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A mechanism of dx2−y2-wave superconductivity is proposed for the high Tc cuprates based on a spin texture
with nonzero topological charge density induced by hole doping through Zhang-Rice singlet formation. The
pairing interaction arises from a magnetic Lorentz force like the interaction between the holes and the spin
textures. The stability of the pairing state against the vortex-vortex interaction and the Coulomb repulsion is
examined. The mechanism suggests appearance of a p-wave pairing component by introducing anisotropy in
the CuO2 plane.
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I. INTRODUCTION

High-temperature superconductivity occurs in a moder-
ately hole-doped Mott insulator.1 The symmetry of the Coo-
per pairs has been established to be dx2−y2 wave.2 To explain
the mechanism of dx2−y2-wave superconductivity, several
mechanisms have been proposed. Among others, the antifer-
romagnetic spin fluctuation theory suggests a dx2−y2-wave
pairing mechanism3 between d-orbital electrons at copper
sites. Another dx2−y2-wave pairing mechanism is proposed in
the resonating valence bond �RVB� theory.1 In the RVB
theory, electrons are assumed to be spin-charge separated. In
the slave-boson approach,4 spinons, which carry the spin de-
grees of freedom, form a dx2−y2-wave pairing state. This pair-
ing state is associated with the short-range antiferromagnetic
correlations.5 Combined with Bose-Einstein condensation of
holons, which carry the electric charge, the pairing state of
the spinons leads to a dx2−y2-wave superconducting state.

Both of these theories are based on a pairing state be-
tween copper site electrons which produces antiferromag-
netic correlations. However, from the sign of the Hall
coefficient6 the charge carriers seem to be doped holes. Op-
tical conductivity measurements also support that the charge
carriers are doped holes because the Drude weight in the
optical conductivity7 is proportional to the doped hole con-
centration. If we assume that the charge carriers are doped
holes, then it is natural to expect that high-temperature su-
perconductivity is based on a dx2−y2-wave pairing mechanism
between doped holes. In this paper, we propose such a
mechanism based on a picture for the doped holes. The pic-
ture is that each hole induces a spin texture that is character-
ized by a nonvanishing topological charge density in the spin
system through the suppression of the antiferromagnetic cor-
relations.

In Ref. 8, a half-skyrmion spin texture9,10 formation is
discussed in the single-hole-doped cuprate within the nonlin-
ear � model �NLSM� description11 of the Heisenberg antifer-
romagnet. The formation of the half-skyrmion spin texture
can be understood by using an analogy to a superfluid sys-
tem: Let us consider a two-dimensional boson system which
exhibits superfluidity in the ground state. The Bose-Einstein
condensate is described by a Gross-Pitaevskii equation.12 If

we suppress the condensate at some point P, then we see that
a vortex is formed around P from the analysis of the Gross-
Pitaevskii equation. Note that the field described by the
Gross-Pitaevskii equation is a classical field. However, the
noncondensed component near the vortex core is described
by quantum bosons. In case of a charged boson system, the
condensate is locally suppressed by a magnetic flux, or a
vortex.

We can apply this result to the two-dimensional quantum
Heisenberg antiferromagnet. In the Schwinger boson mean-
field theory,13 the Néel ordering is described by Bose-
Einstein condensation of the Schwinger bosons.14 If we as-
sume that the doped hole forms a spin singlet with a
localized spin at a copper site, then the condensate is sup-
pressed at that site. Forming a Zhang-Rice singlet in the
antiferromagnet plays a similar role to introducing a mag-
netic flux in a charged boson condensate. As in the case of a
superfluid system, a vortex appears around the site. In terms
of the spins, the vortex is a spin texture with the nonvanish-
ing topological charge density15 that is given by

q�r� =
1

4�
n�r� · ��xn�r� � �yn�r�� , �1�

where the unit vector n�r� describes the staggered compo-
nent of the spins. Note that the spin at the core of the spin
texture is a quantum spin analogous to the normal compo-
nent near a vortex core in a superfluid, and so the spin can
form a singlet state with the doped hole spin, which is the
Zhang-Rice singlet.16 Based on the Schwinger boson mean-
field theory, we find that the topological charge, which is
obtained by integrating q�r� over the whole region, is quan-
tized to ±1/2.8,17 Because of this quantized value, the spin
texture is called a half skyrmion.

As argued in Ref. 8, the dispersion of the half skyrmion is
in good agreement with the results of angle-resolved photo-
emission spectroscopy �ARPES� in the undoped
compounds.18 The dispersion of the half-skyrmion excitation
is the same as that of the quasiparticles in the �-flux phase
with a dynamically induced mass.19,20 In fact, the effective
theory of the half skyrmion is similar to that of the �-flux
phase: the half skyrmions are described by Dirac fermions
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with a U�1� gauge field interaction. Anomalously broad
peaks observed in ARPES are associated with the self-
trapping of the half skyrmions due to the coupling to the
longitudinal gauge field.21

In Ref. 8, we assume that there is Néel ordering. The
presense of the Néel ordering is used for obtaining the quan-
tized topological charge. In the absence of Néel ordering, the
topological charge is no longer quantized because the anti-
ferromagnetic correlations decay exponentially with a length
scale given by the antiferromagnetic correlation length �AF.
However, the system preserves the local relationship be-
tween the hole density and the topological charge density.
We consider spin textures with such topological charge den-
sity and hereafter we call such a spin texture a staggered spin
vortex.

The rest of the paper is organized as follows. In Sec. II,
we describe the model for staggered-spin-vortex formation.
The pairing interaction is discussed in Sec. III. We solve the
gap equation in Sec. IV and show that the stable pairing state
has dx2−y2-wave symmetry. Section V is devoted to the con-
clusion.

II. MODEL

We assume that the holes and the localized spins are in-
dependent degrees of freedom. Such a model is, for instance,
the spin-fermion model, which is derived from the d-p model
by applying a canonical transformation. In such a model, the
spin system is described by the antiferromagnetic Heisenberg
model,

Hs = J�
�i,j�

Si · S j . �2�

Here the summation is taken over the nearest-neighbor sites
and Si denote the spin moment at copper sites. As an effec-
tive theory of the spin system, we consider the CP1 model,22

which is derived from the NLSM by representing n�x� in
terms of the Schwinger bosons: n=��,��z̄���,��z�:

SCP1 =
2

g
� d3x �

�=↑,↓
	
��� − i���z��x�
2 +

�sw
2

csw
2 
z��x�
2� ,

�3�

where �sw is the antiferromagnetic spin-wave excitation gap
and csw is the spin-wave velocity. The coupling g is given by
g=csw/	s with 	s=Z	J /4 the spin stiffness constant. Z	 is the
renormalization factor due to quantum phase fluctuations.
In the spin-disordered phase, �sw�0, and there is no
antiferromagnetic long-range order. The antiferromagnetic
correlations are characterized by the correlation length
�AF=csw/�sw. For Schwinger bosons, the presence of the an-
tiferromagnetic correlations is associated with phase coher-
ence among the Schwinger bosons.

For the kinetic energy of the holes, we assume

Hh = �
k�


kck�
† ck�, �4�

where 
k=k2 /2m with m the effective mass. This is an ap-
proximate form in the continuum.

The coupling between the holes and the localized spins S j
has the form of the antiferromagnetic Kondo coupling:

HK = JK�
j

�cj
†�cj� · S j . �5�

The parameter JK is on the order of 1–3 eV. Because of this
strong Kondo coupling, the holes suppress phase coherence
of the Schwinger bosons locally through Zhang-Rice singlet
formation. The suppression of the phase coherence leads to a
staggered spin vortex:

� � � = ��
s=±

s�s
†�r��s�r� , �6�

where ���=�x�y −�y�x and �+�−�
† is the creation operator

of the staggered spin vortex �antistaggered spin vortex�. The
coefficient is determined by considering the limit of
�AF→�. In this limit, the spin texture is the half skyrmion.
The gauge flux ��� is associated with the spin
chirality.23,24 Note that �����=0, because in equilibrium
there are equal numbers of staggered spin vortices and anti-
staggered spin vortices, and so ��ss�s

†�r��s�r��=0.
By integrating out the Schwinger bosons, we obtain the

effective action of the gauge field ��. Since �sw�0, the
action takes the Maxwellian form. That is, the gauge field is
massless. However, in the spin-disordered phase, the antifer-
romagnetic correlation length �AF is finite. Therefore, the
gauge field propagator decays with a length scale of �AF. To
include this feature, we perform a duality mapping. We write
z��x� as

z��x� = 	̄�
1/2 exp�i0 + iv� . �7�

Here the phase 0 is associated with the coherent motion of
the Schwinger bosons and the phase v is associated with the
staggered spin vortices. Note that this form is applicable for
the description outside the vortex cores. After performing a
Stratonovich-Hubbard transformation in Eq. �3�, we obtain
the following Lagrangian density:

L =
g

8	̄
J�

2 + iJ����0 + ��v − ��� . �8�

We find ��J�=0 by integrating out 0. This constraint is
satisfied by introducing a gauge field:

J� =
1

2�

�����A�. �9�

We define the vortex current by

j�
v =

1

2�

�������v. �10�

In terms of the staggered-spin-vortex and antistaggered-spin-
vortex fields, the vortex density is given by

	v�r� = �
s

s�s
†�r��s�r� . �11�

From the equation of continuity, �t	
v+� · jv=0, we find
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jv = �
s

s

2mi
��s

† � �s − ���s
†��s� , �12�

where we have used the fact that the kinetic energy of the
holes is described by Eq. �4�. The coupling between the
gauge field A� and the vortex current j�

v is the minimal cou-
pling:

Lint = − ij�
v A�. �13�

Since J0=��A /2� and J0 describes phase fluctuations
of the Schwinger boson density, the nonvanishing gauge flux
��A describes the suppression of the phase coherence.
Contrary to the gauge flux ���, the flux quantum for the
Meissner phase of A is 2� because the staggered spin vorti-
ces carry a unit gauge charge. Therefore, the relation be-
tween the vortex density and the gauge flux is

�
s

�s
†�r��s�r� = −

1

2�
� � A . �14�

The gauge field A� is equivalent to the gauge field in the
slave-boson mean-field theory.23

III. PAIRING INTERACTION

The pairing interaction is obtained from Eqs. �14� and
�13� by eliminating the gauge field A�. We take the Coulomb
gauge

� · A = 0. �15�

In the momentum space,

Aqx =
iqy

q2 Aq, Aqy = −
iqx

q2 Aq. �16�

From Eq. �14� we obtain

Aq = − 2��
ks

�ks
† �k+q,s. �17�

The staggered-spin-vortex current operator is

jq
v = �

k,s

s

m
	k +

q

2
��ks

† �k+q,s. �18�

Substituting these equations into Eq. �13�, we obtain

Hint = −
2�i

m�
�

q,s,s�

q � k�

q2 s��k+q,s
† �k�s�

† �k�+q,s��ks, �19�

where � is the area of the system. Since we are interested in
the Cooper pairing, we set k+k�+q=0. Thus, we obtain

Hint = −
2�i

m�
�

k�k�,s,s�

k � k�


k − k�
2
s��k�s

† �−k�,s�
† �−k,s��ks.

�20�

By making replacement of s→s�, s�→s, k�→−k�, and
k→−k, we obtain

Hint = −
2�i

m�
�

k�k�,s,s�

k � k�


k − k�
2
s�k�s

† �−k�,s�
† �−k,s��ks. �21�

Therefore, we may write

Hint = −
i�

m�
�

k�k�,s,s�

k � k�


k − k�
2
�s + s���k�s

† �−k�,s�
† �−k,s��ks.

�22�

From this form, it is apparent that the interaction exists for
either staggered-spin-vortex pairs or antistaggered-spin-
vortex pairs. The Hamiltonian is given by

H = �
s

H�s�, �23�

H�s� = �
k


k�ks
† �ks −

2�i

m�
�

k�k�

k � k�


k − k�
2
�k�s

† �−k�,s
† �−k,s�ks.

�24�

A similar pairing interaction was discussed in the compos-
ite fermion system at half-filled Landau levels.25,26 In that
system, the composite fermions are spinless fermions and
there is no other index associated with internal symmetry. It
was shown26,27 that the pairing interaction leads to a
�px± ipy�-wave pairing state. The sign is determined by the
direction of the applied magnetic field perpendicular to the
system. This pairing state is consistent with numerical
simulations.28

Before going into the analysis of the gap equation derived
from the Hamiltonian �23� and �24�, we give an intuitive
view about the origin of the attractive interaction. According
to Eq. �14�, the gauge flux ��A is produced by hole dop-
ing. Suppose a hole passes with the Fermi velocity the region
of the gauge flux created by another hole. Then, as schemati-
cally shown in Fig. 1, the motion of the former hole is
equivalent to a charged particle motion under a magnetic
field. A magnetic Lorentz-force-like interaction is induced
between the two holes. Such an interaction leads to a chiral

FIG. 1. Pairing interaction between the doped holes. Shaded
region represents the gauge flux ��A created by the hole at the
center. If another hole passes this region with the Fermi velocity as
shown in the figure, a magnetic Lorentz-force-like interaction is
induced between the two holes.
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pairing state. In this pairing mechanism, the gap is scaled by
the Fermi energy. Since holes carry either positive or nega-
tive gauge charge, we expect there are two chiral pairing
states with opposite chiralities. The stable pairing state in the
bulk turns out to be a dx2−y2-wave pairing state as we shall
show in the next section.

IV. GAP EQUATION

Now we apply the BCS mean-field theory to Eq. �23�.
First we consider staggered-spin-vortex pairs described by
H�+�. In the following, we set �k=�k+ and �k

†=�k+
† , to sim-

plify notation. We consider the grand canonical ensemble
and define the following mean field:

�k
�+� = −

1

�
�

k���k�

Vkk���−k��k�� , �25�

where

Vkk� = −
4�i

m

k � k�


k − k�
2
. �26�

The mean-field Hamiltonian is

HMF
�+� = �

k

���k�k
†�k − �k�−k�−k

† + ��k
�+��*�−k�k + �k

�+��k
†�−k

† � ,

�27�

where �k=
k−� with � the chemical potential and the sum-
mation in the momentum space is taken over half of the
Brillouin zone. The gap equation is given by

�k
�+� = −

1

2�
�

k���k�

Vkk�

�k�
�+�

Ek�
tanh

�Ek�

2
, �28�

with Ek=��k
2+ 
�k

�+�
2.
A similar gap equation is analyzed in Ref. 25 in the con-

text of the composite fermion pairing. We apply the analysis
presented in Ref. 25. In order to solve the gap equation, we
introduce the following ansatz:27

�k
�+� = �k exp�− i�k� , �29�

where � is an integer. In Eq. �28� the integral with respect to
k� is reduced to

I���� = �
0

2�

d
sin 

cos  − �
exp�i�� , �30�

with �= �k2+k�2� / �2kk��. The function I���� is exactly cal-
culated by setting z=exp�i� and applying a contour integral
in the complex plane. From Eq. �28�, we see that if the in-
teraction is attractive �repulsive� then the sign of I���� is
positive �negative�. For the ��0 case, I�����0 while for the
��0 case, I�����0, and I�=0���=0. Therefore, the gap
equation has solutions only for ��0. Thus, we obtain

�k =
1

2m�0

k

dk�
k��k�

Ek�
	 k�

k
��

+ �
k

�

dk�
k��k�

Ek�
	 k

k�
��� .

�31�

From the asymptotic forms in k→� and k→0, we take the
following approximate form:25

�k = ��
F�k/kF�� for k � kF,

�
F�kF/k�� for k � kF,
� �32�

where 
F is the Fermi energy of the holes. The gap � is
obtained from the following equation:

�
0

1

dx
x2�+1

��x2 − 1�2 + �2x2�
+ �

1

�

dx
x1−2�

��x2 − 1�2 + �2x−2�
= 1.

�33�

The largest gap �=0.916 is obtained for the case of a p wave
��=1�. The second largest gap �=0.406 is obtained for the
case of a d wave ��=2�. The third largest gap is �=0.264 for
�=3.

For antistaggered-spin-vortex pairs, we may carry out the
same analysis. Since the interaction term has opposite sign
compared to the staggered-spin-vortex pair case, the gap
function �k

�−� has the following form:

�k
�−� = �k exp�i�k� , �34�

with ��0.
From the above analyses, the linear combination of the

gap functions is

�k = ��k
�+� + �k

�−��/2 = �k cos��k� . �35�

The relative phase between �k
�+� and �k

�−� is set to be zero. �A
nonzero phase can appear if there is a magnetic field.� For
the case of �=1, the symmetry of the Cooper pair is px. Such
a state can be stablized only at the boundary of the sample in
the square lattice. Meanwhile, for the �=2 case, the
dx2−y2-wave pairing state is stable in the bulk. Thus, we may
conclude that the above pairing interaction leads to
dx2−y2-wave superconductivity.

The above analysis is carried out for the staggered spin
vortices. In terms of those fields, the hole spin states are
implicit. For spin-singlet pairing states, the spin states should
be

��−k
↓ �k

↑� �36�

and

��−k
↑ �k

↓� , �37�

where � in �k
� denotes the hole spin state. The relative phase,

which is arbitrary in the above analysis, is � for the spin-
singlet pairing state:

��−k
↓ �k

↑� = − ��−k
↑ �k

↓� . �38�

Now we consider the effect of the staggered-spin vortex-
vortex interaction and the Coulomb interaction. Those repul-
sive interactions reduce the gap value. In the following we
consider those effects separately. In order to evaluate the
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vortex-vortex interaction effect, we consider a two-vortex
solution as follows:

v = tan−1 y

x
+ tan−1 y

x − d
. �39�

The interaction energy between the vortices is

Vvv�d� =
J

2
Z		̄� d2r

ẑ � r

r2 ·
ẑ � �x − d,y�
�x − d�2 + y2 . �40�

Taking into account the fact that the range of the interaction
is limited by the antiferromagnetic correlation length �AF, we
obtain

Vvv�d� � �JZ		̄ ln
�AF

d
. �41�

In the momentum space,

Vvv�q� =
2��AF

2

q2 JZ		̄ , �42�

with the constraint q�2� /�AF.
In the presence of the vortex-vortex interaction Vvv�q�, the

gap equation is given by

1 = �
0

1

dx
x2�+1

��x2 − 1�2 + �2x2�
+ �

1

�

dx
x1−2�

��x2 − 1�2 + �2x−2�

− Cv	�
0

1−�

dx
x2�

��x2 − 1�2 + �2x2�

x

1 − x2

+ �
1+�

�

dx
x−2�

��x2 − 1�2 + �2/x2�

x

x2 − 1� , �43�

where �=2� / �kF�AF� and the constant Cv is

Cv =
�J

8
F
Z		̄�AF

2 . �44�

We take Cv�0.5 as a reasonable value at x=0.10 by setting
	̄�AF

2 �1, J /
F�2. For Z	, the value of Z	=0.72 is used,
which is estimated from quantum Monte Carlo simulations.29

Figure 2 shows the kF�AF dependence of the gap parameters
for each �. The effect of the vortex-vortex interaction is large
for strong antiferromagnetic correlations. The gap values are
somewhat reduced by the vortex-vortex interaction. While
the relevant parameter region would be �AFkF / �2��=1–2,
around �AFkF / �2���3, the f-wave gap becomes larger than
the d-wave gap. Note that as an approximation, Cv is fixed in
the above calculation for simplicity. For more precise calcu-
lations, we require a detailed analysis of the �AFkF depen-
dence of 	̄ and Z	.

Another pairing mechanism based on merons, which pre-
sumably correspond to the spin texture with nonzero topo-
logical charge density, was discussed by Berciu and
John.30,31 From the analysis of an extended Hubbard model,
where a nearest-neighbor Coulomb repulsion is included, it
was suggested that meron-antimeron pairs lead to d-wave
superconductivity. In Refs. 30 and 31, the pairing interaction
between merons and antimerons comes from the vortex-

antivortex interaction, and the pairing interaction �22� is not
considered. Although the vortex-antivortex interaction is an
attractive interaction, the analysis of the gap equation for the
vortex-antivortex interaction within our ansatz shows that
there is no pairing state for �AFkF / �2���13. In this analysis,
the coefficient Cv is fixed. More precise analysis requires the
�AF dependence of Cv. However, Cv is expected to be an
increasing function with respect to �AF, and the increase of
Cv leads to a reduction of the gap values for large �AF.

Now we consider the effect of the Coulomb interaction.
The Coulomb interaction between the holes is

Vq
C =

2�e2


q
, �45�

with 
 the dielectric constant. The gap equation with the
Coulomb interaction is

1 = �
0

1

dx
x2�+1

��x2 − 1�2 + �2x2�
+ �

1

�

dx
x1−2�

��x2 − 1�2 + �2x−2�

− Ce�
0

1

dx
x2�+1/2

��x2 − 1�2 + �2x2�
J�	 x2 + 1

2x
�

+ �
1

�

dx
x1/2−2�

��x2 − 1�2 + �2/x2�
J�	 x2 + 1

2x
�� , �46�

where

J���� = �
0

2�

d
cos���

�� − cos 
, �47�

Ce =
e2kF

8�2�

. �48�

Figure 3 shows the 1/
 dependence of the gap � for each �.

V. CONCLUSION

In this paper, we have proposed a mechanism of
dx2−y2-wave superconductivity based on a spin texture with

FIG. 2. The gap parameter � versus �AFkF / �2��.

MECHANISM OF dx2−y2-WAVE SUPERCONDUCTIVITY… PHYSICAL REVIEW B 73, 064504 �2006�

064504-5



nonzero topological charge density. The spin texture forma-
tion is based on the Zhang-Rice singlet formation in the
background of the antiferromagnetic correlations. In terms of
a gauge field that describes antiferromagnetic spin correla-
tions, the spin texture is described by a gauge flux. The in-
teraction between the flux and the hole current induces a
magnetic Lorentz-force-like interaction between the holes.

Such an interaction leads to chiral pairing states with oppo-
site chiralities. It turns out that the stable pairing state in the
bulk is the dx2−y2-wave pairing state. The stability of the pair-
ing state is examined against the vortex-vortex interaction
and the Coulomb interaction.

In our pairing mechanism, the p-wave state is unstable in
the bulk. However, this state can be stabilized in the presence
of anisotropy. Since the p-wave gap is much larger than the
d-wave gap, we expect enhancement of the superconducting
transition temperature if we can induce that component. If
there is a p-wave component, then the parity is broken lo-
cally, while the time-reversal symmetry is not broken unless
one chiral pairing state is suppressed.
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