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Calculations of the binding energy of the transition-metal oxide molecules TiO and MnO are presented,
using a recently developed phaseless auxiliary-field quantum Monte Carlo approach. This method maps the
interacting many-body problem onto a linear combination of noninteracting problems by a complex Hubbard-
Stratonovich transformation, and controls the phase and sign problem with a phaseless approximation relying
on a trial wave function. It employs random walks in Slater determinant space to project the ground state of the
system, and allows use of much of the same machinery as in standard density functional theory calculations
using the plane-wave basis and nonlocal pseudopotentials. The calculations used a single Slater determinant
trial wave function obtained from a density functional calculation, with no further optimization. The calculated
binding energies are in good agreement with experiment and with recent diffusion Monte Carlo results.
Together with previous results for sp-bonded systems, the present study indicates that the phaseless auxiliary-
field method is a robust and promising approach for the study of correlation effects in real materials.
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I. INTRODUCTION

A phaseless auxiliary-field �AF� quantum Monte Carlo
�QMC� method was recently introduced1 to study correlation
effects in real materials, which has yielded results for a va-
riety of sp-bonded materials in good agreement with experi-
ment and comparable to those obtained using the standard
diffusion Monte Carlo �DMC� method.2 In this paper we
present an application of the phaseless AF QMC method to
the more highly correlated transition metal oxide systems.
Because of their complexity �the presence of both localized
and itinerant characters in the electronic degrees of freedom,
strong electron-ion pseudopotentials, and the presence of
many highly correlated electrons�, there have been relatively
few QMC calculations of any type for transition metal
systems.3–6

There are many important applications based on the mag-
netic, ferroelectric, and superconducting properties of transi-
tion metal oxides. These effects arise from the presence of
d-shell electrons whose interactions are often highly corre-
lated. The generally successful ab initio density functional
theory �DFT� approach7 has had limited success in describ-
ing these properties, often predicting incorrect ground states
�e.g., metallic instead of insulating�. Even in cases where
correlation effects are less pronounced and the method is
qualitatively correct, the results are sometimes not of suffi-
cient accuracy. For example, in ferroelectrics such as
PbTiO3, which have essentially no occupied d states, the
relatively small and usually acceptable DFT errors ��3% � in
predicted equilibrium volumes can lead to suppression of the
ferroelectric ground state. There is thus a great need for bet-
ter theoretical modeling of transition metal systems.

Ab initio quantum Monte Carlo methods are an attractive
means to treat explicitly the interacting many-fermion sys-
tem. These methods in principle scale algebraically as a low
power with system size. However, except for a few special
cases, QMC methods are plagued by the fermion sign
problem,8,9 which, if uncontrolled, results in exponential

scaling. No formal solution has been found for this problem,
but approximate methods have been developed that control
it. The most established QMC method is the real-space fixed-
node diffusion Monte Carlo method,10 which has been ap-
plied to calculate many properties of solids and molecules.2

Recent DMC studies have addressed transition metal systems
such as the TiC molecule,3 TiO and MnO molecules,4 solid
MnO,5 and solid NiO.6

The phaseless AF QMC approach1 is an alternative that
has several appealing features. For example, it is formulated
in a Hilbert space spanned by some fixed one-particle basis,
and the freedom to choose any one-particle basis suitable for
a given problem could be advantageous. Moreover, the AF
QMC methodology can take full advantage of well-
established techniques used by independent-particle methods
with the same basis. With a plane-wave basis, for example,
algorithms based on fast Fourier transforms and separable
nonlocal pseudopotentials can be carried over from DFT
plane-wave codes. Given the remarkable development and
success of the latter,11 it is clearly desirable to have a QMC
method that can use exactly the same machinery and system-
atically include correlation effects by simply building sto-
chastic ensembles of the independent-particle solutions.

The central idea in standard AF QMC methods12,13 is the
mapping of the interacting many-body problem into a linear
combination of noninteracting problems in external auxiliary
fields. Averaging over different AF configurations is then
performed by Monte Carlo �MC� techniques. However, ex-
cept for special cases �e.g., the Hubbard model with on-site
interactions�, the two-body interactions will require auxiliary
fields that are complex. As a result, the single-particle orbit-
als become complex, and the MC averaging over AF con-
figurations becomes an integration over complex variables in
many dimensions, and a phase problem occurs.

The phaseless AF QMC method1 used in this paper con-
trols the phase and sign problem in an approximate manner
using a trial wave function. As in fixed-node DMC calcula-
tions, the calculated results approach the exact ones as the
trial wave function is improved. The ground-state energy in
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the phaseless method, however, is not a variational upper
bound.1,14 Previous results on sp-bonded systems1,15 and our
current results suggest that the calculated energy is quite in-
sensitive to the trial wave function. Accurate ground-state
energies have been obtained with simple trial wave func-
tions, namely, single Slater determinants from DFT or
Hartree-Fock calculations.

In this paper, we study the transition metal oxide mol-
ecules TiO and MnO, using the phaseless AF QMC method
with plane waves and pseudopotentials. As in regular DFT
calculations, molecules can be studied with plane waves by
placing them in large cells �supercells� and using periodic
boundary conditions. This is somewhat disadvantageous be-
cause one has to ensure that the supercells are large enough
to eliminate the spurious interactions between the images of
the molecule. Consequently the computational cost for iso-
lated atoms and molecules is higher than with a localized
basis. However, the main motivation of the present study is
to test the phaseless AF QMC method for strongly correlated
systems such as transition metal oxides, using the same
methodology as previously used for sp-bonded materials. In
addition, a converged plane-wave basis, which is straightfor-
ward to achieve aside from the computational cost, gives an
unbiased representation of the Hamiltonian, and facilitates
direct comparison with experiment.

The remainder of the paper is organized as follows. The
phaseless AF QMC method is briefly reviewed in Sec. II.
The specific formulation using a single-particle plane-wave
basis with nonlocal pseudopotentials is then discussed in
Sec. III. Finally, in Sec. IV we present results of our calcu-
lations for the binding energies of TiO and MnO, which are
in excellent agreement with experiment.

II. FORMALISM

The Hamiltonian for a many-fermion system with two-
body interactions can be written in any one-particle basis in
the general form

Ĥ = Ĥ1 + Ĥ2 = �
i,j

M

Tijci
†cj +

1

2 �
i,j,k,l

M

Vijklci
†cj

†ckcl, �1�

where M is the size of the chosen one-particle basis, and ci
†

and ci are the corresponding creation and annihilation opera-
tors. Both the one-body �Tij� and two-body �Vijkl� matrix
elements are known.

As in other QMC methods, the auxiliary-field quantum

Monte Carlo calculation obtains the ground state ��G� of Ĥ
by projecting from a trial wave function ��T�, using the

imaginary-time propagator e−�Ĥ:

��G� � lim
n→�

�e−�Ĥ�n��T� . �2�

The trial wave function ��T�, which should have a nonzero
overlap with the exact ground state, is assumed to be in the
form of a single Slater determinant or a linear combination
of Slater determinants.

Using a second-order Trotter breakup, we write the propa-
gator as

e−�Ĥ = e−�Ĥ1/2e−�Ĥ2e−�Ĥ1/2 + O��3� . �3�

The two-body part of the propagator can be written as an
integral of one-body operators by a Hubbard-Stratonovich
transformation16

e−�Ĥ2 = �
�
� 1

	2�



−�

�

e−��
2 /2e	���		�v̂�d��� , �4�

after Ĥ2 is turned into a sum of squares of one-body opera-

tors: Ĥ2=− 1
2��	�v̂�

2 , with 	� a real number.
The propagator of Eq. �3� can now be expressed in the

general form

e−�Ĥ =
 P���B���d� , �5�

where we have introduced the vector representation �
��1 ,�2 ,…� , P��� is the normal distribution with mean 0
and standard deviation 1, and

B��� � e−�Ĥ1/2e	��·v̂e−�Ĥ1/2, �6�

with v̂�		1v̂1 ,		2v̂2 ,…�.
Monte Carlo methods can be used to evaluate the multi-

dimensional integral of Eq. �5� efficiently. We follow the
procedure1,17,18 of turning the MC process into an open-
ended random walk �instead of Metropolis sampling of entire
paths along imaginary time12,13�, because it facilitates the
imposition of local constraints to deal with the sign and
phase problem.18 Each step in the random walk takes a Slater
determinant �
� to a new determinant �
��:

�
����� = B����
� , �7�

where � is sampled from P���. Given sufficient propagation
time one obtains a MC representation of the ground state:
��G���
�
�.

This straightforward approach, however, will generally
lead to an exponential increase in the statistical fluctuations
with the propagation time. This is because the one-body op-
erators v̂ are generally complex, since the 	� usually cannot
all be made positive in Eq. �4�. As a result, the orbitals in �
�
will become complex as the propagation proceeds. This is
the phase problem referred to earlier. It is of the same origin
as the sign problem that occurs when B��� is real. The phase
problem is more severe, however, because for each �
�, in-
stead of a +�
� and −�
� symmetry,17 there is now an infinite
set ei��
�� ��� �0,2��� among which the MC sampling
cannot distinguish. At large propagation time, the phase of
each �
� becomes random, and the MC representation of
��G� becomes dominated by noise.

In Ref. 1 the phaseless auxiliary-field QMC method was
presented to control the phase problem. The first ingredient
of this method is an importance-sampling transformation us-
ing a complex importance function ��T �
�, where ��T� is a
trial wave function. In the resulting random walk, a walker
�
� is propagated to a new position �
�� in each step by
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�
����� = B�� − �̄��
� . �8�

As in Eq. �7�, � is sampled from P���, but the propagator is
modified to include a force bias or shift19

�̄ = − 	�
��T�v̂�
�
��T�
�

. �9�

A walker carries a weight w
 which is updated according to

w
� = W�
�w
, �10�

where W�
� can be expressed in terms of the so-called local
energy EL:

W�
� � exp�− �
��T�Ĥ�
�
��T�
�

� � exp�− �EL�
�� . �11�

In the limit of an exact ��T� , EL is a real constant, the
weight of each walker remains real, and the mixed estimate
for the energy is phaseless:

EG =
��T�Ĥ��G�
��T��G�

�

�

�

w
�EL�
��

�

�

w
�

. �12�

With a general ��T� which is not exact, a natural approxima-
tion is to replace EL in Eqs. �11� and �12� by its real part
Re EL, leading to a phaseless formalism for the random walk,
with real and positive weights.

The second ingredient in the phaseless method involves a
projection: the modified random walk is still “rotationally
invariant” in the complex plane defined by ��T �
�. With the
propagation, the walkers will populate the complex plane
symmetrically independent of their initial positions. In par-
ticular, a finite density of walkers will develop at the origin
where the local energy EL�
� diverges, and this causes di-
verging fluctuations in the weights of walkers.

This problem, which is inherent in the “two-dimensional”
nature of the random walk in the complex plane, can be
controlled with an additional approximation, in which the
random walk is projected to “one dimension.” This is done,
e.g., by multiplying the weight of each walker in each step
by max0, cos�����, where �� is the phase of
��T �
�� / ��T �
�. The projection ensures that the density of
walkers vanishes at the origin. Note that the projection has
no effect when v̂ is real. This additional approximation and
the importance-sampling procedures of Eqs. �8�–�11� form
the basis of the phaseless AF QMC method.

III. IMPLEMENTATION WITH PLANE WAVES

The calculations reported in this paper were carried out in
supercells using a planewave basis and periodic boundary
conditions �PBCs�. Pseudopotentials are used as in DFT cal-
culations to represent the electron-ion interaction, eliminat-
ing the core electrons from the Hamiltonian. The basis set
consists of the M plane waves with kinetic energy �k�2 /2
Ecut, where the parameter Ecut is a cutoff energy.

In a plane-wave basis, the one-body operator Ĥ1 of Eq.
�1� is the sum of the kinetic energy and the electron-ion

interaction, and Ĥ2 represents the electron-electron interac-
tion. These can be expressed as

Ĥ1 = −
�2

2m
�
k,s

�k�2ck,s
† ck,s + �

k,k�,s

VL�k − k��ck,s
† ck�,s

+ �
k,k�,s

VNL�k,k��ck,s
† ck�,s,

Ĥ2 =
1

2�
�

k,k�,s,s�
�
q�0

4�e2

�q�2
ck+q,s

† ck�−q,s�
† ck�,s�ck,s. �13�

Here ck,s
† and ck,s are the creation and annihilation operators

of an electron with momentum k and spin s. VL�k−k�� and
VNL�k ,k�� are the local and nonlocal parts of the pseudopo-
tential, respectively. � is the supercell volume, k and k� are
plane waves within the cutoff radius, and the q vectors sat-

isfy �k+q�2 /2Ecut. The two-body interaction Ĥ2 in Eq. �13�
imposes periodic boundary conditions on the electron-
electron interaction, making it equivalent to real-space cal-
culations with periodic images.

A Hubbard-Stratonovich transformation is applied to de-

couple the electron-electron interaction Ĥ2 into a linear com-
bination of one-body operators. The resulting one-body op-
erators consist of density operators of the form �̂�q�
=�k,sck+q,s

† ck,s. The number of auxiliary fields is proportional
to the number of unique q vectors that the basis allows, i.e.,
roughly eight times the number of plane waves in the basis.

Nonlocal pseudopotentials can be treated exactly within
the present AF QMC formalism, and the use of separable
forms leads to the same speedup achieved in plane-wave
DFT calculations.1 This is to be compared with standard real-
space DMC calculations where an additional locality
approximation22 is used for nonlocal pseudopotentials that
depends on the overall quality of the trial wave function
��T�. �In contrast, the fixed-node approximation in the DMC
method only depends on the position of the nodal surface of
��T�.� In order to minimize errors due to the locality approxi-
mation, small pseudopotential cutoff radii rc tend to be used.
This could result in harder pseudopotentials than otherwise
required by transferability considerations. In the AF QMC
method, the use of nonlocal pseudopotentials with larger val-
ues rc �determined only by transferability requirements� does
not pose any additional difficulty.

IV. RESULTS

In this paper, we apply the phaseless AF QMC method to
calculate the binding energies of the transition metal oxide
molecules TiO and MnO. Norm-conserving pseudopotentials
are used, and the nonlocal part of the pseudopotential VNL is
represented using the separable Kleinman-Bylander �KB�
form.23

To obtain the trial wave function ��T� for each QMC
calculation, a DFT calculation with the generalized gradient
approximation �GGA� is carried out with the ABINIT
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program,24 using the same pseudopotentials and plane-wave
basis. ��T� is then taken as the single Slater determinant
formed from the occupied single-particle orbitals obtained
from this DFT calculation, with no further optimization. The
random walkers are all initialized to ��T�, so the many-body
ground-state projection initiates from the GGA state. In ad-
dition, this ��T� is used in the QMC calculations to control
the sign and phase problem as described in Sec. II.

The pseudopotentials were generated by the OPIUM

program25 using Ti2+ , Mn2+, and neutral oxygen as reference
configurations. The titanium and manganese semicore states
�3s23p6� were included as valence states, so the Ti and Mn
atoms contribute 12 and 15 valence electrons, respectively,
while the O atom contributes six electrons.

Well-converged plane-wave cutoffs were 50 Ry for oxy-
gen and titanium, and 64 Ry for manganese. These Ecut’s
were chosen such that the resulting cutoff errors, systemati-
cally analyzed using DFT calculations, were much smaller
than the expected QMC statistical errors. In addition, we
have carried out QMC calculations on a 1�1�1 TiO solid
supercell with 50 and 60 Ry cutoffs, respectively. The calcu-
lated energies are the same within statistical error bars
��0.1 eV�, confirming basis convergence at the correlated
level. The Mn pseudopotential is created using the design
nonlocal pseudopotential procedure.26 This enhances the
pseudopotential transferability by exploiting the flexibility
contained in the separable KB form of the nonlocal pseudo-
potential.

The accuracy of the pseudopotentials was examined with
DFT calculations of binding energies, as well as the equilib-
rium bond length and harmonic vibrational frequencies. In
Tables I and II, we summarize our calculations of these prop-
erties for different OPIUM pseudopotentials. In both cases,
increasing the hardness of our pseudopotentials did not lead
to significant changes in the calculated properties. We have
also done some of these calculations using Troullier-
Martins29 pseudopotentials with the same cutoff radii, and
little difference was found. Moreover, our LDA results for

the bond lengths for TiO and MnO, Re=2.99 and 3.05 a.u.,
are in reasonable agreement with the all-electron LDA
values30 �Re=3.020 and 3.032 a.u.� and those obtained with
the Hartwigsen-Goedecker-Hutter pseudopotentials.30 The
TiO results of Re and � also compare favorably with the
calculations of Ref. 31.

As a further check on the pseudopotentials, we have car-
ried out a comparison between pseudopotential and all-
electron linear augmented plane-wave �LAPW� calculations.
The latter is computationally more costly, so we limited the
comparison to a 7�7�14 a.u.3 supercell for the non-spin-
polarized TiO molecule. Our results for the calculated equi-
librium bond length and angular frequency of vibration are
summarized in Table III. The close agreement between the
LAPW and the pseudopotential results gives further evidence
of the reliability of the pseudopotentials.

Clearly these tests on the quality of the pseudopotentials
are far from perfect. Our pseudopotentials are all DFT based,
and the tests are with DFT calculations. For sp-bonded sys-
tems, we have done plane-wave Hartree-Fock �HF� calcula-
tions using OPIUM DFT pseudopotentials, and compared with
all-electron HF results. In general, these tend to be quite

TABLE I. A summary of the binding energy �BE� �in eV�, equi-
librium bond length Re �in a.u.�, and harmonic vibrational fre-
quency � �in cm−1� of the TiO molecule with two different pseudo-
potentials. The first, with Ecut=50 Ry �50 Ry psp�, was used in all
ensuing DFT and QMC calculations. The second has a 64 Ry cutoff.
The corresponding values of the cutoff radius rc are listed in the
footnotes �in units of a.u.�. DFT results from both Perdew-Burke-
Ernzerhof �PBE� GGA �Ref. 27� and Perdew-Wang 92 local density
approximation �LDA� �Ref. 28� functionals are shown, together
with experimental values.

BE Re �

Experiment �Refs. 20 and 21� 6.87 or 6.98 3.06 1009

50 Ry pspa GGA 8.00 3.02 1005

LDA 9.11 2.99 1040

64 Ry pspb GGA 7.96 3.04 1008

LDA 9.05 3.02 1044

aO rc, 1.45 �s�, 1.55 �p�; Ti rc, 1.40 �s�, 1.40 �p�, 1.80 �d�.
bO rc, 1.30 �s�, 1.39 �p�; Ti rc, 1.35 �s�, 1.35 �p�, 1.52 �d�.

TABLE II. A summary of the binding energy �BE� �in eV�,
equilibrium bond length Re �in a.u.�, and harmonic vibrational fre-
quency � �in cm−1� of the MnO molecule with three different
pseudopotentials. The first, with Ecut=64 Ry and created from the
design nonlocal �DNL� procedure, was used in all ensuing DFT and
QMC calculations. Two other sets are also tested here, with 64 and
82 Ry cutoff values and without the DNL procedure. The corre-
sponding rc values �in a.u.� are listed in the footnotes. Calculated
results are from DFT GGA.

BE Re �

Experiment �Ref. 21� 3.70 3.11 832

64 Ry DNL pspa 5.11 3.11 822

64 Ry pspb 4.90 3.07 878

82 Ry pspc 4.99 3.09 845

aO rc, 1.45 �s�, 1.55 �p�; Mn rc, 1.40 �s�, 1.40 �p�, 1.65 �d�.
bO rc, 1.45 �s�, 1.55 �p�; Mn rc, 1.40 �s�, 1.40 �p�, 1.65 �d�.
cO rc, 1.05 �s�, 1.02 �p�; Mn rc, 1.25 �s�, 1.25 �p�, 1.50 �d�.

TABLE III. A comparison between LAPW and pseudopotential
calculations for non-spin-polarized TiO in a 7�7�14 a.u.3 super-
cell. We show the equilibrium bond length Re �in a.u.� and harmonic
vibrational frequency � �in cm−1� from DFT, using both GGA and
LDA. The two OPIUM pseudopotentials are the same as those in
Table I.

Re �

LAPW GGA 3.01 1057

LDA 2.97 1097

50 Ry psp GGA 2.96 1060

LDA 2.94 1095

64 Ry psp GGA 2.99 1058

LDA 2.97 1091
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consistent with the DFT tests, and often good agreement at
the HF level is found when good test results have been ob-
tained from DFT calculations. Of course, the suitability of a
DFT or HF pseudopotential �i.e., derived from independent-
particle procedures� for many-body calculations is a separate
issue, which our tests do not address. Empirically, such
pseudopotentials have been widely used in many-body cal-
culations and have been quite successful.

The use of PBCs with a plane-wave basis requires super-
cells that are large enough to control spurious interactions
between the periodic images of the system under study. We
studied convergence with respect to such size effects using
both ABINIT and QMC calculations. Representative results
are shown in Tables IV and V.

Estimating the size effects in the AF QMC calculations is
complicated by the presence of finite Trotter time-step ���
errors. The QMC values shown in Tables IV and V are final
values after extrapolations in �, the procedure for which is
discussed further below. The range of supercells shown in
Table IV corresponds to about 12 000–17 000 plane waves in
our basis. For the Ti atom, the largest two supercells resulted
in a degeneracy of the highest-lying occupied d orbitals in
the density functional calculations. To break the degeneracy,
these supercells were modified to 11.6�12�15 a.u.3 and
13.5�14�15 a.u.3, respectively. The fully converged value
of the DFT GGA TiO binding energy is 8.00 eV, as shown.
For the AF QMC calculations, the binding energies for the
larger sizes are converged to well within the statistical errors.

Table V shows the energy of the Mn atom for different
supercell sizes. The corresponding number of plane waves is
between 17 000 and 34 000. As can be seen, the QMC en-
ergy is converged to less than the statistical error for the

14�14�15 supercell, although for the smaller supercells,
the finite-size errors are significant in both GGA and QMC.
The MnO molecule, on the other hand, exhibits a much
smaller size effect, with QMC energies of −3195.50�11� and
−3195.58�7� eV for the 11�12�15 and 14�14�15 super-
cells, respectively.

The QMC Trotter errors were examined by studying the
individual time-step dependence for the atoms and the mol-
ecule using a particular supercell size. Figure 1, for example,
shows the Trotter extrapolation for the TiO molecule, done
with a 10�11�17 supercell. The Trotter behavior obtained
from this procedure was then used to extrapolate the QMC
data of other supercell sizes, for which calculations were
performed with the time step fixed at �=0.025 Ry−1. The
final extrapolated results are what is shown �e.g., in Table
IV�. Figure 2 shows the time-step dependence of MnO,
which exhibits a quadratic behavior compared to the more
linear dependence in Fig. 1 for TiO. The Mn and O atoms
exhibit much smaller finite-� errors, as is also the case with
the Ti atom �not shown�. This, we believe, is mostly attrib-
uted to the projection step in the phaseless approximation
which in turn depends on the quality of the trial wave func-
tion.

Table VI summarizes the results for the molecular binding
energies. For comparison we also include results from a re-
cent diffusion Monte Carlo study by Wagner and Mitas.4 As
mentioned, our AF QMC calculations use a single-
determinant trial wave function obtained from a DFT GGA
calculation, without a Jastrow factor or any further optimiza-
tion to the determinant. We see that the calculated binding
energies from AF QMC and those from DMC calculations4

with trial wave functions containing either an optimized hy-
brid B3LYP determinant or multiple determinants from mul-
ticonfiguration self-consistent-field calculations �MCSCF�
are in good agreement with each other and with experiment.
A DMC calculation with a trial wave function containing the
Jastrow and a single Slater determinant from the HF method,
on the other hand, gives somewhat worse agreement with

TABLE IV. A summary of the calculated binding energy of the
molecule TiO for different supercells. Supercell dimensions are
given in a.u. and binding energies are in eV. The QMC statistical
errors are in the last two digits, and are indicated in parentheses. At
the DFT GGA level, the binding energy converges to 8.00 eV.

GGA QMC

10�11�17 7.46 6.59�20�
12�12�15 7.77 6.98�21�
14�14�15 7.94 7.08�21�
� 8.00

TABLE V. The calculated total ground-state energy of Mn for
different supercells. Supercell dimensions are in a.u. and energies
are in eV. The QMC statistical errors are in the last digit, and are
shown in parentheses.

GGA QMC

11�12�15 −2766.66 −2766.40�5�
12.55�13.69�17.11 −2766.38 −2765.66�4�
14�14�15 −2766.32 −2765.89�9�
15.4�15.4�16.5 −2766.25 −2765.74�8�
� −2766.20

FIG. 1. �Color online� QMC time-step � dependence of the total
energy of the TiO molecule. A 10�11�17 a.u.3 supercell was
used. The solid line is a linear fit to the calculated QMC energies
�solid squares�. The final extrapolated energy E=−2007.72�17� eV
is shown as a star.
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experiment. We have not carried out AF QMC calculations
using a HF trial wave function for these molecules. In sev-
eral sp-bonded molecules, DFT and HF-generated trial wave
functions showed little difference in the calculated energies
in AF QMC.

We have also included in Table VI the results for the
binding energy of the O2 molecule. Because of the short
bond length of this molecule �Re=2.281 a.u.�, a harder
pseudopotential was used, with a higher Ecut of 82 Ry and
smaller values for rc �last entry in Table II�. At the DFT GGA
level the binding energy is 5.72 eV. Our QMC results shown
in Table VI were obtained using a supercell of size
8�9�11 a.u.3. Additional QMC and DFT calculations with
a larger supercell of 11�12�13 a.u.3 have verified that the
finite-size effects are within our statistical error bars
��0.1 eV�. Again, we see that the agreement with experi-
ment is very good.

Finally, we comment briefly on the computational cost. As
mentioned, the use of plane waves for isolated molecules is
somewhat disadvantageous even at the density functional
level, because of the need for large supercell sizes to reduce
the spurious interactions between the images of the mol-
ecule. The number of plane waves, M, is proportional to the
supercell volume, and the computational cost scales with M
as M ln M. �In addition, it scales quadratically with the num-
ber of electrons.� As a result, these plane-wave AF QMC

calculations are computationally rather demanding, espe-
cially with transition metal oxides. For instance, the ground-
state energy of the MnO molecule in Fig. 2 at the single
Trotter step of �=0.008 Ry−1 �with an error bar of 0.35 eV�
was obtained from running on an Intel XEON cluster �3.2
GHz� for about 150 h using 72 processors.

In summary, we have presented a study of transition metal
oxide molecules by AF QMC simulation. We have shown
that the binding energies of TiO and MnO calculated with the
phaseless AF QMC method1 are in good agreement with ex-
periment, and are comparable to the best results obtained
from diffusion Monte Carlo methods.4 It is encouraging that
a trial wave function of only DFT single Slater determinants
was sufficient for the phaseless QMC method to reach this
accuracy. Together with previous results for sp-bonded
systems,1,15 the present study indicates that the phaseless
method is a robust QMC method. Complementary to stan-
dard DMC calculations, it offers a promising approach for
the computation of correlation effects in real materials.
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TABLE VI. A summary of the binding energies of the molecules
TiO, MnO, and O2. Calculated results from the present QMC
method and diffusion Monte Carlo �TiO and MnO from Ref. 4, and
O2 from Ref. 32� are shown, together with experimental values
�TiO from Refs. 20 and 21, MnO from Ref. 20, and O2 from Ref.
32�. Equilibrium experimental bond lengths were used in the mol-
ecule calculations. Our QMC simulation used as trial wave function
a single Slater determinant from DFT GGA. The trial wave func-
tions used in the DMC calculation are indicated in the footnotes. All
energies are in eV, and the experimental zero-point energy is added
to each molecule.

TiO MnO O2

Experiment 6.98 3.70 5.1152�9�
6.87

DMC �HF�a 6.3�1� 2.9�1� 4.84�2�
DMC �B3LYP�b 6.9�1� 3.4�2�
DMC �MCSCF�c 6.7�2� 3.4�2�
Present QMC 7.02�21� 3.79�34� 5.12�10�
aTrial wave function: �HF single-determinant��Jastrow.
bTrial wave function: �DFT B3LYP single-determinant��Jastrow.
cTrial wave function: �MCSCF multideterminant��Jastrow.

FIG. 2. �Color online� QMC time-step � dependence of MnO,
Mn, and O. An 11�12�15 a.u.3 supercell was used for MnO and
Mn, and a 10�11�17 a.u.3 supercell for oxygen. The solid line is
a least-squares fit to the QMC energies �solid squares�. The final
extrapolated values are shown as a star. MC statistical error bars are
indicated.

AL-SAIDI, KRAKAUER, AND ZHANG PHYSICAL REVIEW B 73, 075103 �2006�

075103-6



1 Shiwei Zhang and Henry Krakauer, Phys. Rev. Lett. 90, 136401
�2003�.

2 W. M. C. Foulkes, L. Mitas, R. J. Needs, and G. Rajagopal, Rev.
Mod. Phys. 73, 33 �2001�.

3 Svetlana Sokolova and Arne Lüchow, Chem. Phys. Lett. 320,
421 �2000�.

4 Lucas Wagner and Lubos Mitas, Chem. Phys. Lett. 370, 412
�2003�.

5 Ji-Woo Lee, Lubos Mitas, and Lucas Wagner, cond-mat/0411247
�unpublished�.

6 R. J. Needs and M. D. Towler, Int. J. Mod. Phys. B 17, 5425
�2003�.

7 W. Kohn, Rev. Mod. Phys. 71, 1253 �1999�.
8 K. E. Schmidt and M. H. Kalos, in Applications of the Monte

Carlo Method in Statistical Physics, edited by K. Binder
�Springer-Verlag, Heidelberg, 1984�.

9 E. Y. Loh, Jr., J. E. Gubernatis, R. T. Scalettar, S. R. White, D. J.
Scalapino, and R. L. Sugar, Phys. Rev. B 41, 9301 �1990�.

10 D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 �1980�.
11 W. Kohn, Rev. Mod. Phys. 71, 1253 �1999�.
12 R. Blankenbecler, D. J. Scalapino, and R. L. Sugar, Phys. Rev. D

24, 2278 �1981�.
13 G. Sugiyama and S. E. Koonin, Ann. Phys. �N.Y.� 168, 1 �1986�.
14 J. Carlson, J. E. Gubernatis, G. Ortiz, and Shiwei Zhang, Phys.

Rev. B 59, 12788 �1999�.
15 Shiwei Zhang, Henry Krakauer, Wissam Al-Saidi, and Malliga

Suewattana, Comput. Phys. Commun. 169, 394 �2005�.
16 R. L. Stratonovich, Sov. Phys. Dokl. 2, 416 �1958�; J. Hubbard,

Phys. Rev. Lett. 3, 77 �1959�.
17 Shiwei Zhang, J. Carlson, and J. E. Gubernatis, Phys. Rev. B 55,

7464 �1997�.

18 Shiwei Zhang, in Theoretical Methods for Strongly Correlated
Electrons, edited by D. Senechal, A.-M. Tremblay, and C. Bour-
bonnais �Springer, Berlin, 2003�.

19 Naomi Rom, D. M. Charutz, and Daniel Neuhauser, Chem. Phys.
Lett. 270, 382 �1997�.

20 K. P. Huber and G. Herzberg, Molecular Spectra and Molecular
Structures. IV. Constants of Diatomic Molecules �Van Nostrand,
New York, 1979�.

21 H. P. Loock, B. Simard, S. Wallin, and C. Linton, J. Chem. Phys.
109, 8980 �1998�.

22 L. Mitas, Eric L. Shirley, and David M. Ceperley, J. Chem. Phys.
95, 3467 �1991�.

23 L. Kleinman and D. M. Bylander, Phys. Rev. Lett. 48, 1425
�1982�.

24 X. Gonze, J.-M. Beuken, R. Caracas, F. Detraux, M. Fuchs, G.-M.
Rignanese, L. Sindic, M. Verstraete, G. Zerah, F. Jollet, M.
Torrent, A. Roy, M. Mikami, Ph. Ghosez, J.-Y. Raty, and D. C.
Allan, Comput. Mater. Sci. 25, 478 �2002�.

25 Andrew M. Rappe, Karin M. Rabe, Efthimios Kaxiras, and J. D.
Joannopoulos, Phys. Rev. B 41, R1227 �1990�.

26 Nicholas J. Ramer and Andrew M. Rappe, Phys. Rev. B 59,
12471 �1999�.

27 J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77,
3865 �1996�.

28 J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 �1992�.
29 N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 �1991�.
30 C. Hartwigsen, S. Goedecker, and J. Hutter, Phys. Rev. B 58,

3641 �1998�.
31 T. Albaret, F. Finocchi, and C. Noguera, Faraday Discuss. 106,

155 �1997�.
32 Jeffery C. Grossman, J. Chem. Phys. 117, 1434 �2002�.

AUXILIARY-FIELD QUANTUM MONTE CARLO STUDY… PHYSICAL REVIEW B 73, 075103 �2006�

075103-7


