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Randomly diluted quantum boson and spin models in two dimensions combine the physics of classical
percolation with the well-known dimensionality dependence of ordering in quantum lattice models. This
combination is rather subtle for models that order in two dimensions but have no true order in one dimension,
as the percolation cluster near threshold is a fractal of dimension between 1 and 2: two experimentally relevant
examples are the O�2� quantum rotor and the Heisenberg antiferromagnet. We study two analytic descriptions
of the O�2� quantum rotor near the percolation threshold. First a spin-wave expansion is shown to predict
long-ranged order, but there are statistically rare points on the cluster that violate the standard assumptions of
spin-wave theory. A real-space renormalization group �RSRG� approach is then used to understand how these
rare points modify ordering of the O�2� rotor. A new class of fixed points of the RSRG equations for disordered
one-dimensional bosons is identified and shown to support the existence of long-range order on the percolation
backbone in two dimensions. These results are relevant to experiments on bosons in optical lattices and
superconducting arrays, and also �qualitatively� for the diluted Heisenberg antiferromagnet
La2�Zn,Mg�xCu1−xO4.
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I. INTRODUCTION

The physics of classical lattice percolation has been used
to model a great variety of physical systems with consider-
able success,1 and recent results on two-dimensional perco-
lation have put this classical theory on a firm mathematical
footing.2 Several materials of current interest are well de-
scribed by combining random dilution with lattice quantum
degrees of freedom, as in a magnetic material in which some
quantum spins have been removed by chemical dilution.3

Aside from its interest as a microscopic description of dilu-
tion in materials, percolation is important as the simplest
nondeterministic process for generating a “fractal,” an object
of fractional dimensionality:4 as explained later in this intro-
duction, there is a geometric phase transition in randomly
diluted lattice systems with a fractal structure at the transi-
tion point.

The focus of this paper is on models for randomly diluted
interacting bosons. These models describe superconducting
Josephson-junction arrays with only on-site interactions and
a finite density of defective junctions, or bosons, in optical
lattices where some sites remain empty. Percolation of super-
conductivity at short length scales has also been discussed as
a model for inhomogeneity observed by scanning tunneling
microscopy on the high-temperature superconductor5

Bi2Sr2CaCu2O8+�. Finally, the O�2� rotor is qualitatively
similar to the nearest-neighbor s=1/2 antiferromagnetic
Heisenberg model in that both have long-range order in two
dimensions but only algebraic correlations in one dimension.
The diluted Heisenberg model has been studied
numerically3,6,7 and in neutron scattering experiments on
La2�Zn,Mg�xCu1−xO4.3

Our interest in interacting bosons suggests that we con-
sider the diluted O�2� quantum rotor model. More generally,
the O�N� quantum rotor model8 has a N component unit
vector n̂i living at every lattice site i. The effect of dilution is
incorporated by defining the symbol �ij to be unity if the
bond ij is present in the diluted system and zero otherwise.
For concreteness, we consider bond dilution though the re-
sults are more general. Then, the Hamiltonian for a particular
realization of the dilution ��ij� is given by

H =
U

2 �
i

Li
2 − J�

�ij�
�ijn̂i · n̂j , �1�

where U and J are positive coupling constants, and the com-
ponents of the angular momenta �L	�� are given by �L	��

= p�n�− p�n� �����, where �n� , p�	= i���, and the Greek
indices take values from 1 to N. Thus the kinetic energy part
of the Hamiltonian is just L2=����L��

2 . For undiluted lat-
tices of dimension d�2, the quantum O�N� rotor model has
long-range order, as long as quantum fluctuations �measured
by the ratio U /J� are below some nonzero, N-dependent,
critical value �U /J�c. However, a chain of quantum rotors
has no long-range order for any N�2, unless U=0.8

In a certain sense, a planar material with a large fraction
of diluted bonds �or sites� has geometry between one and
two dimensions. When the dilution fraction p reaches a
lattice-dependent critical value �pc=1/2 for square lattice
bond dilution�, there is a geometric phase transition: for p
� pc, there is an infinite nearest-neighbor connected cluster
of undiluted sites for essentially all realizations of dilution;
while for p� pc, there is no infinite cluster.1 At threshold
�p= pc�, the number of bonds of the cluster, N�r�, contained
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in a small circle of radius r around a given bond of the
cluster: N�r�
rdf, with the fractal dimension df =91/48
�1.896 �Ref. 1�. Now, an undiluted chain of sites has N�r�

r and an undiluted square lattice, N�r�
r2, so, in this
sense, the cluster is “between” one and two dimensions.
Note, however, that other geometric properties of the cluster
have other dimensionalities, some, in fact, less than one.1

Allowing quantum fluctuations �U�0�, raises an impor-
tant question about the nature of order in diluted, planar sys-
tems: Does the order on the critical cluster which exists for
U=0 persist for nonzero U? Early numerical and analytic
work on the diluted Heisenberg model suggested that long-
range order vanishes before the percolation threshold,9,10 al-
though recent numerics disagree.6,11 Recent numerical work
on �1� for p=1/4, N=2 found that long-range order persists
up to �U /J�c=2.625�3�.12 This paper begins to resolve this
question analytically by coupling a spin-wave approach to a
complementary real-space renormalization group �RSRG�
analysis.

The spin-wave approximation, described in Sec. II, pro-
vides a natural first step for describing the effects of weak
quantum fluctuations on the O�N� rotor model at threshold.
We show that the fracton dimension ds of the cluster, which
is close to 4/3 for percolation in any dimension,1 is the rel-
evant dimension to consider when discussing ordering near
percolation threshold. Since the fracton dimension is greater
than one, quantum fluctuations of the order parameter on an
average site of the cluster are small, according to our com-
putation. We also cite a rigorous result that implies, within
the framework of the spin-wave approximation, that all sites
have small quantum fluctuations provided that p� pc.

In principle, this is not enough to argue that the superfluid
order is stable to quantum fluctuations. One might worry
whether the stability to quantum fluctuations persists beyond
the weak quantum fluctuations allowed by the spin-wave ap-
proximation. Further, at p= pc where the spin-wave approach
only describes the behavior of an average site, one might be
concerned that quantum fluctuations suppress superfluid or-
der on a set of sites of measure zero on the percolation clus-
ter. If these special sites are such that in their absence the full
connectivity of the cluster is lost, then there still may be no
true long-range order. For instance, the order may be de-
stroyed on the long one-dimensional �1D� segments connect-
ing the large blobs on the percolation cluster’s backbone
�Fig. 1�.

In Sec. III, we identify an effective model for rotors on
the cluster backbone that incorporates fluctuations along long

links beyond the linear approximation. The physical idea,
which we develop in detail is that these fluctuations occur on
a qualitatively faster time scale than fluctuations in the blobs.
We refer to this as the slow-blob approximation �SBA�.
Within the SBA, we compute a low-energy effective Hamil-
tonian for the O�N� rotor model on the percolation cluster.
Due to the one-dimensional topology of the backbone, the
effective Hamiltonian is a one-dimensional O�N� rotor model
with strongly inhomogeneous charging �ui� and exchange �ji�
energies

HSB = �
i

ui

2
Li

2 − �
i

jin̂i · n̂i+1, �2�

where the coupling constants �ji�, �ui� are independent, ran-
dom variables, with distributions P�j� and R�u�, respectively.
Like the �ij in �1�, these coupling constants are randomly
distributed. However, the distributions P�j�, R�u� are con-
tinuous for small j�J and small u�U, respectively. In con-
trast, the �ij have a discontinuous, bimodal distribution. Note
that the SBA drastically simplifies the geometry of the prob-
lem. In the SBA, the effective model �2� is truly one-
dimensional: namely the 1D O�N� rotor model with strong
disorder. For large-scale, numerical simulations of �2� see
Ref. 13.

To reach this effective description, we focus on the back-
bone of the incipient infinite cluster. Most bonds lie off the
backbone: our physical idea is that these “dangling” bonds
will exhibit long-range order if and only if the backbone
bonds do so. This is reasonable, since at U=0, the dangling
bonds play no role in communicating phase correlations.
Moreover, previous work following this line of analysis suc-
cessfully explains a number of basic phenomena of ordering
near percolation threshold. For example, the finite tempera-
ture phase diagram in any dimension of classical magnets
diluted with nonmagnetic impurities �e.g., RbpMn1−pF2
which has a large S=5/2 local moment� follows from ana-
lyzing backbone thermodynamics.1,14,15 Further, for quantum
magnets with discrete symmetry �such as the transverse field
Ising model�, backbone physics accounts for the zero tem-
perature phase diagram as well.16 The present work simply
extends the previous treatments to cover continuous, quan-
tum degrees of freedom.

Recently, the real-space renormalization group approach
to quantum systems with strong disorder, perfected by D. S.
Fisher in the context of random-exchange Heisenberg anti-
ferromagnetic spin chains,17 has been extended to the 1D
O�2� rotor model with strong disorder by E. Altman et al.18

In Secs. IV and V, the machinery of this approach is brought
to bear on the effective model in Eq. �2�. The result indicates
that for the O�2� rotor, superfluid order persists at threshold
even with a large amount of quantum fluctuation, namely, up
to U /J��U /J�KT�	2 /4, where �U /J�KT is the location of
the Kosterlitz-Thouless transition of the clean 1D O�2� rotor
model. Section V treats the range U /J� �U /J�KT, while Sec.
IV discusses the loss of superfluid order which occurs just
above �U /J�KT.

Section VI concludes the paper with a discussion of the
phase diagram of the O�2� rotor model with quenched dilu-

FIG. 1. The backbone of a percolation cluster is the union of
self-avoiding walks on the cluster. It consists of blobs �ovals� con-
nected by links. The internal structure of a blob �inset� shows that
blobs consist of bonds which may be removed without disconnect-
ing the cluster. In contrast, links consist of bonds which, if re-
moved, disconnect the cluster.
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tion. Two appendices present details of the real-space renor-
malization group computations.

II. SPIN WAVES ON THE CRITICAL PERCOLATION
CLUSTER

There are two main results of this analysis: First, exactly
at threshold �p= pc� and except for certain rare points �“geo-
metric fluctuations”�, long-range order is stable to weak
quantum fluctuations. Second, away from threshold, on the
percolating side �p� pc�, long-range order is stable to weak
quantum fluctuations on any site, for almost all clusters.

Clearly, if U=0 in �1�, we are in the classical limit of this
model, and the ground state simply has n̂i=const on all sites
of a connected cluster. The question that we will address first
is, exactly at the percolation threshold, does this long-range
order on the percolation cluster survive the addition of small
quantum fluctuations? We will address this question within a
spin-wave calculation. Since the spin-wave calculation is es-
sentially identical for all N�2, we specialize below to the
O�2� model

H =
U

2 �
i

ni
2 − J�

�ij�
�ij cos�
i − 
 j� . �3�

The 
i represent the phase of the bosons at site i. The opera-
tor ni has integer eigenvalues and physically represents the
excess boson number at each site. The 
i and ni on a site are
conjugate variables

�ni,exp i
 j	 = �ij exp i
i. �4�

This model may also be taken to represent an array of Jo-
sephson junctions. U is a measure of the charging energy that
induces quantum fluctuations of the phase, J is the strength
of the Josephson coupling.

In the absence of quantum fluctuations �U=0�, the classi-
cal ground state is simply 
i=const. The effect of turning on
a small U /J may be addressed in a harmonic �spin-wave�
approximation by simply expanding the cosine

Hsw =
U

2 �
i

ni
2 +

J

2�
�ij�

�ij�
i − 
 j�2. �5�

It is easier to work with the equivalent Euclidean �imagi-
nary time� action

S =� d��
i

1

2U
���
i�2 +

J

2�
�ij�


iTij
 j

=
1

2
� d̄��2

U
�ij + JTij�
i���
 j�− �� , �6�

where we have rewritten the potential energy part using Tij

=�ij�2�ij −1�, and the frequency integral has d̄�=d� /2	.
In this quadratic approximation, the superfluid order pa-

rameter is readily calculated

�exp i
i� = exp−
1

2
�
i

2��

�
i
2� =� d̄���21

U
+ JT�−1�

ii
�7�

=�U

J
�T−1/2	ii. �8�

Note that �
i
2� is formally of order �U /J. For small U /J,

it will, therefore, be small so long as �T−1/2	ii is finite, and
the long-range order will survive quantum fluctuations. Be-
low, we will establish the required finiteness.

Equation �8� may be usefully rewritten in terms of the
eigenvalues and eigenvectors of the matrix T. Since T is a
real, symmetric positive semidefinite �xTTx�0� matrix, it
has real eigenvectors and eigenvalues �n ,�n� with �n�0
�the zero eigenvalue is obtained for the uniform vector on
connected sites�

�
j

Tijn�j� = �nn�i� . �9�

Clearly, this is just the eigenvalue problem for the Laplacian
on the lattice defined by the �ij, which in this case is taken to
be at the percolation threshold. We get

�
i
2� = �

n

1
��n

�n�i�	2. �10�

The eigenvectors are assumed to be normalized on the per-
colation cluster

�
j�perc.cluster

n
2�j� = 1. �11�

To argue for the finiteness of the integral in Eq. �10�, we
first consider the site-averaged value of the rms phase fluc-
tuation

�
2�Perc =
1

Np
�

i�Perc.cluster

�
i
2� �12�

=
1

Np
�

n

1
��n

. �13�

Here, Np is the total number of sites on the incipient cluster
and we have used Eqs. �10� and �11�. In terms of the density
of states per site ���� for the eigenvalues of the operator T

���� =
1

Np
�

n

��� − �n� , �14�

we have

�
2�Perc = �
0

�

d�
����
��

. �15�

Finiteness �or lack thereof� of the phase fluctuations is
determined by the behavior of the density of states at very
small �. In the thermodynamic limit, the asymptotic behavior
of ���� is known,1 since T is proportional to the Laplacian
on the percolation cluster. We have

���� 
 �ds/2−1, �16�
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where ds is called the fracton dimension. �On a regular one-
dimensional line, we note that ds=1, which gives the well-
known logarithmic divergence in the rms value of the phase
fluctuations�. For percolation clusters in spatial dimension,
d=2, ds=1.32 �see Ref. 1�. In fact for percolation clusters in
all dimensions, its value is very close to 4/3.

Thus, for percolation in d=2, we have

�
2�Perc 
� d��−0.84, �17�

which is clearly finite when integrated over small �. Since
the fracton dimension of a percolation cluster does not vary
much with spatial dimension, this finiteness of the site-
averaged rms phase fluctuations holds for percolation in any
dimension d�2.

To reinforce this point, we turn to an alternate represen-
tation of the suppression of superfluid order in terms of the
return probability of a random walker. Using a recent rigor-
ous result for the latter, we can establish bounds on the
former for an any site of the cluster, provided that we are
away from threshold on the percolating side �p� pc�.

Consider a random walker placed on the percolation clus-
ter, that begins its walk at site i. The differential equation
describing the time evolution of the probability of this
walker being found at time t at position j �Pi�j , t�	 is

�tPi�j,t� = − TjkPi�k,t� , �18�

where an appropriate choice of the stepping rate has been
made. Thus, the probability of the particle returning to the
site i where it started from is simply related to the eigenval-
ues and eigenfunctions of the Laplacian operator on the per-
colation cluster

Pi�i,t� = �
n

n
2�i�exp�− �nt� . �19�

The root mean square �rms� phase fluctuation amplitude at a
site i �10� can be simply expressed in terms of this return
probability Pii�t� as

�
i
2� = �

0

�

dt
Pi�i,t�
�	t

. �20�

As a simple check of this formula, consider the case of a
linear lattice, uniform, nearest-neighbor hopping Jij =Ji,i+1
=J. Then, the walker just performs a random walk in one
dimension. If one takes the naive continuum limit of �18�, it
is not hard to see that the return probability decays like 1/�t
as t→�. Applying �20�, this implies the usual logarithmic
divergence in the rms phase fluctuations that destroys long-
range order in one-dimensional superfluids.19

For some percolation clusters, Remy and Mathieu have
found an upper bound for the asymptotic decay of the return
probability.20 They considered site percolation on the square
lattice and looked at strictly p� pc: the random walker has an
infinite connected cluster to explore. They showed rigorously
that for almost all cluster realizations, as t→�, there exists a
constant c1=c1�p�, such that

Pi�i,t� �
c1

t
, �21�

where i refers to any site of the cluster. In other words, the
asymptotic decay of the heat kernel on all sites of almost all
cluster realizations, decays as fast as it does in the undiluted
two-dimensional lattice. Using �20�, this implies that for any
site on the infinite cluster for p� pc, the contribution to rms
phase fluctuations from asymptotically long time scales is
indeed finite and bounded.

The two main results of this section suggest that long-
range order is stable to weak quantum fluctuations. We es-
tablished these results by making the spin-wave approxima-
tion to linearize the equations of motion. In the following
section, we introduce a complementary approach �the slow-
blob approximation� that treats the nonlinear dynamics be-
yond the spin-wave approximation.

III. SLOW BLOB APPROXIMATION TO O„N… MODEL
AT p=pc

This section defines, justifies, and carries out the first
stage of the slow blob approximation to �1�.

Within the slow-blob approximation to the backbone, we
proceed in two stages. In the first stage, we treat blob degrees
of freedom as parameters rather than dynamical variables,
and we solve the link problem for the ground-state energy
E��n̂i��. Since links connect only to blobs �Fig. 1�, the link
problem reduces to that of independent links. In the second
stage �discussed in Secs. IV and V�, we treat the link ground-
state energy E��n̂i�� as a potential energy for the blobs and
solve for the blob ground state. Since blobs form a linear
array along the backbone �Fig. 1�, the effective model �2�
describing the blob dynamics is truly one-dimensional.

The relevant control parameter underlying the slow-blob
approximation is the ratio u /U of blob charging energy to
bare charging energy. When this is small, blobs are quasi-
classical and relatively static. In general, it is small. Treating
the blobs as internally ordered �a good approximation, see
below�, one has the simple relation

u =
U

n
, �22�

where n is the number of sites in a given blob. Now, on
average, blobs are very big: �n��Ldb−1/�, where L is the side
length of finite lattice.21 See Table I for estimates of the
backbone dimension db and correlation length exponent �.
The bottom line is that in two and three dimensions, db
−1/��0. For db�1/�, the blobs attached to the ends of a
given link have, on average, a thermodynamically small
charging energy: u
U /Ldb−1/�. Further, even the smallest
blobs must contain at least four sites, so, even in the worst
case, the blob charging energy u /U� .25 is reasonably small.

This computation treats the blobs as internally ordered,
which is a reliable approximation. If the blobs were not in-
ternally ordered, then the site-averaged rms phase fluctua-
tions �
2�perc would not be finite. In Sec. II, we showed in the
spin-wave approximation that the fluctuations are finite �see
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�17�	. Thus the blobs must be internally ordered, and our
computation in the preceding paragraph can be trusted.

Since the blobs are internally ordered, the distribution of
blob charging energies R�u� entering the kinetic energy �first
term of Eq. �2�	 follows directly from the distribution r�n� of
blob sizes n. For large n�1, the fraction of blobs with size
n, scales like r�n��n−2+�, with 0���1, given by �=1
−1/ �db��.21 See Table I for estimates of �. Using �22�, we
simply change variables from blob size n to charging energy
u

R�u� = r�U/u��d�U/u�
du

�−1

� u−�, �23�

where u�U is the charging energy of a given blob. This
power-law distribution of charging energies exhibits strong
disorder: for example, the average inverse charging energy
�1/u� diverges in the thermodynamic limit.

After this derivation of the kinetic energy �first term of
Eq. �2�	, let us now begin with the first stage of the slow-
blob approximation and derive the potential energy term, in
particular, the link strength distribution P�j� for j�J. Fol-
lowing the idea of the slow-boson approximation, we treat
the blobs as parameters and determine the ground-state en-
ergy of the links. As noted at the beginning of the section,
blobs separate links from each other, so, to good approxima-
tion, the potential energy is a sum of nearest-neighbor terms:
E��n̂i��=�ie�n̂i , n̂i+1�, where e�n̂i , n̂i+1� is the ground-state en-
ergy of the link separating blob i and blob i+1. In general,
the two neighboring blobs are not aligned n̂1� n̂2. Naturally,
the ground-state energy of the link of length � connecting
them increases by an �-dependent amount, due to these
twisted boundary conditions

e�n̂i, n̂i+1� � − j���n̂i · n̂i+1, �24�

where the “stiffness” j����0, depends on the link length �
and, implicitly, on the parameters of the bare model J ,U in
�1�. This “stiffness” is the source of the potential energy in
�2�. In Secs. IV and V, we proceed with the second stage of
the slow-blob approximation by solving for the ground state
of this effective model. Before doing so, let us complete the
derivation of �2� by computing the link strength distribution
P�j� for j�J.

The source of the link strength disorder is the variation in
length �. In fact, the lengths have an exponential distribution

p��� 
 exp�− �/�0� , �25�

with, for example, �0�2.7 for square lattice site perco-
lation.21,22 From this, we can deduce the distribution of blob
exchange couplings P�j� appearing in �2� by a simple change
of variables

P�j� = p���� dj���
d�

�−1

, �26�

where � is the link length satisfying j���= j.
It remains to compute the stiffness of a link. Fortunately,

Cardy has computed j���.23 For N=2, there are two qualita-
tively different cases to consider: large U �U�	2J /4� and
small U �U�	2J /4�. For large U, the link breaks into seg-
ments of length � with the property that rotors in different
segments are essentially uncorrelated. In this “short-range”
phase, the stiffness drops off exponentially with link length:
j���
exp�−� /��. In contrast, for small U, the stiffness falls
off only as �−1: j���→k /�. For N�3, there is only one case
to consider, since for all values of U /J, the link is in a short-
range phase with exponentially small stiffness.8 To summa-
rize, the stiffness depends on link length as follows:

j��� 
 �k/� , N = 2 �small U� ,

e−�/�, N � 3, and N = 2 �large U� .
� �27�

Plugging this into �26� gives the link strength distribution
P�j�

P�j� 
 �e−k/�0j , N = 2 �small U� ,

j�/�0−1, N � 3, and N = 2 �large U� .
� �28�

We have now completely specified the blob problem �2� and
are ready for the second stage of the slow-blob approxima-
tion to �1� at p= pc.

The goal of the effective model �2� is to understand the
competition between two possibilities: either very large
blobs tend to “anchor” order across one-dimensional links, as
has been suggested to explain ordering in the diluted two-
dimensional �2D� Heisenberg model or else fluctuations
within one-dimensional links destroy long-range order. Both
possibilities are realized in our model for different values of
the initial distributions. For parameters chosen to reflect ac-
tual percolation clusters in 2D, our renormalization group
calculation, described in Secs. IV and V, will find long-range
order.

The next step is to see how this power-law distribution of
blob sizes enhances ordering and leads to new fixed points in
a real-space renormalization group calculation for disordered
interacting bosons in 1D.

IV. RENORMALIZATION GROUP FLOW OF O„2… MODEL
FOR LARGE U

The main result of this section is a criterion �see Eq. �46�	
for the value �U /J�c��U /J�KT�	2 /4 of bare coupling in
�1� where long-range order disappears at the percolation

TABLE I. Correlation-length �, backbone db, and blob-size �
exponents for percolation in various dimensions d. For approximate
results, the number in parentheses indicates standard deviation of
the last digit.

d 2 3 �6a

� 4/3b 1.12�1�c 1 /2

db 1.6431�6�d 1.74�2�c 2

� 0.5435�2� 0.487�10� 0

aMean-field theory works for d�6 and gives exact exponents, see
Ref. 24.
bExact, see Ref. 25.
cReference 21.
dReference 26.
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threshold. To derive it, we carry out the second stage of the
slow-blob approximation by computing the low-energy prop-
erties of the one-dimensional effective model �2�. Since the
effective model is truly one-dimensional and has strong dis-
order, we do this by carrying out a real-space renormaliza-
tion group calculation.

The idea of the real-space renormalization group for the
O�2� rotor in 1D is to successively integrate out either the
largest Josephson coupling or the largest charging energy.
�See Appendix A for a description of the elementary renor-
malization group step and its generalization to the O�N�
case.	 This iterative procedure generates flow equations for
the distributions of charging energy and Josephson coupling.
The capacitance distribution is given as a function f��� of the
scaled variable �=� /u−1, where � is an upper cutoff of
energy, �=maxi�ui , ji�, and the Josephson coupling distribu-
tion is given as a function g��� of the scaled variable �
=ln�� / j�.

The analysis of one-dimensional models begins with the
RSRG flow equations18 as a function of energy scale � for
the charging energy distribution f�� ,�� and Josephson cou-
pling distribution g�� ,��

�f

��
= g0�

0

� �
0

�

f��1�f��2����1 + �2 + 1 − ��d�1d�2

+ �1 + ��
�f

��
+ �f0 + 1 − g0�f .

�g

��
= f0�

0

� �
0

�

d�1d�2g��1�g��2����1 + �2 − �� +
�g

��

+ g�g0 − f0� . �29�

Here, �=ln��I /�� tracks the progress of the renormalization
flow ��I is the largest coupling in �2� before renormaliza-
tion	, f0= f�0�, and g0=g�0�. We will eventually discuss the
behavior of the coupled f and g equations, but for now, con-
sider g0 as a constant parameter in the f flow equation.

It is possible to get immediate insight into the phase dia-
gram found for exponential distributions18 by averaging both
sides of the flow equation. The average ���=�0

��f���d�, if it
exists as for the exponential distributions considered in by
Altamn et al.,18 evolves as

d

d�
��� = g0�1 + ���� + f0��� − 1 − ��� . �30�

In this form, we can understand the appearance of a transi-
tion at g0=1 for the class of distributions studied in Ref. 18:
for that one-parameter family of distributions fa���=ae−�a, so
that f0=a, we have ���=1/a so

f0��� − 1 − ��� = − 1/a = − 1/f0. �31�

The flow equation for the mean capacitance, if the function f
is initially of the form fa, is

d

d�
��� = g0�1 + 1/a� − 1/a = g0 + �g0 − 1�/a . �32�

The replacement ���1+�2+1−��→���1+�2−�� made in
Ref. 18 corresponds to replacing g0�1+ ���� by g0��� in �30�.
With this replacement, an f distribution initially in the one-
parameter family remains in this one-parameter family even
for nonzero g0, and the average charging energy a flows as
follows:18

da

d�
= �1 − g0�a . �33�

This equation is written in terms of a rather than f0 in order
to stress that it is specific to exponential distributions. It is
now shown that power-law distributions have a different
renormalization group �RG� equation with different qualita-
tive behavior, leading to a significantly different phase dia-
gram.

There are exact fixed points of the RG flow equation that
are not contained in the family of exponential distributions
that has been studied previously. Power-law distributions are
needed both to describe these fixed points and to model the
fractal distribution of blob sizes on the percolation cluster
�see Eq. �23�	. Consider setting g0=0. Physically, this means
only charging energies will ever get integrated out. Formally,
it means the RG flow just changes the cutoff �. In this re-
gime, any scale-invariant fixed point of the RG flow must,
asymptotically, become a power-law distribution in u, for
small u.

More explicitly, one can check that the following one-
parameter family solves �29� when g0=0:

fb��� =
b

�1 + ��1+b . �34�

These are well-behaved decreasing normalized distributions
for all b�0. For b�1, the mean ��� converges and satisfies

f0��� − ��� − 1 = 0 �35�

so that, as required, the mean is constant in time. Hence,
there is a one-parameter family of fixed points fb that lies
outside the one-parameter family fa considered in Ref. 18,
which contains no fixed points at finite a. Now if the func-
tion f is originally of the form fb, the mean ��� is increasing
if g0�0, suggesting that the system can flow to large capaci-
tance �small charging energy� if g0�0.

More explicitly, we simply evaluate the right-hand side of
the flow equation �29� using our power-law distributions
fb��� and find that the value of the distribution at large ca-
pacitance increases. That is, the distribution flows to large
capacitance assuming that it starts out with a power-law
form. For a power-law form, the integral appearing in �29�
has the following simple, asymptotic behavior:

�
0

� �
0

�

fb��1�fb��2����1 + �2 + 1 − ��d�1d�2 → 2fb���

�36�

for ��1. Using this fact and the fact that at g0=0 power-
laws are fixed points of the flow, one finds that the fb���
distributions flow as follows at large capacitance:
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�fb

��
→ g0fb��� . �37�

For g0�0, the right-hand side is positive, and, as the result,
the value of the distribution at large values of � increases
under the flow. Thus, we see explicitly, the tendency for
power-law distributions to flow toward large capacitance
�small charging energy�.

So far we have seen that the mean ���, assuming g0=0, is
constant for the family fb and decreasing for the family fa.
There are also well-behaved distributions for which f0���
− ���−1�0: an example is f���=10�1+���−6, for which f0

=10 and ���=1. However, one might wonder if the initial
increase or decrease of the mean ��� is a useful guide to the
eventual behavior of the RG flow. To answer this question,
Appendix B constructs additional soliton solutions, which
include the fixed points fb��� as a limiting case, and for
which the g0=0 flow equation is exactly solvable. One fam-
ily of solutions are related by a logarithmic rescaling of vari-
ables to solutions discussed by Fisher in the context of spin
chains.17 The construction exhibits an interesting cumulant
property of the nonlinear flow equation at g0=0.

The previous paragraphs constructed a new set of fixed-
point solutions, the fb��� in �34�, to the functional RG equa-
tion with g0=0. Appendix B gives other solutions to the g0
=0 equation for f , but no full solution to the coupled RG
equations with f0 and g0, both nonzero, has been found.
Hence, some other means of projecting the infinite-
dimensional renormalization group flows to a finite-
dimensional subspace is necessary. This section gives a pre-
scription for this projection that both justifies the phase
diagram found in Ref. 18 for exponential distributions and
gives a new phase diagram once the power-law tails in ca-
pacitance are allowed. The RG flows superficially depend on
a cutoff introduced in the projection process, but the phase
diagram and location of the critical point are cutoff-
independent.

Let 0���1 be some arbitrary cutoff and define 0�W�

�1 as the integral

W� = �
�

�

f���d� . �38�

The evolution equation for W� is

dW�

d�
= f0W� − �1 + ��f��� + g0�1 − W�� . �39�

Note that for g0=0, the fixed-point solutions fb��� have W�

=1/ �1+��b so that dW� /d�=0 correctly. In a moment we
will consider the flow generated by this equation within the
fb, but first consider the exponential solutions fa���
=a exp�−a��. Substituting into �39� gives the projected flow

da

d�
= a − g0

e�a − 1

�
. �40�

When a is small, this equation becomes

da

d�
= �1 − g0�a , �41�

which is exactly the RG flow obtained above in �33� and in
Ref. 18 under an approximation valid in this small-a limit.
The same equation is also obtained taking �→0 for any a.
For small a, the superfluid transition in these equations at
g0=1 has been discussed thoroughly by Altman et al.18 The
critical point a=0,g0=1 corresponds to the transition be-
tween “stiff” and “floppy” regimes of the classical, disor-
dered XY model.27 This RG flow is shown in Fig. 1.

Now consider instead the flow within the power-law so-
lutions fb. For g0�0, the evolution equation �39� defines a
projected flow within the one-parameter subspace fb: since
f0= f�0�=b, we have

df0

d�
= − g0

1 − W�

W� ln�1 + ��
= − g0

exp�f0 ln�1 + ��	 − 1

ln�1 + ��
.

�42�

Again taking the limit of small f0 and any �, or small � and
any f0, we have

df0

d�
= − f0g0. �43�

Note that the right-hand side is the same as in the previously
obtained flow equation for coupling strength18

dg0

d�
= − f0g0 �44�

so that f0−g0 is constant and the flows are as shown in Fig.
2. This coupling strength flow equation describes the flow
within a power-law family of distribution of coupling
strength P�j�� jg0−1. As argued in Sec. III such a distribution
enters �2� for the O�2� rotor model with large U �see Eq.
�28�	. In Sec. V we discuss the small U case.

Note that now there is no phase transition at the value
g0=1; instead there are two lines of fixed points, one with
f0=0 and one with g0=0. The entire classical line f0=0 is
stable, including both the stiff �g0�1� and floppy �g0�1�

FIG. 2. Renormalization-group flows projected to two-
parameter plane, after Ref. 18, for capacitance distributions with
exponential damping at large capacitance.
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regimes of the classical, disordered XY model. Physically, we
can understand the stability of the floppy phase by consider-
ing a simple toy model. Suppose a finite, perhaps small, frac-
tion of the blobs have vanishing charging energy. In that
case, no matter what the distribution of exchange couplings,
the slow, classical blobs with u=0 will anchor long-range
order. All we are saying is that you need not have such a
singular distribution to anchor order, only a power-law tail
for small u.

Let us see what this result means for order on the perco-
lation cluster. Recall the initial conditions for the flow �see
�28� and �23�	

f0�� = 0� = 1 − � ,

g0�� = 0� = �/�0, �45�

where � is the correlation length of a O�2� rotor chain with
large charging energy U,�0 is the average length of links of
red sites, and, �=1−1/ �db�� is the blob exponent tabulated
in Table I. Since f0−g0 is a renormalization group invariant
of the flow in �43� and �44�, we can determine the fixed point
toward which the flow tends in a simple way. Namely, the
flow tends toward the ordered, classical line f0=0 provided
that initially we have g0��=0�� f0��=0�. That is, to have
long-range order, we must tune U /J close enough to the
Kosterlitz-Thouless transition of a one-dimensional, clean
O�2� rotor model at U /J�	2 /4, where � diverges, such that
the following criterion is satisfied:

� � �0�1 − �� . �46�

Further, when this criterion is not satisfied, the flow tends
toward the insulating line of fixed points g0=0. Thus, the
blob Hamiltonian �2� admits both insulating and superfluid
ground states. When U /J is small enough to satisfy criterion
�46�, the renormalization group flow tends to the superfluid
ground state. The possibility of an ordered phase stable to
nonzero charging energy is novel and supports the existence
of order for the O�2� rotor model on percolation clusters via
the connection discussed in Sec. I.

V. O„2… ROTOR FOR SMALL U

In this section, we consider the special case of the O�2�
rotor with small U /J� �U /J�KT�	2 /4 at the percolation
threshold. We will argue that this case is only slightly differ-
ent than the large U case considered in Sec. IV. Namely, we
will show, using a spin-wave argument and a real-space
renormalization group argument, that this case exhibits long-
range order regardless of the value U /J, so long as U is
small. Recall that, by contrast, for large U, one must satisfy
the criterion �46� for the ground state to exhibit long-range
order.

As in Sec. IV, we begin with the slow-blob approximation
�2�. In this approximation, the novelty of the O�2� rotor with
small U arises from the “activated” form of the exchange
distribution P�j� in �28�

P�j� 
 e−k/�0j . �47�

In other words, the power-law charging energy distribution
�23� holds for this case too. Only the exchange distribution
changes compared to the large U case. Notice that the new,
activated exchange distribution is significantly less broad
than the power-law distributions considered in Sec. V.

Let us, for the moment, neglect completely the spread in
the exchange distribution, for this activated form. This is a
drastic approximation which we will improve upon below by
considering the flow of the distribution under real-space
renormalization. However, the activated form �47� is quite
narrow and treating it as completely concentrated at its mean
value will turn out to be a consistent approximation. In this
approximation, we may use the following exact result for the
asymptotic decay of the �appropriately defined� return prob-
ability of a random walker:

�Pi�i,t�� →  1
�t
�1/�1−�/2�

. �48�

Alexander et al.28 show that this result obtains for uniform
exchange distribution and power-law charging energy distri-
bution R�u��u−�, with 0���1. Recall, that this range of �
obtains for percolation in two and three dimensions �see
Table I�. Using �20�, which applies to �2�, the asymptotic
result in �48� implies a finite rms phase fluctuation of the
blob phases 
i, where the blob’s rotor variable in �2� is given
by n̂i= �cos�
i� , sin�
i�	, for N=2 rotor. Thus, in the approxi-
mation of uniform exchange energy, spin-wave theory pre-
dicts that �2� exhibits an ordered phase stabilized by the
small-U part of the charging energy distribution.

Let us now consider the actual distribution �47� and see
how it flows under real-space renormalization. As in Sec. IV,
we gain immediate insight into the flow by averaging both
sides of the flow equation �29�. The average ���
=�0

��g���d� exists for activated distributions �47� and
evolves as follows:

d

d�
��� = − 1 + �g0 + f0���� . �49�

Recall, that �=ln�� / j� is the scaled Josephson exchange and
g���= P�j=�e−���e−� is the distribution of �, where P�j� is
given by �47�. More directly, the activated ansatz �47� im-
plies a distribution of � of the following form:

g��,�� = g0���e−g0���e�−�+g0���. �50�

Here, �=ln��I /�� is the flow parameter, where �I

=max�ji ,ui� is the largest coupling in �2� before any renor-
malization, and ���I is the largest coupling at the current
stage of renormalization. The parameter g0��� initially satis-
fies g0��=0�=k /�0�I. At later times, we can evaluate how
g0��� flows by first computing the expectation appearing in
�49�

��� = eg0���E1�g0���	 . �51�

Here the exponential integral appears E1�g0�=�g0

� d�e−� /�.
Substituting �51� into �49� gives the projected flow of g0���
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dg0

d�
=

− 1 + �f0 + g0�eg0E1�g0�
− 1 + g0eg0E1�g0�

g0. �52�

When g0 is small, the flow simplifies to the following:

dg0

d�
= g0 + f0g0 ln g0 + ¯ , �53�

where the omitted terms are higher order in g0. The right-
hand side of �53� is initially positive, so g0 grows under
renormalization. Recall, that g0 is the weight of the distribu-
tion at the large values of the exchange strength j. The pro-
jected flow equation �53� implies that our activated form �47�
flows toward a narrower distribution concentrated at the larg-
est values of j. This justifies the spin-wave treatment at the
beginning of this section �Eq. �48� and the paragraph con-
taining it	, which assumed a narrow distribution of j.

Thus, the conclusion suggested by the spin-wave theory
holds even when we allow the exchange distribution to start
with an activated form. Since this is precisely the form of
distribution satisfied by the O�2� rotor with U /J�	2 /4, the
model must have finite rms fluctuations of the blob rotor
variables n̂i. In the slow-blob approximation, this implies
that the percolation cluster as a whole exhibits long-range
order for the O�2� rotor model with U /J�	2 /4.

VI. CONCLUSION

To conclude, the question of whether the O�N� �N�2�
quantum rotor model can have an ordered phase on the per-
colation cluster was studied via a spin-wave calculation and
via a real-space renormalization group calculation. The result
for these models may be summarized in the following way,
which also tracks the details of the calculation. We associate
with the incipient percolation cluster an effective spatial di-
mensionality in order to discuss the question of ordering. The
correct spatial dimensionality for this purpose is the fracton
dimension ds, defined in Eq. �16� from the spectral density of
the Laplacian on the percolation cluster. This dimensionality
ds is distinct from the fractal dimension of the percolation
cluster and happens to be numerically very close to 4/3 for
percolation in any dimension. The possibility of long-range
order can now be determined by simply comparing this di-
mension with the lower critical dimension arising from the
Hohenberg-Mermin-Wagner theorem.19 Thus, for the zero
temperature quantum models where ds+1�2, we have the
possibility of long-range order for percolation in any dimen-
sion, while at finite temperatures, these models are always
disordered since ds�2.

The presence of weak links compelled us to investigate
further the possibility of long-range order. We “integrated”
out the weak links, generating a low-energy description �see
Eq. �2�	 amenable to real-space renormalization. The renor-
malization group flow �see Fig. 3 and Eqs. �43� and �44�	
demonstrated a competition between two natural length
scales associated with the links �see Eq. �46�	. On the one
hand, the average length of a link �0 and, on the other, the
correlation length within a long link �. The final result may
be stated simply: when U /J is small enough that ���0�1

−��, then correlations “jump” across the weak links and cre-
ate long-range order. The renormalization-group flow sup-
porting this conclusion depends crucially on the fractal struc-
ture of the percolation backbone.

These considerations are summarized in the phase dia-
grams in Fig. 4. In Fig. 4�a�, the existence of a finite super-
fluid order parameter at the percolation transition for small
U /J leads to the vertical phase boundary. In Fig. 4�b�, we
simply point out that the well-known absence of a Mott in-
sulating state for incommensurate filling at zero dilution per-

FIG. 3. Renormalization-group flows projected to two-
parameter plane for capacitance distributions with power-law damp-
ing at large capacitance. Note the new line of fixed points at g0

=0 and the absence of a phase transition at �g0 , f0�= �1,0�.

FIG. 4. The phase diagram for bosons with on-site repulsion on
a diluted lattice as a function of the dilution fraction p. The perco-
lation transition occurs at pc. �a� Integer filling at zero temperature:
the Mott insulating phase arises when charging energy U is large
compared to Josephson coupling J. �b� Away from integer filling,
the Mott phase is not present for any U /J. �c� Finite-temperature
transition for bosons out of the superfluid phase.
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sists under dilution until the percolation threshold. Finally,
the absence of superfluid order at finite temperatures on per-
colation clusters in any dimension D�2 gives rise to the
phase diagram shown in Fig. 4�c�.
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APPENDIX A: RG OF RANDOM O„N… CHAIN

Consider the O�N� rotor chain with random exchange and
“charging” given in Eq. �2�. We have two possible RG steps.
First, if the largest energy is an exchange Ji, then we lock the
two rotors together and estimate the effective charging en-
ergy of the combined rotor. The result is that inverse charg-
ing energies add

Ũ−1 � Ui
−1 + Ui+1

−1 . �A1�

Second, the largest energy may be a charging energy �=Ui.
In this case, we put this rotor in the rotationally invariant
ground state and treat the neighboring rotors as a classical

magnetic field h� =Jin� i+Ji+1n� i+2. For small �h� � /�, the ground-
state energy is, to lowest order, 2h2 /N�N−1��. Expanding
this yields a new effective coupling between the neighboring
rotors

J̃ �
4JiJi+1

N�N − 1��
. �A2�

The first step is identical to the O�2� case. The second step is
virtually identical. If we measure exchanges on a logarithmic
scale, �i=ln�� /Ji�, then the �=U step becomes

�̃ = �i + �i+1 + ln�N�N − 1�/4	 . �A3�

As always, in the asymptotic analysis of these kind of flow
equations, we can neglect additive constants in the RG step,
since we are looking for broadly distributed fixed points.17 In
conclusion, we have obtained the elementary RG step for the
O�N� rotor chain with strong disorder.

APPENDIX B: ADDITIONAL SOLUTIONS OF THE RSRG
FLOW EQUATION

The goal of this section is to find �-dependent exact so-
lutions of the capacitance flow equation �29� that verify the
statements in Sec. III derived using projected RG flows. Al-
though we have not been able to solve the nonlinear partial
differential equations �PDEs� for arbitrary initial data, the

exact solutions now discussed are examples supporting the
qualitative behavior found using a moment equation in Sec.
III. Let us look for a solution in terms of a distribution

�b ,�� over the one-parameter family fb���

f��,�� = �
0

�


�b,��fb���db = �
0

�


�b,��
b

�1 + ��1+bdb .

�B1�

Now f0���= f�0,��=�0
�b
�b ,��db, i.e., the average �b�


taken over the distribution 
�b ,��. Our goal will be to find
solutions of the evolution equation for 
�b ,��

�
�b,��
��

= − b + �
0

�


�b2�b2db2�
�b,�� . �B2�

Now assume that 
�b ,�� is nonnegative �it is then automati-
cally normalized to 1� so that it can be regarded as a prob-
ability distribution. Its normalization is constant, and its
mean �equal to f0� evolves via

d�b�


d�
= �b�


2 − �b2�
. �B3�

In terms of the mean �1 and the variance �2, this equation is
compactly written d�1 /d�=−�2. A bit of algebra confirms
that a similar evolution holds for all cumulants

d�n

d�
= − �n+1. �B4�

This provides a way to find solitonlike solutions. One class
of solutions starts from the generalized Poisson distribution
with two parameters, � and x0,


�b� = �
k=0

�

��b − kx0�
�ke−�

k!
, �B5�

which has cumulants �n=�x0
n. This distribution has a finite

probability of b=0, which corresponds to exactly zero charg-
ing energy; below, we find a different soliton solution with-
out this property. The discrete distribution �B5� approaches a
continuous Gaussian centered at b=b0 if we take the limits
x0→0 and �→� with �x0=b0. Then the cumulant evolution
equations are all solved if x0 is constant and ���� solves

d�

d�
= − x0� Þ ���� = ��0�e−x0�. �B6�

In the limit of small x0 with x0��0� fixed, we recover the
fixed-point solutions found previously.

A second family of solutions starts from the gamma dis-
tribution with parameters � and �


�b� =
b�−1e−b/�

������ . �B7�

The cumulants of the above distribution are

�n = ��n���n. �B8�

So, if the only � dependence is in �,
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d�n

d�
= ��n + 1���n−1 d�

d�
= − ��n+1��n + 1� = − �n+1

�B9�

if

d�

d�
= − �2 Þ ���� =

1

� + ��0�−1 . �B10�

It is simple to confirm explicitly that the resulting form for f ,

f��,�� =
�����

�1 + ���1 + ����ln�1 + ��	�+1 , �B11�

is normalized for ��0 and satisfies the evolution equation.
For this solution, f0���=� / ��+��0�−1	, indicating that this

charging energy distribution is marginally irrelevant even as
g0→0, well away from the classical transition.

We also note that the gamma solutions have normalized
variance, �2 / ��1�2=1/�, which is a constant of the motion.
As �→0, the distributions become extremely broad, and the
RG is expected to be valid in this limit.

These two families of solutions suggest that having a fi-
nite probability of zero charging energy, as in the Poisson
case, leads to an exponentially rapid flow of the entire dis-
tribution to zero charging energy: the order is strongly
“nucleated” by the classical rotors with zero charging energy.
The gamma solutions also flow to zero charging energy,
proving that such flow is possible for regular distributions,
but this solution flows only as a power law. Note that the
flow equation for � is exactly that for a marginally irrelevant
operator.
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