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A model of a superconducting tunnel junction coupled to a mechanical oscillator is studied at zero tempera-
ture in the case of linear coupling between the oscillator and tunneling electrons. It is found that the Josephson
current flowing between two superconductors is modulated by the motion of the oscillator. Coupling to
harmonic oscillator produces additional Shapiro steps in I-V characteristic of Josephson junction whose posi-
tion is given by the frequency of the vibration mode. We also find a new velocity-dependent term originating
from the back action of the ac Josephson current. This term is periodic in time and vanishes at zero bias
voltage.
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I. INTRODUCTION

The coupling of the charge carriers to vibrational modes
and localized spins in electronic devices has been a subject
of intense investigation recently. Vibrational modes and spins
possess dynamic internal degrees of freedom, unlike static
impurities or defects. As a consequence, they affect the elec-
tronic dynamics in these devices. Interesting I-V characteris-
tics �i.e., peaks in differential tunneling conductance� in mo-
lecular electronics1–6 may indicate a strong influence from
the electronic-vibrational coupling. A step structure �rather
than peak structure� in the differential tunneling conductance
has also been observed in the STM-based inelastic tunneling
spectroscopy around a local vibrational mode on surfaces.7

The vibrational effects on the conductance of molecular
quantum dots and single electron transistors were also
examined.8–16 These studies might have implications in
charge-based quantum computation.

Previous work has focused on the tunneling between two
normal metals, where only the single-particle process is in-
volved in transport. In these systems, the damping due to the
coupling of the oscillator with the low-energy quasiparticles
at the Fermi surface is substantial. In Refs. 17 and 18, the
dynamics of a single spin embedded in the tunneling barrier
between two superconductors has been addressed. It was
found that the superconducting correlation can leads to non-
trivial modification of spin dynamics. Recently, microfabri-
cation techniques have progressed to the point where it is
now possible to make extremely compliant vacuum tunnel-
ing electrodes that may not remain mechanically stationary
during the tunneling process.19 In this paper, we consider, for
the first time, the Josephson effect in a superconducting tun-
neling junction coupled to a mechanical oscillator in the tun-
nel barrier. Both effects of the oscillator motion on the tunnel
current and the tunneling electrons on the oscillator dynam-
ics are studied. To our knowledge, none of these effects have
been addressed before. We find the following: �i� In the tun-

nel junction, the Josephson current is modulated by the mo-
tion of the oscillator; the Fourier spectrum of the Josephson
current exhibits peaks at frequency �J±�0, 2�J, and
�J±2�0, where �J=2 eV and �0 are the Josephson fre-
quency and the vibrational mode of the oscillator, respec-
tively. These additional peaks are the result of coupling of ac
Josephson current at �J and oscillation at �0. �ii� Electron
tunneling through the junction leads to a novel time-
dependent change in oscillator energy that, in principle,
could be measured. If no voltage bias is applied across the
junction �i.e., dc Josephson effect in equilibrium�, the oscil-
lator energy is time independent. When a nonzero voltage
bias applied, the oscillator will display time-dependent en-
ergy variations.

The outline of this paper is as follows: In Sec. II, we
introduce the model system and present the theoretical deri-
vations of the Josephson current in the presence of the me-
chanical oscillator, which is used to construct an effective
Hamiltonian for the oscillator dynamics. In Sec. III, we dis-
cuss the Josephon back action on the oscillator dynamics and
present the numerical results on the supercurrent modulation.
Concluding remarks are given in Sec. IV.

II. OUTLINE OF THE CALCULATIONS

A. Model system

Our physical system is illustrated in Fig. 1.20 It consists of
a mechanically compliant cantilevered superconducting tip
of mass mc, placed some distance from a stationary bulk
superconduting counterelectrode. The movable tip assembly,
which we shall refer to as the “mechanical oscillator” or
“cantilever,” is modeled as a spring with Hook’s law force
constant kc. A voltage bias is applied across these electrodes.
The Hamiltonian describing this system
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H = HL + HR + HT. �1�

The first two terms are, respectively, the Hamiltonians for
electrons in the left and right superconducting leads of the
tunnel junction,

HL�R� = �
k�p�;�

�k�p�ck�p�,�
† ck�p�,� + �

k�p�
��L�R�ck�p�↑

† c−k�−p�↓
† + H.c.� ,

�2�

where we denote the electron creation �annihilation� opera-
tors on the left, right �L, R� leads by ck�

† �ck�� and cp�
† �cp��,

respectively. The subscripts k�p� are momenta in the left
�right� leads, and � is the spin index. Finally, in Eq. �2�,
�k�p�,� and �L�R� are, respectively, the single-particle energies
of conduction electrons, and the pair potential �the gap func-
tion� in the leads. With no loss of generality, we assume that
the superconductors are of a spin-singlet s-wave pairing
symmetry, and consider the Josephson tunneling at zero tem-
perature. The last assumption implies that temperature is low
compared to relevant frequencies, i.e., T��0 and �J. For the
specific example of a nanomechanical oscillator, the typical
frequency can be in the range �0�108–109 Hz, this requires
that T�10–100 mK. The third term in Eq. �1� depicts the
tunneling between the superconductors, which may be writ-
ten as

HT = �
k,p;�

�Tkpck�
† cp� + H.c.� , �3�

where the tunneling matrix elements Tkp transfer electrons
through an insulating barrier. When a local vibrational mode
is embedded into the tunneling barrier then, in the linear
coupling regime,

Tkp = Tkp
�0��1 + �u� , �4�

where � describes the coupling between the tunneling elec-
trons and vibrational mode. The quantity u is the displace-
ment operator for the oscillator. The very general equilibrium
point �u=0� of the mechanical oscillator placed within the
junction does not correspond here to a special point of sym-
metry between the two superconducting leads. Physically,

this linear term captures the modulation of the tunnel barrier
triggered by the mechanical oscillator motion. A more de-
tailed analysis of this form is provided, amongst others, in
Ref. 21.

As the energy associated with the vibrational mode,

�0 = �kc/mc � 10−1 − 10−6 eV �5�

is much smaller than the typical electronic energy on the
order of 1 eV, the mechanical oscillation is very slow as
compared to the time scale of electronic processes. This al-
lows us to apply the Born-Oppenheimer approximation to
treat the electronic degrees of freedom as if the local oscil-
lator is static at every instantaneous location. In what fol-
lows, we will treat the dynamics of the mechanical oscillator
including the back action from the tunneling electrons.

B. The supercurrent in the presence of mechanical oscillations

Whenever a voltage bias is applied across the junction,
the Josephson current

IJ�t� = e�
−�

t

dt��eieV�t+t��	�A�t�,A�t���−
 − e−ieV�t+t��

		�A†�t�,A†�t���−
� , �6�

where the operator A�t�=�k,p;�Tkpc̃k�
† �t�c̃p��t�. Here, the

transformed electronic annihilation operators

c̃k�p���t� = eiKL�R�tck�p��e−iKL�R�t, �7�

with

KL�R� = HL�R� − 
L�R�NL�R�, �8�

and

NL�R� = �
k�p�,�

ck�p��
† ck�p��. �9�

The unequal chemical potentials of the two superconductors
lead to a voltage bias 
L−
R=eV. In Eq. �6�, we further
assumed that the two superconductors are identical and set
the constant phase difference between them �0=0. The Jo-
sephson frequency is given by �J=2 eV. Hereafter, we set
�=1. Inserting Eqs. �3�, �4�, and �7�–�9� into Eq. �6� and
simplifying, we find the supercurrent

IJ�t� = JS
�0��eV��1 + �u�2 sin��Jt� + S�eV��1

+ �u��
�u

�t
cos��Jt� . �10�

Here, we applied a local approximation

u�t�� � u�t� + �t� − t�
�u

�t
. �11�

The Born-Oppenheimer approximation of Eq. �11�, albeit
making the physics very transparent and the current deriva-
tion convenient, is not necessary at this stage. Similar results
can be arrived at by employing a more detailed Keldysh
contour analysis,22 which parallels that in Refs. 17 and 18.

FIG. 1. Schematic view of a mechanically compliant supercon-
ducting tunneling junction. The cantilever superconducting elec-
trode �SC1� is modeled as a harmonic oscillator with spring con-
stant kc and mass mc, placed some distance from an infinitely
massive superconducting counterelectrode �SC2�. The device is bi-
ased with a voltage V.

ZHU, NUSSINOV, AND BALATSKY PHYSICAL REVIEW B 73, 064513 �2006�

064513-2



The physical origin of this effect is the separation in time
scales of the fast electronic versus the much slower mechani-
cal degrees of freedom, Ek,p��J ,�0 �with a natural resonant
“Larmor frequency” �L taking on the role of �0 in the con-
text of Ref. 18�. Here we wish to provide the reader with a
more physically transparent understanding of the reported
effects. The quantity JS

0 in Eq. �10� is the amplitude of the
Josephson current in the absence of coupling to the vibra-
tional mode �that is, �=0�, which is found to be

JS
�0��eV� = e�

k,p

���2�Tkp
�0��2

EkEp
 1

eV + Ek + Ep
−

1

eV − Ek − Ep
� ,

�12�

with ��� is the superconducting energy gap and the quasipar-
ticle energies,

Ek�p� = ���k�p� − EF�2 + ���2. �13�

In the second line of Eq. �10�, the amplitude

S�eV� = e�
k,p

���2�Tkp
�0��2

EkEp
 1

�Ek + Ep − eV�2

−
1

�Ek + Ep + eV�2� . �14�

An order of magnitude estimate for the relative ratio between
the two terms in Eq. �10� yields

S�J

JS
�0� �  eV

����
2

� 1. �15�

C. The effective Hamiltonian and oscillator dynamics

In the previous section, we computed the tunneling super-
current. With its magnitude at hand, we now construct the
Hamiltonian and investigate the corresponding dynamics.

From Eq. �10�, we construct the modulated part of the
Josephson junction energy,

HJ = EJ�1 + �u�2�1 − cos��Jt�� +
S

2e
��1 + �u�

�u

�t
sin��Jt� ,

�16�

where

EJ =
JS

�0�

2e
. �17�

Equation �16� is constructed by demanding that the de-
rivative of HJ with respect to the phase yields the supercur-
rent in Eq. �10�. Equation �16� captures the Josephson back
action effect—it vividly illustrates how electronic degrees of
freedom influence the mechanical oscillator of Fig. 1 coupled
to them.

Consequently, the total mechanical oscillator Hamiltonian
is

Hosc = HJ +
P2

2mc
+

kcu
2

2
. �18�

This leads to an equation of motion for the oscillator coordi-
nate,

mc
d2u

dt2 + �S�t�
�u

�t
+ kcu = F�t� . �19�

Here, the driving force

F�t� = − 2�EJ�1 + �u��1 − 1 +
s�J

4eEJ
�cos��Jt�� , �20�

with

S�J

4eEJ
�  eV

����
2

� 1, �21�

and the time-dependent energy nonconserving

�S�t� = −
�2S

e
sin��Jt� . �22�

We find that the net effect of Josephson backaction on the
oscillator dynamics is two-fold: �a� Coupling to the Joseph-
son current produces modification of the stiffness
coefficient—In Eq. �20�, the first, linear in the u term, may,
alternatively, be lumped into the spring constant kc and re-
garded as a Josephson stiffness—a shift of the spring con-
stant resulting from electronic correlations; �b� the oscilla-
tory part of the driving force and the time dependence of the
Josephson backaction generated �S�t� �Eq. �22�� lead to co-
herent back action. Equations �10�, �19�, �20�, and �22� con-
stitute the central result of this work. Below we discuss the
experimental consequence of these results.

III. RESULTS AND DISCUSSIONS

A. Josephson back action

As shown by Eq. �22� and Eq. �14�, the velocity coeffi-
cient ��S�t�� originates from the coupling of the mechanical
oscillator to the tunneling electrons. It is quadratically pro-
portional to the coupling constant �. This term has two novel
features.

�i� �S depends on the voltage bias. At zero voltage bias
�the dc setting�, �S vanishes since S is zero. �S is finite only
when a finite voltage bias is applied across the junction �i.e.,
ac case�. In the low-voltage limit �eV� ����, �S is linearly
proportional to the voltage bias.

�ii� Once a finite voltage bias is applied, �S is also a
periodic function of time with the Josephson frequency �J.
These properties are unique to the coupling of the mechani-
cal oscillator to the superconductors. In the normal metal,
there is no quasiparticle energy gap on the Fermi surface.

The physical picture becomes far richer when the oscilla-
tor is coupled to the superconductor. On the one hand, in the
superconductor, there exists an energy gap on the Fermi sur-
face and the quasiparticles are depleted below this energy.
This leads to the quenching of the single-particle tunneling
channel; no contribution to the dissipation of the oscillator
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due to normal quasiparticles is possible. On the other hand,
due to macroscopic quantum coherence in the supercon-
ductor, Cooper pairs can tunnel through the barrier between
the two superconductors with a probability comparable to
that of single-particle tunneling in a normal metal junction.
When a static voltage bias is applied, the tunneling of a
single Cooper pair requires an energy of 2 eV to overcome
the potential barrier. The energy carried by Cooper pair upon
tunneling can be transferred to oscillator. For zero bias volt-
age, the tunneling pairs do not acquire/lose energy �the ef-
fective electronic action is time independent, no effective
external sources are present, and energy is preserved at all
times�. In the ac setting, sin �Jt is odd under time reversal
and, as a consequence, the term sin �Jt��u /�t� is allowed in
the effective Hamiltonian, Eq. �16�.

We estimate the magnitude of the velocity coefficient. By
taking ���=O�10� meV as relevant to superconducting
MgB2,23 JS

�0�=0.1 mA, eV=2.5 meV, and �=1 Å−1, we find

�S0 =
�2S

e
� 10−13 NS/m. �23�

In addition to the back action from the Josephson tunnel-
ing, the mechanical oscillator has its own intrinsic damping
coefficient �0. For a nanomechanical oscillator with spring
constant kc�1N/m, the fundamental vibration frequency f
=�0 /2��1 GHz, and if we assume the intrinsic quality fac-
tor Q0=10 000 �as a lower bound�,24 the intrinsic damping
coefficient is �0�10−14 NS/m, which is an order of magni-
tude smaller than �S0.

Here we remark on some of the differences between nor-
mal and superconducting junctions when coupled to a me-
chanical oscillator. These were investigated in Refs. 21, 25,
and 26. Not too surprisingly, in normal junctions �much un-
like Josephson junctions�, a constant time-independent dissi-
pation arises �in the analog of Eq. �19�, ��t�=��0�. Cou-
pling to the tunneling electrons leads to an effective
stochastic driving force F�t� acting on the oscillator. Unlike
the superconducting junction, F�t� is now a stochastic vari-
able �albeit of a non-white-noise character�. These forces fur-
ther lead �at sufficiently large bias V� to a finite effective
temperature,

Teff =
eV

2
, �24�

even when the system itself is at zero temperature. As a
consequence, uniform dissipation notwithstanding, the oscil-
lator fluctuations 	u2�t�
 stabilize �thanks to the driving sto-
chastic forces� about a finite time-independent value in the
infinite time limit. This is in contrast to the Josephson junc-
tion, where oscillations in u2�t� persist forever. The tunnel
current in the normal junction also differs in fundamental
regards from the Shapiro steps that we found in the Joseph-
son junction. For the resultant characteristics, the reader is
referred to Ref. 25.

B. Supercurrent and Shapiro steps

To calculate the Josephson current, we need to solve Eq.
�19� for the displacement field u�t�. In the weak coupling

limit and in view of the fact that S is much smaller than JS
�0�,

the main physics can be captured by neglecting the damping
terms and the �S and �2 terms in the driving force. In this
limit,

u�t� = u0 cos��0t� +
2�EJ

M��0
2 − �J

2�
cos��Jt� −

2�EJ

kc
, �25�

and the Josephson current

IJ�t� = JS
�0��1 −

4�̃2

K̃
�sin��Jt� + 2�̃ cos��0t�sin��Jt�

+
2�̃2 sin�2�Jt�

K̃�1 − �J
2/�0

2�
+ �̃2 cos2��0t�sin��Jt�� , �26�

where

�̃ = �u0,

K̃ = kcu0
2/EJ. �27�

Equation �26� demonstrates clearly that the Josephson
current not only oscillates with time with a frequency �J, but
is also modulated by the vibrational mode of the mechanical
oscillator with a frequency �0.

In Fig. 2, we plot the absolute magnitude of the Fourier
transform of the Josephson current given by Eq. �26� for
various values of the vibration mode frequency �0. The spec-
trum shows a main peak at the frequency �J. In addition, the
coupling of the mechanical oscillator and tunneling electrons
generates new side peaks at frequencies �J±�0, �J±2�0,
and 2�J. The intensity of these peaks is proportional to the
coupling constant. Note that the peak at 2�J originates from
the second term in u�t� given by Eq. �25�, which is a direct
manifestation of the feedback effect from the Josephson tun-
neling. Our calculation implies that a dc component arises if

FIG. 2. Absolute magnitude of the Fourier transform IJ��� of
the Josephson current as given by Eq. �26� for the vibration mode
�0=0.4�J �a� and 1.4 �b�. The other parameters values are taken to

be: �̃=0.1 and K̃=0.6.
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the voltage bias is equal to one of the Shapiro step values �0
and 2�0. When higher-order effects are taken into account,
the equation of motion for the oscillator can only be solved
numerically. The main conclusions presented here remain
qualitatively unchanged. Apart from the standard rf steps in
the I-V characteristics advanced long ago by Shapiro, similar
I-V steps were also obtained for a Josephson junction inter-
laced with piezoelectric layer.27 The origin of the physical
coupling that leads to the Shapiro steps there is the inherent
dependence of the piezoelectric force �modulating the layer
thickness� on the voltage �which governs the Josephson
phase�, as well as the trivial dependence of the junction ca-
pacitance and resistance on the piezoelectric dimensions. The
physics considered in Ref. 27 and that investigated by us is
radically different.

IV. CONCLUSION

In summary, we studied the Josephson junction coupled to
a mechanical oscillator between its two superconducting
leads. We found that the Josephson current flowing between
two spin-singlet pairing superconductors is modulated by the
motion of the oscillator. The coupling of an oscillator of
eigenfrequency �0 to an ac junction of characteristic fre-
quency �J leads to sidebands. We find novel Shapiro steps
induced at �J±�0, �J±2�0, and 2�J. The coupling between

tunneling electron mechanical degrees of freedom leads to a
novel nonenergy conserving effect. This time-dependent ef-
fect arises from the back action of the supercurrent on the
oscillator dynamics.

As far as we know, no measurements of Josephson cur-
rents through a vibrational mode between two superconduct-
ors have been reported yet. Recent progress in molecular
electronics4 and nanomechanical resonators28,29 holds great
promise in attaching single molecules to superconducting
leads, or even tune the tunnel barrier of the superconducting
junctions by a mechanical cantilever.30 Our predictions are,
potentially, within the realm of present technology. Another
possible experiment concerns atomically sharp supercon-
ducting tip in low-temperature STM in both the quasiparticle
tunneling31 and Josephson tunneling regimes32 �coined “Jo-
sephson STM” or JSTM33� on conventional superconductors.
It is very interesting to extend the JSTM technology by using
a superconducting tip to study the Josephson current in the
vicinity of a local vibrational mode on the superconducting
surface, which may provide a new detection technique.
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