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We study the persistent current and the Drude weight of a system of spinless fermions, with repulsive
interactions and a hopping impurity, on a mesoscopic ring pierced by a magnetic flux, using a density matrix
renormalization group �DMRG� algorithm for complex fields. Both the Luttinger liquid �LL� and the charge
density wave �CDW� phases of the system are considered. Under a Jordan-Wigner transformation, the system
is equivalent to a spin-1 /2 XXZ chain with a weakened exchange coupling. We find that the persistent current
changes from an algebraic to an exponential decay with the system size, as the system crosses from the LL to
the CDW phase with increasing interaction U. We also find that in the interacting system, the persistent current
is invariant under the impurity transformation �→1/�, for large system sizes, where � is the defect strength.
The persistent current exhibits a decay that is in agreement with the behavior obtained for the Drude weight.
We find that in the LL phase the Drude weight decreases algebraically with the number of lattice sites N, due
to the interplay of the electron interaction with the impurity, while in the CDW phase, it decreases exponen-
tially, defining a localization length which decreases with increasing interaction and impurity strength. Our
results show that the impurity and the interactions always decrease the persistent current, and imply that the
Drude weight vanishes in the limit N→� in both phases.
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I. INTRODUCTION

The experimental discovery of persistent currents in me-
soscopic rings pierced by a magnetic flux,1–3 earlier proposed
theoretically,4 has revealed interesting new effects. The cur-
rents measured in metallic and semiconducting rings, either
in a single ring or an array of many rings, generally exhibit
an unexpectedly large amplitude, i.e., larger by at least one
order of magnitude, than predicted by theoretical studies of
electron models with either disorder or electron-electron in-
teraction treated perturbatively.5,6 It has been suggested that
the interactions and their interplay with disorder are possibly
responsible for the large currents observed, expecting that
the effect of the interactions could counteract the disorder
effect. However, no consensus has yet been reached on the
role of the interactions. In order to gain theoretical insight, it
is desirable to perform numerical calculations which allow
us to consider both interactions and disorder directly in sys-
tems with sizes varying from small to large. Analytical cal-
culations usually involve approximations which mainly pro-
vide the leading behavior of the properties for large system
sizes. Persistent currents in mesoscopic rings strongly de-
pend on the system size, since they emerge from the coher-
ence of the electrons across the entire system. Hence, it is
most important to study the size dependence of the current
beyond leading order in microscopic models, for a complete
understanding of the experimental results. Exact diagonaliza-
tion was used to calculate persistent currents in systems with
very few lattice sites.7,8 In this paper, we use the density
matrix renormalization group �DMRG� algorithm9–11 to
study a simplified model incorporating interactions and a
single impurity, accounting for disorder, in larger system
sizes. We consider a system of interacting spinless electrons

on a one-dimensional ring, with a single impurity, and pen-
etrated by a magnetic field. We study an intermediate range
of system sizes, where analytical results obtained by
bosonization techniques for large system sizes do not yet
fully apply. Without impurity, and at half-filling, the system
undergoes a metal-insulator transition from a Luttinger
liquid12 �LL� to a charge density wave13 �CDW� ground
state. The persistent current of the interacting system with an
impurity was studied before with the DMRG, in the LL
phase.14 Here we study the persistent current, and also the
Drude weight characterizing the conducting properties of the
system, in both the LL and the CDW phase, investigating the
interplay between the impurity and the interactions in the
two phases. In mesoscopic systems, the separation between
metallic and insulating behavior is not always obvious, since
the localization length can be of the order of or significantly
larger than the system size. Hence, a finite Drude weight and
a current can be observed in the CDW phase of a mesoscopic
system. It is therefore of great interest to characterize the
persistent current and the Drude weight in both the LL and
the CDW phases of mesoscopic systems. Although the
simple model that we consider is not the most appropriate to
describe the experimental situation, we hope to obtain useful
information for the understanding of the more realistic sys-
tems. Under a Jordan-Wigner transformation,15 the system
considered is equivalent to a spin-1 /2 XXZ chain with a
weakened exchange coupling. Hence, our results also pro-
vide insight into the spin transport in this type of system.

II. THE MODEL

The Hamiltonian describing a system of spinless fermions
on a ring pierced by a magnetic flux, with repulsive interac-
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tions and a single hopping impurity, or defect, is given by,

H = Ht + HU, �1�

where

Ht = − t�
j=1

N

�ei�/Ncj
†cj+1 + e−i�/Ncj+1

† cj�

+ �1 − ��t�ei�/NcN
† c1 + e−i�/Nc1

†cN� �2�

is the hopping term, �=2�� /�0 contains the magnetic flux
� in units of the flux quantum �0=hc /e, � measures the
strength of the defect with values between 0 and 1 ��=1
corresponding to the defectless case�, and

HU = U�
j=1

N

njnj+1 �3�

is the interaction term, with U�0 representing the nearest
neighbor Coulomb repulsion, and nj =cj

†cj, where cj
† and cj

are the spinless fermion operators acting on the site j of the
ring. We consider a system of N sites, with N even, and at
half-filling, when M =N /2 particles are present. The lattice
constant is set to one and periodic boundary conditions,
cN+1=c1, are used.

Via the gauge transformation cj→e−i�j/Ncj, the flux can be
removed from the Hamiltonian, but in the impurity term
where the flux is trapped, and the quantum phase � is en-
coded in a twisted boundary condition cN+1=e−i�c1. It is then
clear that the energy is periodic in � with period 2�, i.e., it is
periodic in the flux � threading the ring with period �0.16

After a Jordan-Wigner transformation, Eqs. �2� and �3�
can be rewritten, respectively, as

HJ = −
J

2�
j=1

N

�Sj
+Sj+1

− + Sj
−Sj+1

+ � + �1 − ��
J

2
�ei�S1

+SN
− + e−i�S1

−SN
+�

�4�

and

H� = ��
j=1

N

Sj
zSj+1

z �5�

with t=J /2 and U=�, and the boundary conditions SN+1
+

= �−1�M+1ei�S1
+ and SN+1

z =S1
z . Hence, the model �1� of spin-

less fermions is equivalent to a spin-1 /2 XXZ chain with a
weakened exchange coupling, and twisted boundary condi-
tions in the transverse direction. The half-filled case corre-
sponds to total spin projection Sz=0.

The persistent current generated on a ring pierced by a
magnetic flux, at temperature T=0, can be obtained from the
ground state energy E0���, by taking the derivative with re-
spect to �,

I��� = −
�E0���

��
. �6�

For the spinless fermion system, Eqs. �2� and �3�, I��� cor-
responds to the ground state value of the charge current op-

erator Îc= it� j=1
N �cj

†cj+1−cj+1
† cj�, while for the XXZ chain,

Eqs. �4� and �5�, it corresponds to the ground state value of

the spin current operator Îs= iJ /2� j=1
N �Sj

+Sj+1
− −Sj+1

+ Sj
−�. As a

consequence of the periodicity of the energy, the current is
also periodic in �, with period 2�. Hence, it can be ex-
pressed as a Fourier series,

I��� = �
k=1

�

Ik sin�k�� , �7�

and the behavior of the current can be analyzed in terms of
the coefficients Ik.

14

In the noninteracting case �U=0�, it has been found that
for large system sizes, the current is invariant under the de-
fect transformation �→1/�,17,18 i.e.,

I��� = I�1/�� . �8�

We shall investigate the existence of this kind of invariance
in the interacting case �U�0�, both in the LL and the CDW
phases.

The Drude weight was proposed by Kohn as a relevant
quantity to distinguish between a metal and an insulator.19 It
is defined as

D = �N
�2E0

��2 �
�=�m

, �9�

where �m is the location of the minimum of E0���, which
depends on the parity of the number of electrons, i.e.,
�m=0 or � for, respectively, an odd or an even number of
electrons. For the spinless fermion system D represents the
charge stiffness and measures the inverse of the effective
mass of the charge carriers.20 In a metallic conductor, D
tends to a finite value, whereas in an insulator, D vanishes
with the system size N, when N→�. In the insulating state,
the Drude weight decays as D�exp�−N /	�, where 	 mea-
sures the localization length. For the XXZ chain, the Drude
weight represents the spin stiffness.

In a model of free fermions �U=0� with no impurity
��=1�, it is straightforward to see that the leading behavior
of the persistent current I��� in the system size N, has a saw
toothlike shape with slope −vF / ��N�, where vF is the Fermi
velocity. Thus, the amplitude of the current scales with 1/N,
vanishing in the limit N→�. The discontinuity in I���, that
results from a degeneracy of energy levels associated to the
translation symmetry,8 appears at �=0 or � for, respectively,
an even or an odd number of electrons. In the presence of an
impurity ���1�, bosonization21 and conformal field theory17

calculations predict that the shape of the current I��� is
rounded off, and its amplitude decreases with increasing
strength of the scatterer potential, still vanishing with the
system size as 1/N. The disorder lifts the degeneracy of the
energy levels and the current then varies continuously.8

The model, with interactions �U�0� and without defect
��=1�, is solvable by the Bethe ansatz for periodic boundary
conditions ��=0�22,23 and also for twisted boundary condi-
tions ���0�.24–26 At half-filling, the system exhibits a metal-
insulator transition, which occurs at U / t=2. For U / t
2, the
system is in a gapless LL phase, while for U / t�2 it is in a
gapped CDW state.27 The LL phase is characterized by a

DIAS, PIMENTEL, AND HENKEL PHYSICAL REVIEW B 73, 075109 �2006�

075109-2



power-law decay of the correlations. Bosonization predicts
that in an homogeneous LL, the leading behavior of the per-
sistent current in the system size N, has a sawtoothlike shape
with slope −vJ / ��N�, where vJ is the velocity of current
excitations.28 Since translation invariance is preserved in the
presence of interactions, the discontinuity in the current still
exists for finite U.8 A Bethe ansatz calculation shows that the
Drude weight of an homogeneous LL in the thermodynamic
limit, has a finite value, which decreases with increasing
strength of the interaction U / t.20 The LL state is strongly
affected by the presence of an impurity,29–32 and bosoniza-
tion yields that the current then vanishes as I�N−1−�B, with
�B�0.21 The study of the LL phase with ��1, performed
with the DMRG,14 has in fact found this kind of behavior.
The CDW phase is characterized by a localization length 	,
which is associated to the energy gap. From the work of
Baxter,33 the Drude weight in the gapped phase, is expected
to behave as D�exp�−N /	�, vanishing for an infinite system
size. This behavior implies that although the system is insu-
lating in the infinite system size limit, for a finite system,
provided N /	 is not too large, D is still finite and a current
can be observed. The localization length can then be ex-
tracted from the size dependence of the Drude weight.

III. NUMERICAL METHOD

We use the DMRG to numerically calculate the ground
state energy of the spinless fermion system as a function of

the magnetic flux, E0���, for fixed interaction U and impu-
rity strength �, in rings up to N=82 sites, keeping up to 300
density matrix eigenstates per block.34 The DMRG is applied
to the Hamiltonian �1� after performing the gauge transfor-
mation, which removes the flux into a twisted boundary
condition.11 The states of the system are characterized by the
quantum numbers associated to the eigenvalues of the local
occupation number nj and the total number of particles
M =� j=1

N nj operators, which commute with the Hamiltonian
�1�.35 For each set of N, �, and U, we obtained the ground
state energy E0 for 50 values of � in the periodicity interval
−�
���, and using Chebyshev interpolation,36 we deter-
mined the corresponding current �6� and Drude weight �9�,
by numerical differentiation. We developed a DMRG algo-
rithm for complex Hamiltonian matrices, which allowed us
to calculate the detailed form of the persistent current I as a
function of �14 and to obtain the Drude weight. In a previous
approach, the DMRG was used to calculate the so-called
phase sensitivity �E0, which is the difference of the ground
state energy at flux �=0 and �, and can be considered a
crude measure of the persistent current.37–39 Although the
calculation of �E0 requires considerably less computational
effort than the calculation of E0���, because then the Hamil-
tonian matrix is real, the phase sensitivity does not provide
information on the shape of the current and the value of the
Drude weight.

IV. RESULTS

We now present the results obtained for the persistent
current and the Drude weight, where we take t=1 and the
interaction U is in units of t. Figures 1 and 2, exhibit NI���
plotted versus �, for respectively, U=0.80 and U=3.00,
which correspond, respectively, to the LL and the CDW
phase, considering different impurity strengths �, on a fixed
system size N=26. We can see that the effect of the impuri-
ties, in both phases, is to reduce the intensity of the current
and to round off the shape of I���. The amplitude of the
current decreases rapidly with increasing values of ��−1�,
and also with increasing strength of the interaction U. Figure

FIG. 1. Persistent current NI��� vs � at fixed N=26 for
U=0.80 and different �.

FIG. 2. The same as in Fig. 1, but for U=3.00.

FIG. 3. Symmetry of the current NI��� in � �empty symbols� vs
1/� �filled symbols� for U=0.80 �circles� at N=18, and U=3.00
�diamonds� at N=58.
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3 shows that the invariance of the current with respect to the
defect, described in Eq. �8�, found for large system sizes in
the noninteracting case, is also observed for the interacting
case, both in the LL and in the CDW phases, the system size
N required to reach the invariance being larger for larger
interaction U. Figure 4 displays the Drude weights associated
to the systems with different interactions U and impurities �,
fixed N=26, of the currents presented in Figs. 1 and 2. As
one would expect, the Drude weight decreases with increas-
ing ��−1� and also increasing U. Figures 5 and 6 present
NI��� plotted for several system sizes N, respectively, for
U=0.80 in the LL phase and U=3.00 in the CDW phase with
� fixed at 0.50. We observe that the current vanishes faster
than 1/N in both phases, exhibiting a different behavior in
each phase, I��� vanishing much faster with N in the CDW
than in the LL phase. In order to analyze the behavior of the
current in more detail, we have numerically evaluated the
coefficients Ik �for k=1,2� of the Fourier expansion �7�. The
first �k=1� and the second �k=2� Fourier coefficients of the
current, for U=0.80 and U=3.00, are shown in Fig. 7. One
can clearly see that the coefficients I1 and I2 behave similar
to each other in both phases. However, their behavior in the
LL and CDW phase is distinct. In the LL phase, the Fourier
coefficients show a power-law decay with N, with the second
order coefficient decaying faster, i.e., with a larger exponent,

than the first one. In the CDW phase, the Fourier coefficients
show a dominant exponential decay with N, with the second
order coefficient also decaying faster, i.e., with a smaller
localization length, than the first one. We observe that for
longer rings, stronger interactions and also stronger impuri-
ties, the current is increasingly more precisely described by
its first Fourier component. In the LL phase, this in fact
corresponds to the asymptotic behavior predicted by
bosonization in the large N limit, that is I�N−1−�B sin �.
However, for the system sizes considered here, this
asymptotic regime is not reached and the current displays a
more complex behavior. The current is composed of a few
Fourier components with decreasing weight. Figure 8 pre-
sents the first Fourier coefficient of the current for different
values of the interaction, U=0.80,2.50,3.00, fixed �=0.50,
from which we extract the dependence of I1 on N, in the
intermediate range of sizes considered. We observe that for
U=0.80 in the LL phase, the current varies as I1�N−1−�1

with �1�0.06, while for U=2.50 and U=3.00 in the CDW
phase, it varies as I1�N−1−1 exp�−N /	1�, respectively, with
	1�259, 1=0.11, and 	1�68, 1=0.10. The exponent �1 is
given by the slope of the straight line in Fig. 8�a�, and the
length 	1 and the exponent 1 were carefully adjusted in
order to obtain the best collapse of the data in Fig. 8�b�, on a
plot of ln�N1+1I1� vs N /	1. The Drude weights characteriz-

FIG. 4. The Drude weight D vs � at fixed N=26 for U=0.80 and
U=3.00.

FIG. 5. Persistent current NI��� vs � for U=0.80, �=0.50, and
increasing N.

FIG. 6. The same as in Fig. 5, but for U=3.00.

FIG. 7. Fourier coefficients of the current. ln�NIk� vs ln�N� for
U=0.80 �circles� and U=3.00 �diamonds� at �=0.50 for k=1 �filled
symbols� and k=2 �empty symbols�.
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ing the systems with different interactions U, fixed �=0.50,
are presented in Fig. 9. Figure 10 clearly shows that the
results obtained for the Drude weight confirm the conducting
behavior shown by the first coefficient of the currents in Fig.
8. We observe that, for U=0.80, the Drude weight varies
with the system size as D�N−� with ��0.04, while for U
=2.50 and U=3.00 it varies as D�N− exp�−N /	�, respec-
tively, with 	�307, �0.08 and 	�68, �0.06. The expo-
nent � is given by the slope of the straight line in Fig. 10�a�,
and the localization length 	 and the exponent  were care-

fully adjusted in order to obtain the best collapse of the data
in Fig. 10�b�, on a plot of ln�ND� vs N /	. The exponents
and localization lengths characterizing the Drude weight are
a little different from those characterizing the first Fourier
component of the current, as one would expect, since the
Drude weight contains the contribution from the various
Fourier components. One sees that the localization length 	
and the exponent  decrease with increasing strength of the
interaction U. Also, concerning the impurity influence, Fig. 4
implies that the exponent � in the LL phase increases, and
the localization length 	 in the CDW phase decreases, with
increasing ��−1�. As mentioned, in the large N limit, the
current is expected to behave as its first Fourier component,
which in the LL phase implies that the exponent �1 should
be identified with �B=1/K−1 as calculated from
bosonization,21 where K is the LL parameter, calculable from
the Bethe ansatz.40 For U=0.80, this leads to �B�0.27,
which is much larger than our value of �1. We should note
that the size dependence found for the first Fourier compo-
nent of the current, and the Drude weight, characterizes the
behavior of an intermediate and limited range of system
sizes. If one would consider a larger range of systems, in the
LL phase, one would most probably see the data for the
larger N bending down, crossing to an asymptotic power-law
behavior with the exponent approaching �B. This was ob-
served in Ref. 14, where the behavior of the first few Fourier
components of the current in the LL phase was discussed in
detail, with data taken for larger values of N and stronger
interaction and impurity strengths. Also, in the CDW phase

FIG. 8. NI1 for different U and �=0.50. �a� ln�NI1� vs ln�N� for
U=0.80, the line represents I1�N−1−�1. �b� ln�NI1� vs N for U
=2.50 and 3.00, the lines represent I1�N−1−1 exp�−N /	1�, with 	1

and 1 dependent on U.

FIG. 9. The Drude weight D as a function of 1/N, for different
U and �=0.50.

FIG. 10. D for different U and �=0.50. �a� ln�D� vs ln�N� for
U=0.80, the line represents D�N−�. �b� ln�D� vs N for U=2.50
and 3.00, the lines represent D�N− exp�−N /	�, with 	 and 
dependent on U.
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we consider systems in an intermediate regime where the
localization length is larger or near the system size.41 For
larger systems, the power factors that occur in the first Fou-
rier component of the current and the Drude weight may
decline,42 possibly leaving a pure exponential behavior in the
asymptotic regime.

From the results obtained, we observe that the system
with U=0.80 and �=0.50 is characterized by an exponent
��0, which is generated by the interplay of the electron
interaction with the impurity, and D exhibits then a power-
law decay with N, which implies vanishing in the limit
N→�. On the other hand, the systems with U=2.50 and
U=3.00 with fixed �=0.50 are characterized by a localiza-
tion length 	, which decreases with increasing interaction
and impurity strength, and D exhibits now an exponential
decay with N, also vanishing as N→�. Hence, we find that
both in the LL and the CDW phases, with an impurity in the
system, the effect of the interaction is to decrease the current
and the Drude weight. As referred to before, our results also
provide insight into the spin transport in a spin-1 /2 XXZ
chain with a weak link, and a similar behavior to the one
above is implied for the spin current and stiffness. So, in the
gapless XY phase, the spin stiffness decays with a power law,
vanishing in the limit N→�, while in the gapped Ising
phase, it decays exponentially, also vanishing as N→�.
Comparing our results for the persistent current in the LL
phase with those obtained in Ref. 14, we have similarly
found that the current vanishes faster than 1/N. One ob-
serves that the model parameters strongly influence when the
last asymptotic regime described by bosonization is reached.
A calculation of the finite-size corrections to the spin stiff-
ness in a pure spin-1 /2 XXZ chain42–44 has revealed a size
dependence in the gapped phase that has a similar form to
the one found here. The result that the Drude weight in a ring
in the gapless phase with an impurity drops to zero is in
agreement with a previous result obtained for a spin chain38

and with renormalization group arguments, which state that
the impurity term is relevant leading to a transmission
cut.31,32 The renormalization group studies find that either a
weak barrier or a weak link lead to an insulating state for
repulsive interactions, while in the noninteracting case those
are marginal perturbations. In turn, our work shows that
there is an invariance of the current under the defect trans-
formation �→1/� in the interacting system, as for the non-
interacting system, and that implies that a strong link will
also reduce the current and the Drude weight. The observa-
tion that with an impurity in the system, the interaction al-
ways leads to an additional decrease of the current and the

Drude weight is in agreement with previous results by other
authors7,8 and can be understood as it is more difficult to
move correlated electrons in a scattering potential than inde-
pendent electrons.

V. SUMMARY

We have studied the behavior of the persistent current and
the Drude weight on a mesoscopic ring pierced by a mag-
netic flux. We considered a model of spinless fermions with
repulsive interactions and a hopping impurity, which is also
equivalent to a spin-1 /2 XXZ chain with a weakened ex-
change coupling. Using a powerful numerical method, the
DMRG with complex fields, we have calculated the detailed
form of the current as a function of the magnetic flux, which
enabled us to investigate the corrections to the large system-
size limit, and also allowed us to obtain the Drude weight.
We show that the system at half-filling changes from an al-
gebraic to an exponential behavior as the interaction in-
creases, corresponding to a change from a LL to a CDW
phase. We find that the analytical predictions of bosonization
for the LL phase, are not yet fully observed in the interme-
diate range of system sizes considered. In addition, we ob-
serve that the invariance of the current under the defect trans-
formation �→1/�, seen in the noninteracting system, is also
verified in the interacting system, in both phases. Hence, an
isolated strong link is not only useless for increasing the
persistent current �as might have been expected�, but it rather
destroys coherence and reduces the current. The behavior
determined for the current is consistent with the behavior
determined for the Drude weight, the LL phase being char-
acterized by an exponent ��0, which results from the inter-
play of the interactions with the impurity, while the CDW
phase is characterized by a localization length 	, which de-
creases with increasing interaction and impurity strength. We
find that, both in the LL and the CDW phase, with a defect in
the system the interactions always suppress the current, and
the Drude weight drops to zero in the limit N→�. Away
from half-filling, there is no metal-insulator transition in the
pure case, and the system is always metallic. Hence, one
does not expect to observe then a change in the current and
the Drude weight from an algebraic to an exponential decay.
Nevertheless, one still expects to observe that in the system
with an impurity, the current and the Drude weight decrease
with increasing impurity and interaction strengths.8 There-
fore, within the model considered, the interactions cannot
explain the results observed in the experiments.
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