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We theoretically investigate the light absorption spectrum of two-dimensional �2D� Mott insulators. We
employ the numerical diagonalization method to calculate the light absorption spectrum with using the effec-
tive Hamiltonian for the extended Hubbard model, which is valid when the on-site Coulomb interaction energy
U is much larger than the nearest-neighbor transfer integral t and the nearest-neighbor Coulomb interaction
energy V. For V=0, the absorption spectrum consists of a broad band with a width of about 16t and a sharp
central peak, and the energy eigenstates contributing to the absorption spectrum do not have the antiferromag-
netic �AF� spin order, when U is sufficiently larger than t. These features result from the spin-charge interplay
inherent in the very strong correlation region where charge transfer term is dominant. With decreasing U / t, the
peak structure in absorption spectrum becomes unclear and some low energy eigenstates have the AF spin
order, as a result of the spin-spin interaction term. For large V / t, the dominant peak arises in the lower energy
region of the spectrum. A large number of holon-doublon bound states, which have nearly the same charge but
different spin structures, are responsible for this peak, in contrast to the conventional exciton state. This is also
in contrast to the charge bound states in one-dimensional �1D� Mott insulators, where a single energy eigen-
state dominates the optical transition moment as a result of the spin-charge separation. The essentially different
absorption spectra between the 1D and 2D Mott insulators originate from the difference in the coupling
between spin and charge degrees of freedom.
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I. INTRODUCTION

Strongly correlated low-dimensional electron systems
�SCLDES� exhibit various novel properties originating from
strong Coulomb interaction between electrons. At half-
filling, SCLDES are driven into Mott insulators by the strong
correlation effect.1,2 Since the optical gap originates from the
strong correlation effect in the Mott insulators, the optically
excited states are essentially different from those for conven-
tional band insulators. Therefore, the optical properties of
low-dimensional Mott insulators are expected to provide us
with important information on the exotic nature of SCLDES.

Since both the positive and negative charges are generated
simultaneously in the photoexcited states, it is important to
take into account the charge binding effect arising from the
attractive Coulomb interaction between both charges. Actu-
ally, the optical properties of conventional band insulators
have been explained successfully within the Wannier-Mott
exciton theory.3 Recently, the importance of the charge bind-
ing effect is claimed also in low-dimensional Mott
insulators.4–7 However, since the physical properties of pho-
togenerated charges in the Mott insulators are essentially dif-
ferent from those in the conventional band insulators as a
result of the strong correlation effect,2 the simple exciton
theory is not applicable to the Mott insulators. In particular,
it is important to recall that the charge motion in SCLDES is
correlated with the spin degrees of freedom of the whole
system, while an exciton in conventional band insulators is
basically understood as a two-body problem between an
electron and a hole. The interplay between the photogener-
ated charges and the spins will be a key to understand the
optical properties of Mott insulators.

The light absorption spectrum in the one-dimensional
�1D� Mott insulators has been investigated theoretically by

several authors with using the Hubbard and the extended
Hubbard models.8–18 It has been shown that a pair of positive
and negative spinless charges �a holon and a doublon� is
photogenerated as a result of spin-charge separation, and an
excitonlike bound state of the holon-doublon pair dominates
the transition moment from the ground state when the Cou-
lomb interaction between the nearest-neighbor sites is strong
enough.10–23

In the two-dimensional �2D� strongly correlated electron
systems, the spin and charge degrees of freedom are not fully
separated, and it is considered that the interplay between
these two degrees of freedom is the origin of various novel
properties. Therefore, it is expected that the interplay will
manifest itself in the light absorption spectrum in the 2D
Mott insulators. The light absorption spectrum of the 2D
Mott insulators has been investigated by several authors.24–31

However, the main targets of these investigations are Drude
and low energy structures of the optical conductivity in the
doped case, and not the optically excited states in the Mott
insulators. Furthermore, it has not been understood well how
the spin-charge interplay and the charge binding affect on the
light absorption spectrum.

We therefore focus our attention on the light absorption
spectrum mainly in the 2D Mott insulators. The purpose of
this paper is to clarify the unconventional properties of low-
dimensional Mott insulators from the viewpoint of optical
response. We adopt the effective Hamiltonian for the ex-
tended Hubbard model in the strong correlation case to ana-
lyze the charge binding effect on the spectrum, and calculate
the light absorption spectrum with using the numerical di-
agonalization method. In order to further elucidate the char-
acteristic feature inherent in the 2D Mott insulators, we also
calculate the charge and spin correlation functions for some
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energy eigenstates which are responsible for the major struc-
tures of light absorption spectrum. We also investigate the
light absorption spectrum in the 1D Mott insulators, and
compare the results with those in the 2D ones.

II. METHOD OF CALCULATIONS

To describe low-dimensional Mott insulators coupled with
the light field, we consider the Hamiltonian given by

H = He + He-p. �1�

As the electron Hamiltonian He, we adopt the extended Hub-
bard model given by

He = T̂ + Û + V̂ , �2�

T̂ = − t �
n,m,�

NN

cn,�
† cm,�, �3�

Û = U�
n

cn,↑
† cn,↑cn,↓

† cn,↓, �4�

V̂ =
V

2 �
n,m

NN

nnnm, �5�

where cn,� is the annihilation operator for an electron of spin
� at site n, t is the magnitude of the transfer integral between
nearest-neighbor sites, U is the on-site Coulomb interaction
energy, V is the Coulomb interaction energy between
nearest-neighbor sites, nn=��cn,�

† cn,�, and �NN indicates the
summation over nearest-neighbor sites. The electron-photon
interaction part He-p is given by

He-p = − A · Ĵ , �6�

Ĵ = it �
n,m,�

NN

�Qn − Qm�cm,�
† cn,�, �7�

where A is the vector potential of light field, Ĵ is the current
operator, Qn is the position vector of site n, and we adopt the
atomic units with c=e= � =1. Since the light wavelength is
much larger than the system sizes considered in this paper, A
is approximated to be independent of position.

We consider the strong correlation case U� t and U�V
in this paper. For the special case of t=V=0, the energy
eigenvalues simply take the values mU, where m is the num-
ber of doubly occupied sites, and a huge number of energy
eigenstates with different spin configurations are degenerate
at each energy level. For finite t and V satisfying the condi-
tion U� t and U�V, the degeneracy is lifted and each dis-
crete energy level becomes an energy band. Taking into ac-

count the effects of transfer term T̂ to the second order in
t /U, He can be approximated to the equation

He = �
m

Heff
�m�, �8�

where Heff
�m� is an effective Hamiltonian for the states in the

�m+1�th lowest energy band. The effective Hamiltonians are
given by32,33

Heff
�m� = mUPm + V̂Pm + PmT̂Pm − U−1PmT̂Pm+1T̂Pm

+ U−1PmT̂Pm−1T̂Pm, �9�

where Pm is the projection operator onto the Hilbert subspace
Sm for the states with m doubly occupied sites. The coeffi-
cient of the fourth and fifth terms are modified by introduc-

ing V̂. However, we take into account the terms up to the
second order in t /U and V /U, and neglect the V dependence
of them. The second term describes the Coulomb interaction
between nearest-neighbor sites. The third term describes the
transfer of electrons without changing the number of doubly
occupied and empty sites, namely, the transfer of electrons at
the doubly �singly� occupied sites to the nearest-neighbor
singly occupied �empty� sites. Therefore, this term describes
the transfer of photogenerated charges. The fourth term de-
scribes the AF Heisenberg spin-spin interaction between
nearest-neighbor sites with the coupling constant J=4t2 /U
and the virtual three-site transfer. The fifth term is inherent in
the photoexcited states, and describes several different trans-
fer processes of an empty and doubly occupied site pair at
the nearest neighbor. This effective Hamiltonian is an exten-
sion of the well-known t−J Hamiltonian to the multiphoton
excited states.

Here and hereafter we use t as the unit of energy, and 1/ t
as the unit of time. Then, there are three energy scales in

Heff
�m�. The charge transfer term PmT̂Pm and the nearest-

neighbor Coulomb interaction term V̂Pm are O�1� and O�V�,
respectively, and the other terms are O�U−1�.

The light absorption spectrum ���� from the ground state
��0� is given by

���� = −
1

�
Im���0�Ĵ† 1

� + E0 + i� − Heff
�1� Ĵ��0�� , �10�

where � is the angular frequency of the light, E0 is the en-
ergy eigenvalue of the ground state, � is an artificial broad-

ening factor, Ĵ is the component of Ĵ to the light polarization

direction. Here we use the fact that Ĵ ��0��S1, and therefore
only the states which belong to the subspace S1 contribute to
����. The equation �10� is numerically evaluated by the
Lanczos method.34 We need finite � to obtain converged ab-
sorption spectrum by the method. We use the smallest value
of � where the converged absorption spectra are obtained for
all the Coulomb parameters.

We also calculate the free induction decay �FID� intensity
after the excitation by an ultrashort laser pulse. It is given
by35

I�	� = ���0�Ĵ exp�− iHeff
�1�	�Ĵ��0��2, �11�

where 	 is time elapsed after the pulse.
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The light absorption spectrum ���� is given by the Fou-
rier transformation of the square root of I�	�. However, these
two physical quantities often provide us with complementary
information in the practical numerical calculations. We need
to use relatively large � to calculate ���� with using Eq.
�10�. As a results, we obtain smeared ���� across the fre-
quency range of �, and information about some fine struc-
tures is lost. We do not need to assume an artificial broaden-
ing or damping factor to calculate I�	� with using Eq. �11�.
Therefore, we can obtain fine structure information which is
lost in ���� by analyzing I�	�.

III. RESULTS AND DISCUSSION

In the following analysis, the half-filled case is consid-
ered. In the 2D case, a square lattice with the system size
N=26 is considered, and the periodic boundary condition is
used. In the 1D case, a chain with N=26 is considered, and
the periodic boundary condition is used. The light field is
assumed to be polarized in the direction of a side of the
square lattice in the 2D case, and in the direction of chain in
the 1D case.

Here we discuss the validity of Heff
�m� as the effective

Hamiltonian for the extended Hubbard model. For this pur-
pose, we compare ���� obtained with using the effective
Hamiltonian and the original extended Hubbard Hamiltonian
in the 2D case with N=16. For U−1
0.04, Heff

�m� well repro-
duces the results obtained in the extended Hubbard Hamil-
tonian all through the range V�10 and V�U /4. Note that
the ground state changes from the Mott insulator to the CDW
state as V is increased beyond a critical value around V
=U /4. Around U−1=0.1, the difference in ���� becomes
prominent. However, qualitatively the same results for ����
are obtained for V�U /4 at U−1=0.1. Therefore, we can sup-
pose that Heff

�m� is appropriate as the effective Hamiltonian for
the extended Hubbard model in the parameter range U−1


0.1,V
10, and V�U /4. We consider this parameter re-
gion in the following.

In the Lanczos method, a few lowest energy eigenstates
are obtained by considering the linear combinations of the
Krylov sequence of Hamiltonian. By considering the Krylov
sequence of �Heff

�1�−E�2 instead of Heff
�1�, we obtain a few en-

ergy eigenstates of Heff
�1� whose energy eigenvalues are closest

to a constant E. To investigate the physical properties of the
energy eigenstates which are responsible for the main struc-
tures in ����, we numerically calculate some energy eigen-
states by the extended Lanczos method, and analyze the
charge correlation function ��r� and the spin correlation
function �r� defined by the following equations:

��r� = ��p�dndm��p� , �12�

�r� = ��p�Sn · Sm��p� . �13�

Here ��p� is an energy eigenstate, dn=1−��cn,�
† cn,� and Sn

are the charge density and spin operators at the nth site,
respectively, r is the distance between the sites n and m, and
unit of distance is the lattice spacing. Furthermore, we define
the following spin correlation function in the 1D case:36

̃�r� = ��p��
l=0

2

P̃lS0 · Sr+lP̃l��p� . �14�

Here P̃l is the projection operator onto the subspace where
there are l doubly occupied or empty sites between the 0th
and r+ lth sites. If spin-charge separation is complete, ̃�r� is
the spin correlation function of the separated spin wave func-
tion.

There exist neither empty nor doubly occupied sites in the
ground state, and pairs of empty and doubly occupied sites
are generated by photoexcitation within the present strong
correlation model. It is not appropriate to describe these pho-
togenerated charges by holes and electrons, and they are
more properly described by holons and doublons.2,34 We
therefore use the terminology holons and doublons to de-
scribe the charges associated with the empty and doubly oc-
cupied sites in SCLDES. However, we do not claim by this
terminology that complete spin-charge separation holds.
Note that there is one pair of a holon and a doublon in the
energy eigenstates which contribute to absorption spectrum.

A. Hubbard model

We begin with the case that only the on-site Coulomb
interaction is considered �V=0� in this section. We show the
numerical results for ���� for the various values of U−1 in
Fig. 1.

We first consider the very strong correlation region U−1


0.01 in order to focus our attention to the essential prop-
erties inherent in the strongly correlated 2D Mott insulators.
As seen from Fig. 1, the following features are observed: �i�
The absorption spectrum is widely distributed in the range of
−8
�−U
8. �ii� There are sharp peaks near �−U=0, and
two broad peaks around �−U= ±2.7. �iii� As U−1 is in-
creased, the central peak blueshifts, and the width of the peak
increases. �iv� Except for the central peak structure, ���� is
nearly independent of U.

In order to clarify the above characteristic features in the
absorption spectrum for the 2D Mott insulators, it is instruc-
tive to compare Fig. 1 to the results for the transient coherent
optical response calculated for the same effective Hamil-
tonian. In our previous paper,35 a well-separated two-step
relaxation and a quantum beat have been observed in tran-

FIG. 1. �Color online� The absorption spectra ���� at V=0 for
the various values of U−1 in the 2D case. The artificial broadening
�=0.1 is used.
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sient four wave mixing �TFWM� and FID. The slower spin
relaxation follows the faster charge relaxation as a result of
the coupling between the spin and charge degrees of free-
dom, and we can clarify the interplay of charge and spin
degrees of freedom by analyzing these coherent optical tran-
sient phenomena. The charge relaxation time and the period
of the quantum beat are nearly independent of U, and they
are approximately equal to the inverses of the bandwidth of
���� and the energy difference between the two broad peaks
multiplied by 2�, respectively. Therefore, the ultrafast
charge relaxation and the quantum beat correspond to the
wide bandwidth and the broad peak structure in ����, re-
spectively. The width of the central peak shown in Fig. 1 is
very close to the artificial width � for U−1
0.005. Since we
here obtain smeared ���� with using Eq. �10�, this result just
shows that the width of the peak is less than �. This is con-
sistent with the spin relaxation time in the U−1 region.
Around U−1=0.01, the width of the central peak is estimated
to be approximately equal to the inverse of the spin relax-
ation time multiplied by 2�. Since we can find no other
sharp structure in ����, we can conclude that the slower spin
relaxation corresponds to the central peak.

To understand these characteristic features, we calculate
energy eigenstates which are responsible for these structures.
We show the charge and spin correlation functions ��r� and
�r� for several energy eigenstates at U−1=0.001 in Fig. 2.
As seen from this figure, ��r� and �r� are approximately
constant irrespective of the energy in the broad absorption
band, except for the energy eigenstates which are responsible
for the central peak. From the analysis of the TWFM and
FID, it has been shown that the spin relaxation is basically
exponential, and therefore, the relaxation is interpreted as the
irreversible phase relaxation to which almost infinite number
of energy eigenstates contribute.35 Therefore, the central

peak arises from the excitation to almost infinite number of
energy eigenstates. Actually, we obtain many energy eigen-
states in the spectral region of the central peak. The calcu-
lated energy eigenstates are classified into two categories.
Some have approximately constant ��r� and �r�, and the
other ones have the characteristic ��r� mentioned bellow. We
show ��r� and �r� for the latter case in Fig. 2. As seen from
this figure, ��r� is almost zero at the site pairs which belong
to the same bipartite sublattice, and �r� is approximately
constant.

These results can be understood as follows. For U−1


0.01, the charge transfer term P1T̂P1 is dominant in Heff
�1�

because only this term is O�1� and the other ones are O�U−1�.
We here consider the eigenstates of P1T̂P1 because the
eigenstates of Heff

�1� are approximated well by them. The term
can be rewritten as

P1T̂P1 = − �
d

�T̃d + T̃−d� , �15�

T̃d = �
n,�

P1cn�d�,�
† cn,�P1, �16�

where n�±d� is the nearest-neighbor site of the site n in the

directions of ±d, and d=x ,y. The operator T̃d transfers a
holon �doublon� at the site n to the site n�−d� �n�d��, and
simultaneously transfers a spin at the site n�−d� �n�d�� to the

site n. Therefore, T̃d is not a simple charge transfer term, and
not only the charge positions but also the background spins

are altered by operating T̃d.

We first consider the eigenstates of T̃d in the simple case

where there is a single holon or doublon. Since T̃d is unitary,
the eigenvalue equation can be written as

T̃d���q�� = exp�iqd����q�� , �17�

where qd is the component of q in the direction of d. As seen

from Eq. �15�, ���q�� is also an eigenstate of P1T̂P1 with an
eigenvalue

E�CTT��q� = − 2�
d

cos qd. �18�

As mentioned before, since only one spin is altered by the

transfer, the spin scattering induced by T̃d is a higher-order
process of O�1/N�. As a result, q can be written as

q = qi + �qi�s� , �19�

where qi are the discrete momentums which are compatible
with the periodic boundary condition. The deviations �qi�s�
are O�1/N�,37 and depend on the spin structure which is

labeled by the index s. Since T̃d is lattice translation operator
for a holon �doublon� in the −d �d� direction neglecting the
spin scattering of the O�1/N� process, −q �q� can be re-
garded as the quasimomentum of a holon �doublon�. Thus,
q�spin�=k+q �q�spin�=k−q� can be regarded as the quasimo-
mentum of the spin system, where k is the total momentum.

FIG. 2. �Color online� �a� The charge correlation function ��r�
and �b� the spin correlation function �r� for ��p� with the energy
eigenvalues Ep−U=0 �the central peak�, −2.65, and −5, at U−1

=0.001 and V=0 in the 2D case.
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From Eq. �17�, we can show that a spin and charge con-

figuration ��� and �	l=1
L T̃d�l�� ��� are superposed with the

equal weight in ���q��. Since the AF spin order is destroyed

by operating 	l=1
L T̃d�l� when L is large enough, ���q�� do not

have the AF spin order.
We next consider the photoexcited states, where there ex-

ist a holon and a doublon. Neglecting the collision between
the holon and the doublon, which is also the process of
O�1/N�, the eigenvalues are given by

E�CTT��q�H�,q�D�� 
 − 2�
d

�cos qd
�H� + cos qd

�D�� , �20�

where −q�H�and q�D� are the quasimomentums of the holon
and the doublon, respectively. The bandwidth given by Eq.
�20� is 16, and this value is consistent with that of ����
obtained in our numerical calculations. The total momentum
k can be written as

k = − q�H� + q�D� + q�spin�. �21�

As shown in Eq. �19�, the quasimomentums satisfy q�H�

=qi+O�1/N� and q�D�=q j +O�1/N�. Therefore, a large num-
ber of the energy eigenstates are nearly degenerate to the
value E�CTT��qi ,q j�, and the deviations from the value are
O�1/N�. These nearly degenerate energy eigenstates have
nearly the same quasimomentums of a holon and a doublon,
but different spin structures. This does not imply the full
spin-charge separation. For example, the charge transfer mo-
tion destroys the AF spin order, and all the energy eigenstates
do not have the order as shown before. Note that the num-
bers of the nearly degenerate energy eigenstates are huge;
they are about the dimension of the Hilbert space divided by
N2 because the charge degrees of freedom are O�N2�.

This picture is consistent with our results that ��r� and
�r� are approximately constant except for the energy eigen-
states contributing to the central peak. Furthermore, the char-
acteristic charge structure of these energy eigenstates can be
explained within the picture, as shown in the following.

We consider the energy eigenstates with �qx
�H� � = �qy

�H� �
= �qx

�D� � = �qy
�D� � � /2, where E�CTT��q�H� ,q�D��
0. In this

case, we can construct the energy eigenstates where a holon
�doublon� exist only on one bipartite lattice by considering
the linear combinations of degenerate ones. Then, the condi-
tion that a holon and a doublon cannot occupy the same site
simultaneously plays an important role. Because of the rule,
if a holon is in one bipartite sublattice, then a doublon must
be in the other bipartite sublattice in this case. As a result,
��r� vanishes at the site pairs which belong to the same bi-
partite sublattice for the states given by the linear combina-
tion of the states with �qx

�H� � = �qy
�H� � = �qx

�D� � = �qy
�D� � � /2.

This agrees well with the characteristic ��r� observed in the
energy eigenstates contributing to the central peak.

We also numerically calculate the transition moments
from the ground state to various energy eigenstates. We find
that the transition moments for the energy eigenstates given
by the linear combination of the states with �qx

�H� � = �qy
�H� �

= �qx
�D� � = �qy

�D� � � /2 are, in general, much larger than those
for the other energy eigenstates, and therefore the sharp peak

arises partly from the large transition moments for these
states. The large transition moments can be attributed to the
characteristic charge structure of these states as shown be-
low. As seen from Eqs. �6� and �7�, He-p transfers an antipar-
allel spin pair at the nearest-neighbor sites to a pair of empty
and doubly occupied sites. Therefore, the transition moment
between the ground state and an energy eigenstate is ex-
pected to be large in the following two cases: �i� the spin
structure of the state is close to that of the ground state, and
�ii� ��1� for the state, which shows the probability that a
holon and a doublon are located at the nearest-neighbor sites,
is large. Because of the characteristic charge structure, ��1�
for these states are much larger than those for the other en-
ergy eigenstates.

Furthermore, the density of states at �=U diverges as N
tends to � when the terms of O�1/N� are neglected. The
central peak arise also partly from the divergence. This di-
vergence can be understood as follows. Only the energy
eigenstates with the total momentum k=0 can be photoex-
cited because the ground state has zero momentum. Then,
q�H�=q�D�+q�spin� holds. When �qx

�spin� � = �qy
�spin� � =�,

E�CTT��q�H� ,q�D��=0 holds irrespective of q�H� and q�D�.
Moreover, there are also two shoulders in the density of
states around the energies of the two broad peaks, and the
broad peaks arise from this structure.

The quasidegeneracy of the energy eigenstates with nearly
the same quasimomentums is lifted by the spin-spin interac-
tion, and the difference in the energy among them is propor-
tional to spin-spin interaction constant J=4U−1. As a result,
the width of the central peak is approximately proportional to
U−1 except for the case where U−1 is extremely small. This
agrees with the dependence of the spin relaxation time on
U−1 obtained in TFWM and FID.

Next we consider the region U−1�0.02, in which the
characteristic ���� in the extremely strong correlation region
is not clearly seen. The central peak is broadened and be-
comes unclear as U−1 is increased, and the U−1 dependence
becomes prominent besides the central peak structure. We
also calculate ��r� and �r� for various energy eigenstates.
We show ��r� and �r� for ��p� where Ep are equal to the
energies of the two small peaks in the low energy region at
U−1=0.1 in Fig. 3. As in the case of U−1
0.01, ��r� for all
the calculated eigenstates are approximately constant. How-
ever, �r� are different from those in the case of U−1
0.01.
Some energy eigenstates have AF spin order in the low en-
ergy region as seen from Fig. 3, and the energy region in-
creases as U−1 is increased. Except for these lower energy
eigenstates, �r� are approximately constant, and therefore
the energy eigenstates do not have the AF spin order. The
energy eigenstates contributing to the broad central peak do
not have the charge structure inherent in the sharp central
peak for U−1
0.01. As a result, the transition moments for
these states are comparable to those for the other energy
eigenstates.

As mentioned before, the charge transfer term is dominant
for U−1
0.01. However, these results show that the effect of
the spin-spin interaction on the energy eigenstates becomes
prominent for U−1�0.02. Some energy eigenstates in the
lower energy region have the AF spin order to gain the spin-
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spin interaction energy, and the quasidegeneracy inherent in
the very strong correlation region is destroyed. Furthermore,
the prominent dependence of ���� on U−1 for U−1�0.02 can
be attributed to this.

We calculate ���� also in the 1D system with the same
system size. The dependence of ���� on U−1 is very weak in
the strong correlation region U−1�0.1, and the results at
U−1=0.01 are shown in Fig. 4. There are 12 main peaks.
These main peaks are Lorentzian and the widths of the peaks
are equal to � used in Eq. �10�. Furthermore, we calculate the
energy eigenstates at the peak energies of the main peaks,
and find that the magnitude of transition moment for each
energy eigenstate is the same as that of the total transition
moment of the corresponding peak. Therefore, each main
peak is due to the excitation to a single energy eigenstate.
The discrete absorption spectrum is a result of a finite size
effect. Note, however, that the dimension of Heff

�1� is the order
of 107 both in the 2D and 1D cases, and therefore continuous

absorption spectra are obtained in the 2D case even when the
same value of � is used. Therefore, the discreteness in ����
observed in the cluster calculations should be regarded as a
characteristic of the 1D system.

The spin correlation functions ̃�r� for these 12 energy
eigenstates are similar to that of the AF ground state. Fur-
thermore, ̃�r� for these energy eigenstates are almost iden-
tical, although ��r� are so different. This shows that the spin
and charge structures are not correlated and spin-charge
separation holds almost rigorously in these energy eigen-
states. This further shows that only the energy eigenstates
with a specific spin wave function can be photoexcited.
Therefore, only a quite small portion of the energy eigen-
states dominates the transition moment from the ground
state. This is the cause of the discrete absorption spectrum.
As a result of the spin-charge separation in the 1D case, ����
are so different between the 1D and 2D cases. It should be
noted that the optical absorption spectrum sensitively reflects
the difference in the spin-charge interplay between the 1D
and 2D cases.

We here mention how the difference in the optical absorp-
tion spectrum between the 1D and 2D cases, appears in the
dynamics of the state excited by laser pulse. Just after the
pulse excitation, a holon and a doublon are generated at the
nearest neighbor sites as seen from Eqs. �6� and �7�, and the
AF spin configuration is destroyed only locally at these sites.
Therefore, the system has the AF order just after the pulse
excitation. This, however, does not contradict to the fact that
the energy eigenstates do not have the AF spin order in the
2D case as shown below. In the 2D case, the energy eigen-
states with nearly the same quasimomenta of a holon and a
doublon, but with different spin structures, are nearly degen-
erate in energy, and the difference in the energy eigenvalues
among them is O�1/N�, as shown before. All the spin con-
figurations for the one-photon excited states with a holon and
a doublon, are included in Hilbert space spanned by these
nearly degenerate energy eigenstates, and therefore the AF
spin state is obtained by a linear combination of these nearly
degenerate energy eigenstates. In the pulse excitation pro-
cess, many energy eigenstates are coherently excited, and the
excited state has the AF spin order just after the excitation,
even when the ground state is resonantly excited to the en-
ergy eigenstates in very small energy range. However, since
almost infinite number of the energy eigenstates with differ-
ent spin structures are photoexcited, relaxation occurs, and
the AF spin order becomes weaker as time goes on. In con-
trast to this, in the 1D case, only the discrete energy eigen-
states with the same spin structure are photoexcited due to
the spin-charge separation. As a result, ̃�r�, and therefore
the magnitude of the AF spin order is almost constant in
time. In this way, the essential difference in the absorption
spectrum between the 1D and 2D cases, is closely related to
the difference in the relaxation process. We confirm these
results by numerical calculation, and the result in the case of
the short laser pulse is discussed in detail in our previous
paper.38

B. Charge binding effect

We consider the effect of the Coulomb interaction be-
tween the nearest-neighbor sites on the photoexcited states in
this section.

FIG. 3. �Color online� �a� The charge correlation function ��r�
and �b� the spin correlation function �r� for ��p� where the energy
eigenvalues Ep are equal to the energies of the two small peaks in
the low energy region �Ep−U=−3.79 and −3.37� at V=0 and U−1

=0.1 in the 2D case.

FIG. 4. The absorption spectrum ���� at V=0 and U−1=0.01 in
the 1D case. The artificial broadening �=0.02 is used.
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We first show the results at U−1=0.001 in order to focus
our attention to the essential feature inherent in the very
strong correlation region. We show the dependence of ����
on V at U−1=0.001 in Fig. 5. As V is increased, the central
peak becomes broad and redshifts as seen in the figure. At
the same time, the lower broad peak grows rapidly with in-
creasing V, and becomes dominant for V�4. This peak
arises from the binding effect of a holon and a doublon, and
its characteristics are different from the central peak as will
be described later. Two peaks are comparable at V�2, and
the spectral shape is qualitatively different in the regions
V
2 and V�2.

We also show the dependence of the FID intensity I�	� on
V at U−1=0.001 in Fig. 6. As shown previously, the physical
origins of the characteristics of I�	� at V=0 are as follows.
The rapid decrease for 	
1, oscillation for 1
	
5, and the
exponential decrease for 	�5 are the manifestation of the
charge relaxation, the quantum beat, and the spin relaxation,
respectively. For V
2, the characteristic two-step relaxation
is preserved. The spin relaxation becomes faster as V is in-
creased, and this corresponds to the broadening of the central
peak in ����. For V�4, the two-step relaxation is not seen.
This is because the new peak becomes dominant and the
characteristic absorption spectrum at V=0 is destroyed by
the Coulomb interaction between the nearest-neighbor sites.
The decay of I�	� becomes slower as V is increased beyond
about 2. This corresponds to the change in ���� that the

dominant peak becomes sharper with increasing V. However,
even when the V is increased up to 10, I�	� / I�0� becomes
less than 0.01 for 	�10 as seen from Fig. 6. This shows that
a large number of energy eigenstates contribute to the peak.
We actually obtained many energy eigenstates in the spectral
region of the peak. The transition moments from the ground
state to these states are less than 0.1% of the total transition
moment of the dominant peak, for example, at V=8 and
U−1=0.001. This small value is consistent with this observa-
tion. We observe oscillation in I�	� in the large V region.
From Fig. 5, we can see that the dominant peak in the large
V region consists of several peaks overlapping each other.
Since the energy difference between the peak and the largest
shoulder is approximately the same as the frequency of the
oscillation, the oscillation originates from the multipeak
structure.

To understand these characteristic features, we also calcu-
late energy eigenstates at various energies in the band. We
first consider the energy eigenstates which contribute to the
central peak. The characteristic charge structure of these en-
ergy eigenstates observed at V=0, disappears when V is in-
creased up to 1.

Next, we consider the energy eigenstates which contribute
to the dominant peak for V�4, and the lower broad peak for
V
2, which continuously changes to the dominant peak. In
Fig. 7, we show ��r� and �r� for the energy eigenstates at
the absorption peak for various values of V. As seen from
Fig. 7, the magnitude of ��1� increases with increasing V,
and ��r� becomes a decreasing function for V�2. For V
�5, ��r� almost vanishes in the long range part r��8,
showing that the photogenerated charges are bound. As seen

FIG. 5. �Color online� The absorption spectra ���� at U−1

=0.001 for the various values of V in the 2D case. The artificial
broadening �=0.1 is used.

FIG. 6. �Color online� The FID signal I�	� at U−1=0.001 for the
various values of V in the 2D case.

FIG. 7. �Color online� �a� The charge correlation function ��r�
and �b� the spin correlation function �r� for ��p� where the energy
eigenvalues Ep are equal to the energies of the lower broad peak for
V�2 and the dominant peak for V�4, at U−1=0.001 in the 2D
case. The energy eigenvalues Ep−U=−2.65, −3.51, −4.03, −6.09,
and −9.81 at V=0, 1, 2, 5, and 9, respectively.
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from Fig. 7, �r� are approximately constant, and the corre-
lation between spin and charge structures is very weak.

We calculated the energy eigenstates not only at the peak
but also at the shoulders of the dominant peak. We obtain
many energy eigenstates which are nearly degenerate to the
energy of each fine structure. The charge correlation func-
tions ��r� for these nearly degenerate states are almost iden-
tical, and �r� for them are approximately constant, and the
deviation of �r� between these states is much larger than
that of ��r�. Therefore, we can conclude that the energy ei-
genvalues are mainly determined by the charge structure, and
large numbers of the energy eigenstates with nearly the same
charge but different spin structure are nearly degenerate in
energy also in the large V region. Moreover, the calculated
energy eigenstates contributing to all the structures in the
dominant peak, have monotonously decreasing ��r�. This
shows that all these energy eigenstates have the charge struc-
ture of the lowest bound state with zero node.

Consequently, there are bound states of a holon and a
doublon when V is large enough, and the dominant peak in
the large V region is due to the excitation to these charge
bound states, similar to the case of excitons. However, many
energy eigenstates contribute to the dominant peak in this
case, and this is in contrast to the case of excitons where only
a few exciton states dominate the optical transition moments.
We should therefore pay attention to the fact that the holon-
doublon bound states in the 2D Mott insulators are coupled
with the large number of spin degrees of freedom, and is
significantly different from the exciton state in conventional
band insulators.

We next consider how the dependence of ���� on V
changes for larger values of U−1. We show ���� for several
values of V at U−1=0.05 in Fig. 8. As V is increased, the
lower �higher� side of the broad band increases �decreases�
for V
2. There are two small peaks in ���� at �−U
=−4.5 and −3.9 when V=0. These two peaks drastically
grow as V is increased, and become dominant around V=4.
This is different from the case of U−1=0.001 where the lower
broad peak changes to the dominant peak. With further in-
crease of V, the dominant peaks become sharper and redshift.

We obtain energy eigenstates in the energy region of the
dominant peaks for V�4, and the peaks which continuously
grow to the dominant peaks for V
2. From the same dis-
cussion as the case of U−1=0.001, we can show that the

dominant peak for V�4 is due to the excitation to many
charge bound states. However, the deviations in ��r� among
the energy eigenstates contributing to the dominant peaks are
much larger at U−1=0.05 than at U−1=0.001. This shows that
the charge structures for these states are strongly affected by
their spin structures, in contrast to the case of U−1=0.001. As
for the spin structure, the energy eigenstates responsible for
the peaks have AF spin order regardless of the values of V.

The width of the dominant peak in the large V region is
smaller at U−1=0.05 than at U−1=0.001, and the largest tran-
sition moments for the energy eigenstates responsible for the
dominant peak at U−1=0.05 is about 40 times larger than that
at U−1=0.001 for the same value of V. This shows that the
transition moments concentrate on much fewer energy eigen-
states at U−1=0.05 than at U−1=0.001.

For U−1�0.02, the dominant peak in the large V region
becomes sharper and the number of the energy eigenstates
responsible for these peaks decreases, as U−1 is increased.
The strong U−1 dependence of this number can be attributed
to the fact that some energy eigenstates have the AF spin
order in the U−1 region. As mentioned before, the transition
moment between the ground state and an energy eigenstate
increases as the spin structure of the state is closer to the
ground state. Therefore, the states with the strong AF spin
order have much larger transition moments from the AF
ground state than the other states where the AF order is de-
stroyed.

For U−1�0.06, the ground state is the CDW state in the
region V�4, where the dominant peak due to the holon-
doublon bound state is expected. As a result, the character-
istic absorption spectrum in the large V region cannot be
observed in this U−1 region.

On the other hand, ���� is nearly independent of U−1 for
U−1
0.01 also in the large V region. This is because the
charge transfer and the nearest-neighbor interaction terms in
Eq. �9� are dominant in the small U−1 and large V region, and
both the terms are independent of U−1.

We also calculate the dependence of ���� on V in the 1D
case. Since the dependence of ���� on U−1 is very weak also
for finite V in the strong correlation region U−1�0.1, only
the results at U−1=0.01 are shown in Fig. 9. The absorption
spectrum is discrete all through the V region considered in

FIG. 8. �Color online� The absorption spectra ���� at U−1

=0.05 for the various values of V in the 2D case. The artificial
broadening �=0.1 is used. FIG. 9. �Color online� The absorption spectra ���� at U−1

=0.01 for the various values of V in the 1D case. The artificial
broadening �=0.02 is used.

HISASHI ITOH, AKIRA TAKAHASHI, AND MASAKI AIHARA PHYSICAL REVIEW B 73, 075110 �2006�

075110-8



this paper as seen from this figure. From the numerical cal-
culations, we can show that these isolated peaks are due to
the excitation to a single energy eigenstate also when V is
finite. We calculate ��r� and ̃�r� for the eigenstates respon-
sible for the absorption peaks. We confirm the previous re-
sults that a bound state of a holon and a doublon exist for
V�2, and the state dominates the transition moment from
the ground state.10–18 Furthermore, we obtain the following
results specific to 1D Mott insulators. The charge correlation
functions ��r� are so different between these energy eigen-
states, and ��r� significantly changes with V in the low en-
ergy part. However, ̃�r� are almost identical between these
energy eigenstates, and ̃�r� are nearly independent of V ex-
cept when a holon and a doublon are bound. The magnitudes
of the AF spin order of the energy eigenstate with a bound
holon-doublon pair are slightly smaller than those of the
other ones. This weak correlation between spin and charge
structures occurs because the indirect AF spin-spin interac-
tion between the spin pair across the photogenerated charges
is strongly suppressed when a holon and a doublon are
strongly bound.39 Therefore, the correlation can be regarded
as a kind of finite size effect, and spin-charge separation
almost rigorously holds all through the V region considered
in this paper. As a result, a single states dominates the tran-
sition moment when V is large enough just like the case of
exciton in the 1D band insulators.40 However, it should be
noted that the bound state in 1D Mott insulators consists of
spinless charges, a holon and a doublon, which are separated
from the spin degrees of freedom �spin-charge separation�.

IV. CONCLUSION

In conclusion, the following results are obtained in the 2D
case when V=0. For U−1
0.01, the charge transfer term is
dominant, and the energy eigenvalues are nearly determined
by the quasimomenta of a holon and a doublon. A large
number of energy eigenstates which have nearly the same
quasimomenta but different spin structures are nearly degen-
erate in energy. The energy eigenstates do not have AF spin
order because the order is destroyed by the charge transfer in
the optically excited states. As a result, the following features

are observed in ����: the bandwidth is as wide as about 16,
and there is a central peak near �=U. The energy eigenstates
responsible for the central peak, have the charge structure
where a holon exists in one bipartite sublattice and a doublon
exists in the other bipartite sublattice, which results in large
transition moments from the ground state for these states.
For U−1�0.02, the quasidegeneracy is destroyed, and some
low energy eigenstates have the AF spin order. This energy
region increases with increasing U−1. As a result, the central
peak becomes unclear as U−1 is increased. As for the effect
of the nearest-neighbor Coulomb interaction term, the fol-
lowing results are obtained. Irrespective of the value of U−1,
the energy eigenstates where a holon-doublon pair is bound
exists, and a dominant peak due to the excitation to these
charge bound states, appears in absorption spectrum for
V�4, unless the transition to the CDW state occurs. In con-
trast to the case of the conventional excitons, a large number
of energy eigenstates have the significant contribution to the
dominant peak for U−1
0.01. These states have nearly the
same charge structure but different spin structures, and the
large number of states comes from the spin degrees of free-
dom. These states do not have the AF spin order. As U−1 is
increased, some of these states begin to have the AF spin
order, and optical transition moments concentrate to these
states. Even when U−1 is increased up to 0.05, many energy
eigenstates still have the significant contribution to the domi-
nant peak. This is in contrast to the conventional exciton, and
the difference originates from the coupling to the spin de-
grees of freedom of the whole system. This is also in contrast
to the charge bound states in the 1D case, where a single
energy eigenstate dominates the optical transition moment as
a result of the spin-charge separation. The difference be-
tween the 1D and 2D Mott insulators originates from the
difference between them in the coupling between spin and
charge degrees of freedom.
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