest s-d hybridization�, one observes a significant
change of the character between the corresponding BN and
LDA�E� curves.

The next panel of Fig. 2 shows results for the BML ap-
proach where, contrary to other theories, the e-p correlations
are introduced ab initio via the lattice-periodic crystal poten-
tial. In this case, we observe a marked Kahana-like momen-
tum dependence of the enhancement for Mg and Cu, a sig-
nificantly weaker effect for Cd, and—for Y—BML curves
which do not show any increase of the enhancement with
increasing momentum.

In order to compare our theoretical results with experi-
mental data, in the right diagram of the lower row of Fig. 2,
e-p momentum densities are presented which have been
gained by reconstruction methods applied to experimental
2D-ACAR spectra �for details and references, see Sec. III�. It
can be clearly seen that only the BML theory is able to
describe, at least qualitatively, the experimental densities for
all metals investigated. For a more realistic comparison of
experimental and theoretical BML results, it is necessary to
take into account that experimental spectra are smeared due
to the finite resolution of the spectrometer and also by an
additional temperature-induced effect caused by the positron

wave function. Therefore, we convoluted our BML momen-
tum distribution curves by a Gaussian-shaped resolution
function with a full width at half maximum �FWHM� of
0.2 a .u. This value is considerably larger than those reported
in Refs. 24, 26, and 28 because such an effective FWHM
should also take �at least partly� into account an additional
smearing effect due to dynamic e-e correlations which are
not included into the BML theory. So, taking this into ac-
count as well as various approximations included into the
BML approach, the agreement between this theory and ex-
periment is impressive.

At this point, we would like to emphazise the following.
�i� When we speak of an “impressive agreement,” we mean
that BML is able to describe—at least qualitatively—the
character of the momentum dependence of ��p� for all met-
als studied in our work. This is remarkable if we take into
account how different this character is—especially in the
low-momentum region, where one observes a significant Ka-
hana behavior �Mg, Cu�, a rather flat momentum distribution
�Cd�, and even a marked decrease of � with increasing mo-
menta �Y�. In our opinion, this great flexibility of the BML
approach is due to the fact that the Bloch character of the
annihilating particles is included into this theory from the
very beginning, starting from the Bloch-modified Bethe-
Goldstone equation �12�. As an example, one learns from
Fig. 2 that a general feature of the BN approach is its very
weak momentum dependence of ��p� for �p � � pF. Therefore,
BN is certainly not a good theory for metals like Mg or Cu,
but works acceptably well for, e.g., Y or Si. In such cases, a
refinement of the theory by a renormalization of the electron
occupation numbers in Eq. �7� by using a frequency-
dependent self-energy correction, may significantly improve
the agreement between theoretical and experimental e-p
momentum-density distributions.23 On the other hand, such a
renormalization of the nk,j will hardly be able to enforce a
good agreement between experiment and theory, even in the
case of strong e-e correlations, if the theoretical description
of the enhancement factor is insufficient. For this reason,
normalizations of nk,j as reported in Ref. 23 are not dis-
cussed in the present paper. �ii� The performance of the vari-
ous theoretical methods in comparison to experiment and,
consequently, the conclusions we have drawn from Fig. 2 are
widely independent on the directions of the momentum vec-
tors p of the ��p� profiles. We checked this by investigating
reconstructed and calculated momentum distributions along
different directions in p space: �L and �X for Cu, �M and
�K for Mg and Cd, and 12 different directions for Y.

In a recent paper by one of us,32 the analysis of the ex-
perimental e-p momentum density in Mg �the same data as
displayed in Fig. 2� led to the conclusion that there exist
strong e-e correlations in this metal. However, this conclu-
sion was based on some model considerations �for details see
Ref. 32� without the knowledge of detailed theoretical calcu-
lations. For the present paper, having performed such calcu-
lations, we are able to check what theory describes precisely
the momentum dependence of ��p� as well as if there are
really e-e correlations. To study the momentum dependence,
it is the best way to normalize all densities to the same value
at p=0.

Corresponding results for Mg are displayed in Fig. 3
where the vertical line at p / pF=0.8 means that approxi-
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mately up to this value, neither smearing effects nor e-e cor-
relations influence the momentum-dependence. Therefore, in
this region, a reliable comparison between theory and experi-
ment is possible. It has to be noted here that, into this figure,
we included two variations of the theoretical model LDA�E�:
LDA1�E� means exactly the approach described in Sec. II,
and LDA2�E� is also a local-density approach but with a RPA
instead of the self-consistent e-p interaction potential of Ref.
8. The results of Fig. 3 prove on a quantitative scale what has
already been shown qualitatively in Fig. 2, namely that, for a
detailed analysis, only the BML theory should be used.

Whereas the normalization of the momentum densities as
performed until now works quite well if the momentum de-
pendence of ��p� is investigated, in other cases, it is more
favorable to normalize all densities to the same integral value
of ��p� over the whole p space, e.g., to the same total e-p
annihilation rate. Experimental and BML densities normal-
ized to the measured e-p annihilation rate33 of 4.44 ns−1 in
Mg are displayed in Fig. 4. The most interesting feature
shown in this diagram is that the theoretical BML densities
are higher than the experimental ones in the low-momentum

region, and smaller for high momenta. In the literature about
Compton scattering experiments, such an effect is frequently
dedicated to many-particle e-e correlations.34–38 The same
procedure applied to LDA2�E� yields a similar effect but with
somewhat smaller differences between theory and experi-
ment for momenta p� pF. Taking this into account, together
with the high smearing of the experimental densities around
the FS �with a FWHM twice as high as the experimental
one�, we can conclude that there are significant e-e correla-
tions. Such pronounced influence of e-e correlations in Mg—
much more intensive than described by Lam-Platzman
corrections39—was actually observed in Compton scattering
studies.40

Of course, such a way of dealing with experimental data
is valid only if the FS is not too anisotropic, because only in
that case, when an agreement between theory and experiment
�concerning details of the FS� can be expected, one can try to
estimate other effects �as, e.g., e-e correlations� that manifest
themselves around the FS. This is the reason that we per-
formed such an analysis as presented in Figs. 3 and 4 only
for Mg.

At this point of the discussion, we are confronted with the
following problem: there is also general agreement in the
literature that, in Compton scattering experiments,34–38 e-e
correlation effects become visible in anisotropy diagrams by
the fact that the amplitudes of the experimental curve are
significantly smaller than those of the convoluted theoretical
one �such effect was also observed41 for 2D-ACAR spectra
in LaB6�. Actually, we observed such a behavior for Cd
whose anisotropy diagram for densities on the �MK plane is
presented in Fig. 5. For this metal, the anisotropy between
the experimental momentum densities is extraordinarily
small, in strong contrast to the theoretical �BML� densities.
The difference of the latter shows a sharp and intense aniso-
tropy peak of about 40% within a small momentum region
around pF. Such a narrow peak is, of course, very strongly
reduced by a convolution with the experimental resolution
curve with FWHM=0.1 a .u. �see Fig. 5�. The question is
now if the necessity of an additional smearing �e.g.,
FWHM=0.2 or higher� of the theoretical curve can be inter-
preted as an e-e correlation effect? In our opinion, one
should be careful with such a conclusion because strong dis-
crepancies of the anisotropy around pF between experimental

FIG. 3. The isotropic average �0 of the momentum density in
Mg as a function of p in units of the Fermi momentum pF over the
basal �MK plane. The meaning of the different curves is explained
in the figure, and their physical interpretation is given in the text.

FIG. 4. The isotropic average �0 of the momentum density in
Mg as a function of p in units of the Fermi momentum pF over the
basal �MK plane. Both the experimental density and the theoretical
BML densities are normalized with respect to the experimental total
annihilation rate of 4.44 ns−1 �Ref. 33�. The meaning of the differ-
ent curves is explained in the figure.

FIG. 5. Differences between momentum densities along �K and
�M in Cd, in units of the corresponding isotropic averages of the
densities. The meaning of the different curves is explained in the
figure.
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and theoretical densities can be caused by relatively small
differences between the “true” FS and that obtained by a
bandstructure calculation.

In the case of Mg whose anisotropy part of densities is
shown in Fig. 6, the situation is quite inverted compared to
Cd: both dominant peaks that appear in the experimental
anisotropy curve �the peak at pF and, especially, the umklapp
peak� are significantly more pronounced than for the BML
curves. To understand this, we firstly investigated if the small
theoretical umklapp peak in this figure is connected with the
tendency of the BML theory to yield smaller enhancement
factors for momenta in the umklapp regions �high-
momentum components �HMC�
 than for equivalent mo-
menta within the central BZ �deenhancement effect�. In con-
trast to BML, theoretical approaches like LDA�E� predict a
so-called overenhancement of the HMC �concerning Mg, see
Ref. 42� which, of course, leads to a more marked theoretical
umklapp peak and, consequently, to a minor disagreement
compared to the experiment. We say “minor disagreement”
because, as our tests obtained, the amplitude of ���K−��M�
according to the LDA�E� approach is still much smaller than
the experimental one. Therefore, we can conclude that the
aspect of an overenhancement or deenhancement of the
HMC of e-p momentum densities in different enhancement
theories offers no solution for our actual problem.

Now to another question in connection to comparisons of
theoretical and experimental momentum densities in Mg and
Cd. Since they are—in the case of the present work—only
based on two projections, one could suspect that the obtained
accuracy is not good enough to allow quantitative compari-
sons. To study this, we performed the following test: using
Eq. �14�, for the hcp structure, the density along �K is de-
scribed by

��K = �0 + �6 + �12 + �18 + �24 + �30 + ¯ ,

the density along �M reads

��M = �0 − �6 + �12 − �18 + �24 − �30 + ¯ ,

and their difference given by

��K − ��M = 2��6 + �18 + �30 + ¯ �

corresponds to the description of densities by the lattice har-
monics P�

m�cos ��cos�m	� with ��6 and m=6 in the case
of function �6, and with ��18 and m=18 for �18. Of course,
if only two projections have been measured, we are only able
to determine two density components, i.e., �0 and �6. Now
there are two questions: �i� is this difference ��K−��M
�shown in Figs. 5 and 6� well determined by the function �6,
provided that the contribution of �18 is small enough?; �ii� is
it possible to determine properly �6 from J6 estimated from
Eq. �15� for only two projections? Our test was performed
for Y deconvoluted data since for Y �having also hcp struc-
ture� instead of two, five projections were measured.

Measuring three projections �a third one for a direction
lying between �K and �M�, J6�p� and also �6 would be the
same as for two projections �on account of the symmetry
property�. However, even for five projections, the deviations
of �6�5� from �6�2� are small in the area around pF and
almost negligible for higher momenta—see Fig. 7. More-
over, the influence of the function �18 on the anisotropic part
of the densities, ��K−��M, is also small. Such a behavior is
not incidental what is illustrated by results presented in Fig.
8 where we show ��K−��M on six parallel planes perpen-
dicular to the hexagonal c axis. Here we would like to point
out that on each of these planes reconstruction was per-
formed independently for other data sets, and that Y densities
essentially change from plane to plane—see results shown in
Ref. 5. In the upper part of Fig. 8, we present reconstructions
from five projections �d� and from two projections �c�, drawn
as one data set, i.e., the same colors denote the same values
of densities. The results are almost identical. Of course, such
a similarity takes place only for this anisotropic function
��K−��M. Densities along particular directions as well as
function �0 are quite different depending on two or five pro-
jections. The lower part of Fig. 8 �drawn as another data set�
shows a comparison between nonconvoluted IPM theory �a�
and densities reconstructed from five �convoluted� projec-

FIG. 6. Differences between momentum densities along �K and
�M in Mg, in units of the corresponding isotropic averages of the
densities. The meaning of the different curves is explained in the
figure.

FIG. 7. Functions �n�p�, defined in Eq. �14�, in percent of �0�0�,
in Y as a function of p / pF where pF=0.736 a .u. is the free-electron
Fermi momentum. The meaning of the different curves is given in
the figure, where the numbers in parentheses mean the numbers of
projections used for Cormack’s reconstruction.
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tions �b�. It is clear that anisotropy of densities is well repro-
duced by the experiment as well as absolute values for the
theory are about two times higher than for the experiment.

Finally, we come back to the central question why e-e
correlations are so difficult to observe in positron annihila-
tion experiments. Both for the measurement of Compton pro-
files and of ACAR spectra, one does not measure absolute
values of densities ��p�. However, in the case of Compton
scattering experiments, a physically relevant normalization
can be easily performed, simply by knowing that the total
integral of the EMD must equal the number of electrons per
unit cell. For ACAR spectra, this normalization becomes
somewhat ambiguous, because the integral of the e-p mo-
mentum density over the whole p space is not given by a
simple number of particles but by the inverse of the bulk
lifetime of a positron in the material. For that reason, almost
all interpretations of experimental ACAR data are performed
only from the point of view of FS studies where either
ACAR spectra or reconstructed densities are folded into the
first BZ using the Lock-Crisp-West theorem.43 If the influ-
ence of the positron wave function and many-body effects
are ignored, such a conversion of ��p� to ��k� depends only
on the electron occupation numbers, and ��k�=� j� j�k�
=� jnj�k�=n�k�. Here n�k� denotes the number of occupied
bands j at the point k. In the case of e-p densities, ��k�
=� jnj�k�f j�k� where the function f j�k� depends on the elec-
tron state �k , j�, even if correlation effects are neglected.
Nevertheless, as follows from theoretical calculations per-
formed for IPM,44 values of f j�k� are usually high enough to
reproduce an observable jump of ��k� if this quantity passes
from one to another band. However, as it has been shown
lately for UGa3,45 due to the presence of the positron, it
could be difficult to estimate the FS from experimental 3D
e-p densities ��k� alone, i.e., without corresponding theoret-
ical ��k�. Therefore, the knowledge of many-body effects is
of a vital importance for the interpretation of positron anni-
hilation data.

For studying such effects, one should perform the analysis
in the extended p space. In order to estimate which theory is
most successful to describe the momentum dependence of

e-p densities, the best way is to normalize the densities to the
same value at p=0. Another way of treating experimental
and theoretical e-p densities on equal footing is a normaliza-
tion of all ��p� with respect to the total annihilation rate
obtained by positron lifetime experiments. Such a treatment
is also successfully used in the present paper for a qualitative
analysis of e-p correlation effects in Mg. However, quantita-
tive statements would be only possible based on theoretical
densities which are reliable with respect to both the momen-
tum dependence and the total amount of the e-p annihilation
probability, and this demand is difficult to fulfill by theoret-
ical approaches. So, as we demonstrate in this paper, the
BML theory is well qualified for calculations of the momen-
tum dependence of the e-p annihilation probability for dif-
ferent metals, even if other theories might be closer to the
experiment concerns the total annihilation rate.

We shall illustrate this by the example magnesium: in
Fig. 4, both the experimental and the BML density are nor-
malized to the measured total annihilation rate33 of 4.44 ns−1.
The BML theory almost perfectly describes the momentum
dependence of the e-p density �see Fig. 3� but obtains a total
rate of only 3.86 ns−1. On the other hand, the LDA�E� ap-
proach shows a rather poor agreement to the experimental
momentum dependence of ��p� and strongly overestimates
the total rate by yielding 5.21 ns−1. The best candidate for a
proper calculation of the total annihilation rate is the BN
theory �4.38 ns−1�, but this approach completely fails to de-
scribe the momentum dependence of the e-p density. All
these aspects make studies of many-body effects, especially
of e-e correlations, based on positron annihilation data so
difficult.

According to our experience, the best conditions investi-
gating e-e correlations are given in case of a simultaneous
analysis of both high-resolution Compton profiles �CP�
and 2D-ACAR spectra and their reconstructed densities,
as we performed it for yttrium.5 For this metal, we got
exactly the same differences between theoretical and
reconstructed �experimental� densities �EMD�p�−�CP�p� and
�IPM�p�−�ACAR�p�. Knowing that e-e correlations in the
Compton scattering experiment are responsible for the differ-
ence �EMD�p�−�CP�p�, we were able to estimate the strength
of these correlations. Therefore, taking into account that, in
Y, e-p correlations do not influence the momentum-
dependence of ��p�, we—indirectly—observed e-e correla-
tions in the positron annihilation experiment, too.

V. CONCLUSIONS

We showed that in the case of positron annihilation data,
we have both e-e and e-p correlations, where the e-e corre-
lation effect is very similar—if not the same—as observed in
Compton scattering experiments. As concerns e-p enhance-
ment, only the BML theory works well for both simple and
transition metals.

Our explanation for this behavior is as follows: in the
Kahana formalism,6 the e-p wave function is given by

�p
ep�re,rp� = eip·re + �

�p���pF

��p,p��eip�·reei�p−p��·rp,

where ��p ,p�� describes a perturbation of the free-electron
state p, caused by the e-p interaction. Due to the Pauli prin-

FIG. 8. ��K−��M in Y for momenta up to 1.37 a.u. on six planes
perpendicular to the hexagonal c axis with a constant distance of
�1/2� ��A�. �a� Nonconvoluted IPM theory, �b� and �d� densities
reconstructed from five projections, �c� densities reconstructed from
two projections.
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ciple, in the case of an electron gas where all states inside the
FS are fully occupied, perturbed states can appear only for
�p� � � pF. Consequently, because e-p scattering is most prob-
able for electron states close to the FS, the resulting Kahana
enhancement will monotonically increase with increasing
momentum, having its maximal value at the FS. However,
the situation is different for real solids: due to the lattice
potential, for each occupied band, there always exists a lead-
ing term of the momentum density �where the occupation
number is lower than 1� and umklapp components in the
high-momentum region. Therefore, one could expect the fol-
lowing: the higher the lattice effects are, the weaker is the
Kahana-like momentum dependence of the enhancement.

This fact is an inherent feature of the BML theory where,
from the very beginning, the matrix of the e-p interaction
potential is based on electron and positron Bloch states.
Therefore, in this theory, the influence of the crystal lattice
on e-e and e-p scattering processes is more realistically de-
scribed than in other theoretical approaches, as we demon-
strated for Mg, Cu, Cd, and Y.
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