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The electronic and ionic structures of warm expanded aluminum are determined self-consistently using an
average-atom formalism based on density-functional theory and Gibbs-Bogolyubov inequality. Ion configura-
tions are generated using a least-squares fit of the pair distribution function deduced from the average-atom
model calculations. The electrical conductivity is computed from the Kubo-Greenwood formula for the optical
conductivity implemented in a molecular dynamics scheme based on density-functional theory. This method
allows us to go beyond the Ziman approach used in the average-atom formalism. Moreover, it is faster than
performing quantum molecular dynamics simulations to obtain ion configurations for the conductivity calcu-
lation. Numerical results and comparisons with experiments are presented and discussed.
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I. INTRODUCTION

The description of matter for the first two decades of
decreasing density below solid density and for temperatures
from room temperature up to a few electron volts is a very
difficult task. In this thermodynamic regime, matter is inter-
mediate between the ordered solid and liquid phases and
the highly disordered gas phase. At the present stage, and
even for a simple metal as aluminum, experimental data
are scarce and there are a very small number of theories that
can reproduce thermodynamic data and static transport coef-
ficients of such media in a self-consistent way.1 This com-
plex thermodynamic equilibrium regime is called the warm
dense matter �WDM� regime because it corresponds to the
transition between solid-state physics to plasma physics.2

The WDM regime, which is typically encountered in plan-
etary interiors, in cool dense stars, and in laboratory experi-
ments, opens a challenging field for both experiments and
ab initio calculations.

At the present time, efficient theoretical approaches to
describe the WDM regime are the average-atom and the
quantum molecular dynamics approaches. The self-
consistent average-atom approach based on finite-
temperature density-functional theory3,4 is a fast method to
compute the electronic structure and the pair distribution
functions of strongly coupled plasmas of arbitrary degen-
eracy in local thermodynamic equilibrium �LTE�, and obtain
that way an equation of state �EOS�. It can also be used to
estimate the dc conductivity using an extension to finite tem-
perature of the Ziman formula.5–7 However, multicenter ef-
fects are taken into account quite approximatively. Such a
method can be unadapted when metal-insulator transition
and/or details of the ionic structure play an important role.
Moreover, the frequency-dependent part of the conductivity
still stays, to our knowledge, hard to calculate, especially
when the frequency-dependent real part of the conductivity,
i.e., the optical conductivity,8 shows no Drude character at
low frequencies. Such difficulties are not encountered in
quantum molecular dynamics �QMD� approach.9–12 This
method incorporates at a high level of accuracy both ionic

and electronic structure effects. It treats electron-ion and
electron-electron interactions quantum mechanically in the
framework of the density-functional theory and makes no a
priori assumptions about ion-ion forces and the ionic struc-
ture. Moreover, the optical conductivity can be computed by
means of the Kubo-Greenwood approach.13–20 The dc con-
ductivity is obtained by extrapolating to zero frequency the
ac conductivity. The QMD method is very powerful but has
intrinsic limitations, i.e., the pseudopotential assumption and
its transferability requirement, the plane-wave expansion
with periodic boundary conditions, and the absence of finite-
temperature effects in the exchange-correlation functionals
currently used. In the same way, we cannot consider very
dense situations for which core electrons start to be active. It
should be stressed that the general validity of all these as-
sumptions is quite difficult to assess a priori. We often need
huge capacity memory storage to perform a simulation and
to analyze the results. Furthermore, the computation time
may be quite large. As a consequence, great care is required
to treat high-temperature conditions.

Recently, comparisons with experiments performed in the
WDM regime have shown that the average-atom and quan-
tum molecular dynamics approaches can both be used to
describe materials in such equilibrium thermodynamic
conditions.4,17–22 Theoretical calculations agree well with ex-
perimental data for WDM aluminum, except in the vicinity
of a metal/nonmetal transition.23 In that case, QMD results
are in better agreement with measurements than the average-
atom calculations. In order to understand these discrepancies,
we propose in this paper to face the problematic of calculat-
ing the dc conductivity using the Kubo-Greenwood and Zi-
man formalisms at given pair distribution function. In Sec.
II, we propose a method to achieve this task. It reads basi-
cally as follows. We use the average-atom model SCAALP
�self-consistent approach for astrophysical and laboratory
plasmas� to calculate the dc conductivity in the framework of
the Ziman formalism. We generate a set of uncorrelated ionic
configurations from the pair distribution function obtained
with the SCAALP model. This set of ionic configurations is
used as an input of the QMD code CPMD �Car-Parrinello
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molecular dynamics� to compute the electronic structure
without performing any molecular dynamics calculation. The
Kubo-Greenwood approach is then used to get the ac con-
ductivity. Finally, we estimate the dc conductivity by ex-
trapolating to zero frequency the optical conductivity. So do-
ing, we keep the strong points of QMD and average-atom
approaches while bypassing their weak points. Numerical re-
sults and comparisons to measurements are performed and
discussed in Sec. III for WDM aluminum. Section IV is the
conclusion.

II. METHOD

A. QMD approach

Different QMD approaches have been proposed to de-
scribe the properties of condensed matter.9–11 Here, we use
the CPMD method,24,25 which has been improved by Alavi et
al.12 to study the electronic properties of metallic systems at
finite temperature. This approach is based on the Mermin
density-functional theory.26 At each QMD step, a self-
consistent electronic structure calculation is performed,
which takes into account the effect of thermal electronic ex-
citations consistently using fractionally occupied states. The
interaction between ions and valence electrons is described
using a pseudopotential. For a given configuration of ions
�RI� inside a simulation box of volume Vb with periodic
boundary conditions, the electronic density n�r� is computed
by minimizing the free-energy functional F of the electron
gas. By construction, this functional F reproduces the exact
finite-temperature density of the Mermin functional. F,
which is self-consistently optimized for each ionic configu-
ration, reads17

F = � + �Ne + EII, �1�

where

� = −
2

�
ln det�1 + e−��H−���

−� drn�r����r�
2

+
��xc

�n�r�	 + �xc. �2�

The factor two in front of the determinant logarithm stems
from considering the spin-unpolarized special case only.
�=1/ �kBT� with T the electronic temperature and kB the
Boltzmann constant, � is the chemical potential, and Ne is
the total number of valence electrons. H=−�2�2 / �2m�
+V�r� is the one electron Hamiltonian associated to the ef-
fective potential V�r�=
ie

2Zi / �r−Ri � +��r�+��xc /�n�r�,
where � is the reduced Planck constant, m and e are the
electronic mass and charge, and Zi is the charge of ion i.
��r�=e2�dr�n�r�� / �r−r�� and �xc are the Hartree potential
energy of an electron gas of density n�r� and the exchange-
correlation energy in the local-density approximation �LDA�,
respectively. Finally, EII=
i	je

2ZiZj / �Ri−R j� is the classical
Coulomb energy of the ions. The exchange-correlation func-
tional �xc is approximated by its zero-temperature
expression.12,17 Thermodynamic equilibrium between elec-
trons and ions is assumed in the simulations, so that the

electronic temperature is equal to the average ionic tempera-
ture. The one-electron Hamiltonian is diagonalized by means
of an efficient variant of the Lanczos algorithm. The elec-
tronic density is expressed in terms of single-particle orbitals

k

n�r� = 

k

�
k�r��2

1 + e��Ek−�� . �3�

The chemical potential is adjusted such that �drn�r�=Ne.
The electronic orbitals 
k are the one-electron eigenstates of
H with eigenvalues Ek

H
k�r� = Ek
k�r� . �4�

H is evaluated with n�r� in this set of equations of the Kohn-
Sham form. The ionic forces are calculated using the
Hellmann-Feynman theorem. The overall procedure ensures
a self-consistent calculation of electronic and ionic
structures. Once the thermalization is achieved one can select
a set of uncorrelated QMD configurations on the fly as the
simulation proceeds, and obtain that way, for instance, a
configuration-average optical electronic conductivity ����
by means of the Kubo-Greenwood formula.17 In this ap-
proach, ���� is computed as a configurational average of

���� =
2e2

3m2�

1

Vb


k,k�

�fk − fk��� 	 
k�p̂�
k� � �2

���Ek� − Ek − � �� , �5�

where p̂ is the momentum operator and 
k, Ek, are the elec-
tronic density-functional theory �DFT� eigenstates and eigen-
values, calculated for the ionic configuration �RI�, at the
single k point �for instance, the � point� of Brillouin zone.
The generalization of Eq. �5� to more than one k-vector sam-
pling is straightforward

���� = 

k

���,k�W�k� , �6�

where ��� ,k� is defined by Eq. �5�, with the eigenstates and
the eigenvalues computed at k, and W�k� is the weight of the
point k. Of course, the use of the single-particle DFT-LDA
states and eigenstates, instead of the true many-body eigen-
functions and eigenvalues, introduces an approximation in
the calculation of the electrical conductivity. Note also that
the procedure of calculating the optical electronic conductiv-
ity by averaging over selected arrangements of atoms, and
obtain that way results representative of the finite-
temperature sample, induces an approximative treatment of
the electron-phonon interaction. This “snapshot” treatment of
the electron-phonon interaction makes sense at relatively
high temperatures compared to the Debye temperature. This
was the case in Ref. 17 and for the thermodynamic situations
encountered in the present work. Due to finite-size discreti-
zation of the eigenvalues spectrum, ���� is computed for a
finite set of frequencies ��1 ,�2 , . . . ,�l , . . . � by averaging
over a small frequency range ��
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���l� 
1

��
�

��l−��/2

��l+��/2

����d� . �7�

The value of �� has to be large enough to ensure that a
sufficient number of electronic levels contribute, and, at the
same time, small enough to allow a good resolution. We
stress that such a quantum statistical-mechanics determina-
tion of electrical conductivity has been successfully per-
formed by studying various systems including liquids and
dense plasmas. The agreement with the experimental results
turned out to be generally satisfactory.17–22,27,28

B. Average-atom approach

Many attempts have been made to obtain an average-atom
model from first principles to describe the statistical proper-
ties and the transport coefficients of strongly coupled plas-
mas of arbitrary degeneracy in LTE. Here, we consider the
SCAALP model based on the neutral pseudoatom �NPA�
concept.4 At given temperature T and mass density �, the
plasma is represented as an effective classical system of vir-
tual neutral particles, i.e., a collection of NPA’s interacting
via an interatomic effective pair potential �

��R� = 2EX�R� − Zvat�R� +� �e�r�vat�r − R�dr , �8�

where vat�r�=−Ze2 / �r � +�e2�e�r�� / �r−r� �dr�, Z is the
nuclear charge, �e�r� is the NPA electronic density, and
EX�R� is the exchange energy coming from two groups of
electrons belonging to different ions, one placed at the origin
and the other at R. The whole NPA’s are assumed to have the
same electronic density �e�r� and the same set of one-
electron orbitals �n�r� and energies �n. These �n�r� and �n

are solutions of a Schrödinger equation with a central sym-
metric effective potential veff�r�

�−
�2�2

2m
+ veff�r�	�n�r� = �n�n�r� . �9�

The NPA electronic density �e�r� is equal to

�e�r� = 

n

��n�r��2

1 + e���n−�� �10�

with

� �e�r�dr = Z �11�

to ensure charge conservation. This is accomplished by ad-
justing the electronic chemical potential �. The integration is
performed over the entire Wigner-Seitz cell of radius RWS,
with one NPA placed at the origin of coordinates. Introduc-
ing the ion density �i=�N /A, where N and A are the
Avogadro constant and the molar mass, respectively, the
Wigner-Seitz radius RWS is such that 4RWS

3 �i /3=1. The
veff expression is established by using a variational principle
based on the Gibbs-Bogolyubov inequality. In this
way, we find the best one-electron trial Hamiltonian
H0=−�2�2 / �2m�+veff�r�, in the sense of the Gibbs-

Bogolyubov inequality, i.e., the best NPA one-electron den-
sity �e�r�, to represent the original many-body Hamiltonian
of the overall electron and bare nucleus neutral system. In
the same spirit, we use an hard-sphere �HS� reference system
with an effective packing-fraction � to represent the collec-
tion of NPA’s interacting via the effective pair potential �.
We can thus calculate the free energy per NPA associated
with � in the sense of the Gibbs-Bogolyubov inequality, i.e.,
by determining the best HS packing fraction to represent the
original effective classical system of NPA’s. This is done by
minimizing the total free energy per NPA Ftot of the system
with respect to both the NPA electronic density �e�r� and the
effective HS packing-fraction �. The expression for Ftot
reads as follows:

Ftot = FI
id + FHS

ex ��� +
�i

2
� gHS��,R���R�dR + Fe,

�12�

where FI
id is the ideal free energy of a perfect gas, FHS

ex ���
and gHS�� ,R� are the excess free energy, and the pair distri-
bution function of the HS reference system, and Fe the free
energy electronic contribution

Fe = −
1

�



n

ln�1 + e−���n−��� + EX�0�

−
e2

2
� � �e�r��e�r��

�r − r��
drdr� +� �e�r�vat�r�dr

−� �e�r�veff�r�dr + Z� . �13�

In practice, we consider the spin-unpolarized special case
only. The whole quantities FI

id, FHS
ex ���, and Fe are under-

stood to be per NPA. FI
id is well-known.29 We use the

Carnahan-Starling expression for FHS
ex ��� and gHS�� ,R� is

calculated using the Percus-Yevick approximation.30 The
Gibbs-Bogolyubov inequality �GBI� for ions �electrons�
states that Ftot is minimum for any variation of � ��e� at fixed
T, �i, Z, and �e ���, i.e.,

�Ftot

��
= 0 �14�

leads to

�i

2
� �gHS��eff,R�

��
��R�dR = 0, �15�

whereas

�Ftot

��e�r�
= 0 �16�

leads to
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veff�r� = vat�r� +
�EX�0�
��e�r�

+ �i� �vat�r − R�

+
�EX�R�
��e�r� 	gHS��,R�dR . �17�

Equations �15� and �17� determine the effective HS packing-
fraction �eff and the effective electron-ion potential veff, re-
spectively. In Eqs. �17�, the electrostatic part results in a
simple charge superposition. This means that to calculate the
electrostatic potential at a given radius, we only need to add
the electrostatic potential of the NPA located at the origin
and the electrostatic potential of the other NPA of the plasma,
with the conditional probability that there is a NPA at the
origin, hence the presence of the pair distribution function
gHS�� ,R�. The exchange contribution is more complicated to
interpret, except if we consider the density-functional theory
in the local-density approximation, where a similar conclu-
sion may be drawn using the exchange potential. In
practical calculations, the DFT in LDA is used to estimate
the exchange and correlation effects for the model to be
computationally tractable. As for electrons, we have adopted
the numerical schemes of the DFT in the LDA proposed by
Iyetomi and Ichimaru31 at finite temperature, after intensive
comparisons with experiments.4 As for consistency, we have
kept the same approach for ions using the Gordon and Kim32

method to estimate the exchange contribution within the ef-
fective ionic pair potential. Knowledge of the total free en-
ergy of the plasma gives access to the main thermodynamic
quantities of interest by numerical differentiation. Finally, we
employ the Ziman formalism to calculate the dc electrical
conductivity of the system from the inverse of the electrical
resistivity � given by33

� = −
�

3Z̄2e2�i

�
0

�

d�f�����
0

2k

dqq3S�q��sc�q� , �18�

where q2=2k2�1−cos ��. Here q is the momentum trans-
ferred from the incident electron with energy �=�2k2 / �2m�.
The derivative of the Fermi-Dirac distribution for the elec-
trons f���=1/ �1+e���−��� is denoted by f����. The structure
factor S�q� of the ion distribution is calculated using the
Percus-Yevick approximation for the HS system with
packing-fraction �eff. The differential scattering cross section
�sc�q� depends on the incident-electron momentum k and the
transferred momentum q. �sc�q� is obtained from the phase

shifts of vat. Finally, the effective average ionization Z̄ is

given by Z̄=�e�RWS� /�i.
34In practical applications of the Zi-

man formula, various approximations are currently made.7

Here, the Ziman formula is employed in consistency with the
average-atom model used to calculate equation of state
�EOS� data.

C. Combination of QMD and average-atom approaches

In practical applications, these two ab initio approaches
are used independently to calculate EOS and electrical con-
ductivity of materials in LTE. In order to test their domain of
validity, it is interesting to extend QMD calculations from

solid density and room temperature to temperatures of a few
electron volts and densities equal to some fractions of solid
density, whereas average-atom calculations can be pushed
from hot dense plasma conditions to temperatures down to
1 eV and to some fractions of solid density. Clearly, there is
a thermodynamic regime, i.e., the WDM regime, where
QMD and average-atom approaches can be compared to each
other. Moreover, the WDM appears to be also a thermody-
namic domain inside which the two methods are both ques-
tionable. Recent comparisons with experimental results for
WDM aluminum4,17–22 have shown that the QMD and
average-atom calculations are close to each other. They agree
well with experimental data except near a metal/non-metal
transition,23 where a better agreement with measurements
has been observed with the QMD calculations. In order to
understand this fact, we propose to calculate the dc conduc-
tivity using the Kubo-Greenwood and Ziman formalisms at
fixed pair distribution function. The general methodology
works as follows. We calculate the electronic structure and
the radial pair distribution function gHS�� ,R� in a self-
consistent way with the SCAALP code for one element in
LTE conditions at given T and �. We distribute randomly Na
ions in a simple cubic unit cell C of length c with periodic
boundary conditions such that �i=Na /Vb with Vb=c3. The
3Na unknown ion coordinates inside the cubic cell C are
determined by fitting the pair distribution function gC�R� cal-
culated inside the cubic cell35 to the known pair distribution
function gHS�� ,R�. The minimum image convention is
adopted. We limit the calculation of gC�R� and gHS�� ,R� to
distances less than half the box-length. We use the Powell
method36 to minimize �

� = 

i	j

�gHS��,Rij� − gC�Rij��2, �19�

where Rij is the minimum image separations of all the pairs
of ions �ij�.35 We generate as many uncorrelated ionic con-
figurations as we need, starting the minimization process
with randomly located ions inside the cubic cell C. Once
selected that way a set of ionic configurations, we calculate
the electronic structure for each ionic configuration with the
CPMD code. We then estimate the optical conductivity using
the Kubo-Greenwood formula with the CPMD code by av-
eraging over the ionic configurations. This method is adapted
to thermodynamic conditions and materials for which the
pseudopotential and exchange-correlation functional used in
the CPMD code make sense.

III. NUMERICAL APPLICATIONS

In this section, our method is tested by performing com-
parisons with experimental results and theoretical calcula-
tions for aluminum in the WDM regime. We have chosen
aluminum because this element is widely used in technical
applications and its properties, particularly conductivity, are
of considerable importance. Our main interest concerns the
improvement brought about by using the CPMD code as a
postprocessor of the SCAALP model to compute the conduc-
tivity with the Kubo-Greenwood formula over the simple
Ziman approach. We call this method SCAALP-CPMD.
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The whole calculations with the CPMD code have been
performed, at constant volume, in a periodically repeated
simple cubic box or supercell containing Na aluminum atoms
dispatched as explained in the previous section. The interac-
tion between ions and valence electrons has been modeled
using a norm-conserving pseudopotential with s and p
nonlocality.37 The electronic orbitals were expanded in plane
waves with a cutoff of 16 Ry. This aluminum pseudopoten-
tial has been carefully tested and successfully used in QMD
simulations of solid and molten aluminum at the melting
point38 and to study metal-insulator transition in dense
aluminum.17 Since the CPMD code has been used success-
fully for aluminum from liquid-metal conditions to WDM
regime,17 we have kept the same CPMD parameters to con-
sider here more expanded and hotter aluminum WDM. We
generate ten uncorrelated ionic configurations using the pair
distribution function of the SCAALP model. For each ionic
configuration, the electronic conductivity is computed by
means of the Kubo-Greenwood approach, once achieved the
self-consistent field calculation of the electronic excitation
spectrum using the � point to sample the Brillouin zone. In
the density and temperature ranges covered in this work, i.e.,
� between 0.01 and 1.0 g/cm3 and T between 10 000 to
35 000 K, it has been shown that even at low densities, the
results are fortunately not sensitive to the choice of k
points.18 This explains why we use only the � point, which,
through the symmetry, significantly reduces the computa-
tional effort. Due to finite-size discretization of eigenvalue
spectrum �Ns excited states, depending on T, �, and Na�, the
optical conductivity is averaged over a small frequency
range ��=0.2 eV.17 The dc conductivity is obtained by ex-
trapolating to zero frequency this coarse-grained optical con-
ductivity using a cubic regression on the points between 0.1
and 1.1 eV for � between 0.1 and 1.0 g/cm3, and between
0.1 and 3.3 eV for �=0.01, 0.025, and 0.05 g/cm3. The re-
gression is performed keeping the cloud of values of the ten
statistically independent ionic configurations, instead of av-
eraging the ac conductivity over the ensemble of ionic con-
figurations sampled first, and doing the regression over this
averaged ac conductivity afterward. This sounds physically
wiser, especially when fluctuations of the ac conductivity
near zero frequency are present.

As a first example, we have considered an aluminum iso-
therm at T=10 000 K for densities between 0.001 and
1.0 g/cm3. The parameters of the CPMD calculations and
the effective HS packing-fraction �eff predicted by the
SCAALP model can be found in Table I. In Fig. 1,we com-
pare the dc conductivity obtained by the SCAALP model,23

by the SCAALP-CPMD approach, and by the calculations
done by Desjarlais et al.18 using the quantum molecular dy-
namics code VASP �Ref. 11� �Vienna ab initio simulation
program� with measurements using exploded wires. The
corresponding data have been extracted from Refs. 39 and
40. We have also included experimental data points obtained
using aluminum foil strips tamped by polished glass plates
and rapidly heated by means of a pulse current.41 Concerning
the latter, we have chosen the closest temperatures
to 10 000 K because we do not have values for
T=10 000 K in Ref. 41: T=9361.54 and 10 660.89 K
for �=1.0 g/cm3, T=9967.88 K for �=0.675 g/cm3,

T=10 292.95 K for �=0.3 g/cm3, and T=10 220.59 K for
�=0.1 g/cm3. To be complete, it can be noticed that contrary
to the experiments described in Refs. 39 and 41, Krisch and
Kunze40 were able to determine the plasma parameters den-
sity and temperature independently, so that no EOS model is
needed to infer the experimental data. At low density, we
have also included the Spitzer formula42 using the average
ionization of the SCAALP model �SCAALP-Spitzer�. As for
SCAALP-CPMD, we have tried, as far as we can, to con-
sider the largest number Na of ions per supercell C to im-
prove the statistics, i.e., Na=108. This is possible for densi-
ties from 1.0 g/cm3 down to 0.2 g/cm3. For 0.1, 0.05, 0.025,
and 0.01 g/cm3, we took fewer ions inside C for computa-
tional limitation, i.e., Na=64, 32, 16, and 8, respectively.
This number of atoms per supercell is still larger than or at
least equal to the value Na=32 used in previous QMD simu-
lations with the VASP code for densities from 0.05 g/cm3 up
to 1.0 g/cm3.18,20 The agreement between experimental and
theoretical results is good, even for the SCAALP model
based on the Ziman formula. The SCAALP-CPMD method
is better that the SCAALP model everywhere. Note that at
low densities, the SCAALP model underestimates the dc
conductivity measurements compared to the SCAALP-
CPMD method, whereas the opposite trend is observed at
intermediate densities. The discrepancy between the
SCAALP and the SCAALP-CPMD results between 0.1 and
1.0 g/cm3 can be explained by a significant degree of elec-
tronic charge localization, which can be understood by as-
suming the localization of the atomic 3s and 3p orbitals.22

Indeed, SCAALP calculations indicate that the 3s orbital is
bound at 0.5 g/cm3 and below but not at 0.7 and 1.0 g/cm3,
whereas the 3p orbital is bound at 0.1 g/cm3 and below but
not between 0.2 and 1.0 g/cm3. Below 0.1 g/cm3, the dis-

FIG. 1. DC conductivity of aluminum at T=10 000 K as a func-
tion of density obtained by the SCAALP model �SCAALP� �Ref.
4�, by using the SCAALP model with the Spitzer formula �Ref. 42�
�SCAALP-Spitzer�, by combining the SCAALP and the CPMD
�Ref. 17� models �SCAALP-CPMD�, and by the VASP code �VASP�
�Ref. 18� compared to experimental results obtained using exploded
wires �DeSilva and Katsouros �Ref. 39� and Krisch and Kunze �Ref.
40�� and using pulse current �Korobenko et al. �Ref. 41��.
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crepancy between the SCAALP and the SCAALP-CPMD
results can be attributed to the treatment of neutral species.22

The SCAALP calculations show that the average ionization

Z̄ is smaller than 0.1 in this density range. Since the Ziman
formula for the electrical resistivity is proportional to the

1/ Z̄2, any uncertainty in the Z̄ calculation may have a strong
impact on the electrical resistivity value. This is particularly

true when neutral species dominate, i.e., when Z̄ becomes
very small. Now, let us compare the SCAALP-CPMD and
the VASP calculations to experiment. In Fig. 1, we see clearly
that the VASP results are closer to measurements than the
SCAALP-CPMD results between 0.1 and 1.0 g/cm3. At low
densities, we observe an interesting trend. There is a discrep-
ancy between the experimental data obtained from the ex-
ploded wires and pulse current techniques. Indeed, the VASP

results agree with the pulse current data,41 whereas the
SCAALP-CPMD results are closer to the exploded wires
data.39,40 To our knowledge, no quantum molecular dynamics
calculations are yet available for densities lower than
0.01 g/cm3 for aluminum at T=10 000 K to compare to the
data of Krisch and Kunze.40 It is rather difficult to under-
stand the various trends of the experimental data observed in
Fig. 1 around 0.1 g/cm3 and at lower densities. A possible
explanation can be proposed by remembering that in Refs.
39 and 41, the SESAME EOS tables43 are employed to de-
termine the plasma parameters density and temperature in-
stead of measuring them, as done in Ref. 40. Determining
both the plasma parameters density and temperature from
standard EOS tables instead of measuring them may be ques-
tionable, especially for aluminum when 0.1	�	2 g/cm3

and 1	T	50 eV.44 In summary, the best agreement with
the measurements between 1.0 and 0.2 g/cm3 is obtained
with the VASP calculations results. Experimental data points
obtained without using any EOS model should be welcome
to span continuously the transitional density range around
0.1 g/cm3 down to 0.001 g/cm3. The SCAALP model is the
only approach that can be compared to experimental results

by going from high densities, for which the dc conductivity
can be described by the Ziman formula, to low densities, for
which the dc conductivity approaches the Spitzer values, and
passing through a minimum around 0.05 g/cm3. The overall
agreement of the SCAALP-CPMD results with experiment
was not evident a priori due to the dramatic change of the
optical conductivity over the density range shown in Fig. 1.

As an illustration, we plot the aluminum optical conduc-
tivity at T=10 000 K in Fig. 2 for �=0.025, 0.1, 0.3, 0.5, 0.7,
and 1 g/cm3, respectively. At solid density, the optical con-
ductivity is known to be almost indistiguishable from a
Drude form, indicating the nearly free-electron nature of the
system.8 For a range of intermediate densities, i.e., between
1.0 and 0.5 g/cm3, the low frequency part of the optical
conductivity shows no Drude character. As quoted in Ref.

TABLE I. Parameters of the CPMD and SCAALP calculations
for aluminum at T=10 000 K. �, Na, Ns, and �eff are the mass
density, the number of ions in the cubic supercell C, the number of
excited states, and the effective HS packing fraction, respectively.

� �g/cm3� Na Ns �eff

0.01 8 1800 0.013

0.025 16 1800 0.012

0.05 32 1800 0.022

0.1 64 2000 0.046

0.2 108 2000 0.078

0.3 108 1600 0.091

0.5 108 1200 0.104

0.7 108 1000 0.114

1.0 108 1000 0.127

FIG. 2. AC conductivity of aluminum at T=10 000 K and
�=0.025, 0.1, 0.3, 0.5, 0.7, and 1 g/cm3 obtained by combining the
SCAALP �Ref. 4� and the CPMD �Ref. 17� models.

FIG. 3. DC conductivity of aluminum at �=0.3 g/cm3 as a
function of temperature obtained by the SCAALP model
�SCAALP� �Ref. 4� and by combining the SCAALP and the CPMD
�Ref. 17� models �SCAALP-CPMD� compared to experimental re-
sults obtained using exploded wires �DeSilva and Katsouros �Ref.
39� and Krisch and Kunze �Ref. 40��, using pulse current �Ko-
robenko et al. �Ref. 41��, and with isochoric plasma closed vessel
�Recoules et al. �Ref. 19��.
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18, a pseudogap is just beginning to form at the Fermi energy
with lowering density producing an optical conductivity peak
located between 4 and 6 eV. At lower densities, the ampli-
tude of the peak becomes prominent near 5.1 eV, compared
to the optical conductivity near zero energy. This peak is
interpreted as a 3s→3p transition. Its energy is close to the
3s→3p transition for an isolated atom.45 The SCAALP-
CPMD results are consistent with the calculations obtained
by Desjarlais et al.18using complete QMD simulations. This
interpretation is corroborated by the energy estimation of the
3s→3p transition using the one-electron energies predicted
by the SCAALP model: 4.9 eV at 0.1 g/cm3 and 5.0 eV at
0.025 g/cm3. Combining a plasma physics model, i.e.,
SCAALP, with QMD approach, CPMD, confirms that a con-
densed matter approach can represent the basic characteris-
tics of a diffuse plasma. Moreover, it gives another strong
indication that high-temperature plasma physics models and
low-temperature condensed-matter methods can merge
smoothly in the WDM regime and can be used quite safely in
conjunction.22,23

These comparisons with experimental data show that the
SCAALP-CPMD method is very promising. They are also
quite challenging for two principal reasons. First, they have
been done for a density range where calculations indicate the

gradual disappearance, with decreasing density, of the Drude
behavior. We should expect a reemergence of the Drude be-
havior of the optical conductivity with decreasing density.18

The SCAALP model predicts a reincrease of the average
ionization below �=0.01 g/cm3. This indicates the density
range where the reemergence of the Drude behavior should
occur with the SCAALP-CPMD method at T=10 000 K.
Unfortunately, we could not estimate anything below
�=0.01 g/cm3 keeping a sufficient number of atoms and
good statistics. We could thus not observe any Drude-like
reemergence near zero frequency for computational limita-
tion at T=10 000 K. Second, we encountered at intermediate
density �i.e., around 0.3 g/cm3� a significant degree of elec-
tronic charge localization which, as already stated before,
can be understood by assuming the localization of the atomic
3s and 3p orbitals. This phenomenon is often delicate to
describe with a NPA approach of the type of SCAALP. In-
deed, we have seen in Fig. 1 that the SCAALP-CPMD
method can noticeably correct the SCAALP predictions for
the dc conductivity.

To provide a corroboration to this point, we plot in Fig. 3
the dc conductivity at fixed density �=0.3 g/cm3 for various
temperatures in the WDM regime. The parameters of the
CPMD calculations and the effective HS packing-fractions
�eff predicted by the SCAALP model can be found in Table
II. Following Desjarlais et al.,18 we have taken only 32 at-
oms per supercell in order to consider high temperature with
a manageable number of excited states. We compare results
obtained by the SCAALP model and the SCAALP-CPMD
approach to dc conductivity measurements using aluminum

TABLE II. Parameters of the CPMD and SCAALP calculations
for aluminum at �=0.3 g/cm3. T, Na, Ns, and �eff are the tempera-
ture in kelvin, the number of ions in the cubic supercell C, the
number of excited states, and the effective HS packing fraction,
respectively.

T �K� Na Ns �ef f

10 000 32 800 0.091

18 000 32 1200 0.087

25 000 32 1840 0.084

TABLE III. Values of S=2mVb /e2Ne�0
�d����� averaged

over ten configurations of the CPMD calculations for aluminum at
T=10 000 K. � is the mass density. Integrals in energy have been
calculated between 0 and 20 eV.

� �g/cm3� S

0.01 0.976

0.025 0.983

0.05 0.979

0.1 0.972

0.2 0.972

0.3 0.975

0.5 0.978

0.7 0.985

1.0 0.995

TABLE IV. Values of S=2mVb /e2Ne�0
�d����� averaged

over ten configurations of the CPMD calculations for aluminum at
�=0.3 g/cm3. Temperature T is in kelvin. Integrals in energy have
been calculated between 0 and 20 eV.

T �K� S

10 000 0.988

18 000 0.998

25 000 0.999

FIG. 4. Dimensionless measure of the fluctuations of the dc
conductivity �dc of aluminum at T=10 000 K and �=0.3, 0.5, 0.7,
1.0, and 1.3 g/cm3 obtained by combining the SCAALP �Ref. 4�
and the CPMD �Ref. 17� models.
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foil strips tamped by polished glass plates and rapidly heated
by means of a pulse current,41 exploded wire,39,40 and an
isochoric plasma closed vessel �EPI�.19 Results from the
SCAALP model overestimate measurements by a factor of 3.
Postprocessing the CPMD code to the SCAALP model is
here shown to be crucial, the SCAALP-CPMD results being
in excellent agreement with the experimental data.

In Fig. 4, we plot the dimensionless measure of the
fluctuations of the dc conductivity �dc of aluminum at
T=10 000 K for �=0.3, 0.5, 0.7, 1.0, and 1.3 g/cm3, respec-
tively. The parameters of the CPMD calculations for 1.0 and
1.3 g/cm3 are the same �see Table I�. For each frequency �,
we calculate the average ���� and the standard deviation
����� of the optical conductivity over the ten ionic configu-
rations. We then consider the ratio ����� /����, which
is a dimensionless measure of the fluctuations of the ac con-
ductivity. The dimensionless measure of the fluctuations of
the dc conductivity �dc is obtained by extrapolating to zero
frequency the dimensionless ratio ����� /���� using a cubic
regression on the points between 0.1 and 1.1 eV. We see
that �dc as a function of density is maximum around
0.7 g/cm3. This feature is very interesting because this point
is close to the critical point,22,41 i.e., ��0.7–0.8 g/cm3 and
T�6000–8000 K. It is well known that the amplitude of the
fluctuations of many physical quantities become very large
near the critical point, until these amplitudes diverge pre-
cisely at the critical point.46 In Fig. 4, we can see an illustra-
tion of the importance of the fluctuations of the electrical
conductivity near a metal-insulator transition.

Optical constants of material media verify various sum
rules.47–49 The best known is the “f-sum rule” for the optical
conductivity ����

S =
2mVb

e2Ne
�

0

�

d����� = 1 �20�

that can be obtained as a generalization of the sum rule of the
oscillator strength.50,51 Equation �20� constitutes an impor-

tant and useful check on the consistency of the optical con-
ductivity. In actual calculations, S is expected to be smaller
than 1, since only a finite, limited number of excited states
can be taken into account in the evaluation of Eq. �20�. In
Tables III and IV, the values of S corresponding to the cases
presented, respectively, in Tables I and II are shown. We note
that the identity S=1 is satisfied to better than 3%. In gen-
eral, the low-frequency part of ���� converges with increas-
ing number of bands much faster than the high-frequency
tail, the dc conductivity converges well before the sum
rule.18 The results of Tables III and IV indicate that our val-
ues of the dc conductivity are converged to an even higher
degree. This explains why no significant differences were
observed previously by increasing the number of bands.

IV. CONCLUSIONS

An average-atom model has been coupled to a quantum
molecular dynamics code to estimate the optical properties
of warm expanded aluminum. Ion configurations are gener-
ated using a least-square fit of the pair distribution function
deduced from the SCAALP calculations. The optical conduc-
tivity of the system is computed from the Kubo-Greenwood
formula implemented in the CPMD code. Comparisons be-
tween theoretical and experimental results are good. We have
shown that the SCAALP-CPMD approach provides an effi-
cient and fast way to compute the optical properties of warm
dense aluminum.
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