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We discuss level crossing of the free energy of Thouless-Anderson-Palmer �TAP� solutions under variations
of the external parameters such as magnetic field or temperature in mean-field spin-glass models that exhibit
one-step replica symmetry breaking �1RSB�. We study the problem through a generalized complexity that
describes the density of TAP solutions at a given value of the free energy and a given value of the extensive
quantity conjugate to the external parameter. Depending on the properties of the generalized complexity,
variations of the external parameter by any finite amount can induce level crossing between groups of TAP
states whose free-energies are extensively different. In models with 1RSB, this means strong chaos with
respect to the perturbation. The linear response induced by extensive level crossing is self-averaging and its
value matches precisely the disorder average of the second moment of thermal fluctuations between low-lying,
almost degenerate TAP states. We present an analytical recipe to compute the generalized complexity and test
the scenario on the spherical multi-p spin models under variation of the temperature.
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I. INTRODUCTION

Mean-field spin-glass models like the Sherrington-
Kirkpatrick model or the p-spin models are known to have a
very complicated phase space with many metastable states.1

An important physical consequence is that physical observ-
ables fluctuate not only within each equilibrium state but also
among different equilibrium states whose free energies are
sufficiently low and close to each other. The presence of
many states leads also to the so-called chaos problem, i.e.,
the question of whether equilibrium states at different values
of the external parameters such as magnetic field or tempera-
ture are correlated or not.2 In the present paper, we discuss
the problem from a Thouless-Anderson-Palmer �TAP� per-
spective. The states are usually identified with solutions of
the TAP equations3 for the local average magnetization mi of
the ith spin. In the Sherrington-Kirkpatrick �SK� model, they
read

mi = tanh����
j

Jijmj − ��1 − q�mi + H�� ∀ i = 1, . . . ,N ,

�1�

where q is the self-overlap of TAP configurations q
��imi

2 /N and Jij are quenched random coupling with zero
means and variance Jij

2 =1/N. If a given TAP solution has a
nonvanishing Hessian it can be continued analytically upon a
change of the external parameters H and �. We will say that
two states at different external parameter coincides if one is
the analytical continuation of the other. A question related to
chaos is to know whether the equilibrium TAP states at a
given values of, say, magnetic field h are the same �in the
sense of the analytical continuation� of those at a different
value of h. If this is the case, chaos is certainly not present.
Instead, if the states are not the same, we derive chaos pro-
vided we assume that different states are not correlated; this
is certainly the case in one-step replica symmetry-breaking

�1RSB� models,1 e.g., the spherical p-spin model.4 Indeed
the states in 1RSB models are minimally correlated, in par-
ticular in the zero-magnetic field, the overlap between two
equilibrium configurations is zero if they belong to different
states and is equal to the self-overlap if they belong to the
same state. In systems with full replica symmetry breaking
�FRSB�, like the Sherrington-Kirkpatrick model, there is a
range of possible values of the overlap and the connection
between analytical continuation of the TAP solutions and
chaos can be more subtle. In 1RSB systems, the TAP states
with free energies below the threshold values have a nonva-
nishing Hessian, therefore, each of them can be analytically
continued upon changing the external parameters. It follows
that the equilibrium states at the new value of the external
parameters must have been already present as some TAP
states at the old values and they can be identified by tracking
the evolution of the old TAP states through the variation of
the parameters. We show that to describe the evolution of the
TAP states, we must consider a generalized complexity
which represents the density of TAP states at a given value of
free energy �per spin� f and of an extensive quantity �per
spin� y=Y /N, where N is the number of spins, conjugate to
the external parameter hy to be varied, i.e., magnetization for
the magnetic field and entropy for the temperature.

In general, at fixed values of the external parameters, the
typical states with a given value of f have a definite value of
y but there are also TAP states with the same f and different
values of y although with lower complexity than the typical
ones. Thus, in general, the function ��f ,y� is nontrivial. As-
suming the existence of this function, we draw the following
conclusions. We prove that variation of the external param-
eters by any finite amount induces extensive level crossing of
the free energies of the TAP state. Thus, the equilibrium TAP
states at different values of the external parameter are differ-
ent. Furthermore, from the function ��f ,y�, we can compute
the induced interstate linear response; it turns out to be self-
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averaging and its value matches precisely the value predicted
by the analysis of thermal fluctuations through the fluctua-
tion dissipation theorem �FDT�. We present an analytical
recipe to compute the generalized complexity and present
explicit calculation for some specific cases. In particular, we
show the existence of the function ��f ,m� for generic FRSB
and 1RSB models. We also consider the entropy-free-energy
function ��f ,s� �related to the behavior under temperature
changes� in 1RSB spherical p-spin models. We show that this
function exists for spherical models with multiple p-spin in-
teractions implying chaos in temperature while its support
shrinks to a single line in the �f ,s� plane in the limit of a
single p-spin interaction consistently with absence of chaos
in temperature in this case.4

The problem of level crossing of TAP states has been
recognized in earlier works, for instance in Refs. 5 and 6 �see
Sec. II�. In particular, level crossing of individual TAP states
upon infinitesimal changes in the values of the magnetic field
	�h=O�1/
N�� was observed. In the present paper, we are
interested instead in the evolution of TAP states under small
but finite changes of the external parameters, i.e., changes
that induce extensive variations of the free energy. Basically,
we want to know if the set of equilibrium states at a given
value of the external parameters contains as a whole the
same set of equilibrium states at different values; note that
this does not exclude the possibility of some internal reshuf-
fling of the relative weights of the states. If only the latter
happens, we would have just some mild, subextensive level
crossing between the states but no chaos.

The density of configurations with given energy and mag-
netization have been already studied in the context of the
random-energy model7 and more recently Krzakala and
Martin8 �KM� studied the level crossing phenomenon in an
extended version of the random energy model7 in which each
state has a random energy and a random extensive variable
conjugate to an external parameter, such as temperature.
Both random variables are assumed to follow Gaussian dis-
tributions. The generalized complexity we study in the
present paper provides a firmer ground for their picture.

The plan of the paper is the following. In Sec. II, we
review previous results related to the present paper. In Sec.
III, we introduce the generalized complexity. We discuss its
evolution under variations of the external parameters and ex-
plain its physical consequences. In Sec. IV, we present an
explicit calculation of the evolution of the generalized com-
plexity of a spherical multi-p spin model under variation of
the temperature. At the end, we discuss our results.

II. INTRASTATE AND INTERSTATE SUSCEPTIBILITY

A well-known effect of RSB is the difference between the
susceptibility inside a state and the true thermodynamical
susceptibility. For example, the magnetic susceptibility in-
side a state � in the zero-magnetic field is given by

�� = ��1 − qEA� , �2�

where qEA��imi
2 /N is the Edwards-Anderson order param-

eter, while the actual magnetic susceptibility of the system is
given, according to the Parisi solution,1 by

� = ��1 − q̄� , �3�

where q̄ is the average of the overlap between replicas. De
Dominicis and Young9 shown that this is a consequence of
the presence of many states, so that in the application of the
fluctuation dissipation theorem, we must consider a new term
in order to take into account the fluctuations of the magneti-
zations over different states. They assumed that the free en-
ergy of the system is given by a sum over all TAP solutions
weighted with their free energy

F = −
1

�N
ln �

�

e−�Nf�, �4�

then the susceptibility to a change in a given external field hy
�e.g., temperature or magnetic field� reads

�y =
�2

�hy
2

1

�N
ln �

�

e−�Nf� = − � �2f�

�hy
2 
 + �N	�y�

2� − �y��2� ,

�5�

where the square brackets represent the Boltzmann average
over the states

�O�� =
��

e−�Nf�O�

��
e−�Nf�

�6�

and y� is the value on state � of the parameter conjugated to
hy �e.g., magnetization or entropy per spin�

y� =
�f�

�hy
. �7�

The first term is the susceptibility of a state, while the second
term is the fluctuation over the states of the parameter y�. In
the case of magnetic field, the first term gives a contribution
of ��1−qEA�, while the second term can be written as
��qEA− q̄� so that the correct result �3� for the susceptibility
is recovered.

Another interesting feature is that the susceptibility of a
given sample, defined through FDT in terms of the thermal
fluctuations, is not self-averaging. This has been pointed out
by Young, Bray, and Moore in Ref. 6. In that paper, they
considered the magnetic susceptibility

�J =
�

N
�
ij

��sisj� − �si��sj�� , �8�

where si �i=1, . . . ,N� are the spin variables. They showed
that this quantity fluctuates over the samples and the non-
self-averageness was interpreted as an effect of the presence
of many states, with sample-dependent O�1� free-energy dif-
ferences between those that dominate the equilibrium mea-
sure at low temperatures. This interpretation is confirmed
noting that the TAP susceptibility defined above in Eq. �5�
�which is defined differently from �J� is indeed not self-
averaging, as we show in Appendix B. In particular, its dis-
order variance is the same as that of �J computed in Ref. 6.
The problem is that the total magnetization and susceptibil-
ity, derived from thermodynamic derivatives of free energy,
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which is itself self-averaging, should be self-averaging. Then
what is the true response? Numerical studies on the finite-
size SK model by exact enumeration method provided in-
sight to this problem.10,5 According to these obsevations,10,5,6

the magnetization per spin mJ�h� of a given sample grows in
a stepwise manner under increasing magnetic field h at low
temperatures �See, e.g., Fig. 2 of Ref. 6�. The spacing be-
tween the steps and the height of each step varies from step
to step and sample to sample and decreases with the system
size.5 Note that this is consistent with the fact that fluctua-
tions are not self-averaging because the linear susceptibility
defined as �J=lim�h→0 �mJ�h� /�h is related to the fluctua-
tions through FDT. In Ref. 6, Young, Bray, and Moore sug-
gested that the stepwise response is due to level crossing of
TAP states. Furthermore, they conjectured that the typical
separation between the steps is of order O�1/
N� and that
the profile converges in the thermodynamic limit to a unique
limiting curve m�h�=limN→� mJ�h�. According to this picture
at finite N, this limiting curve acquires a sample-dependent
fine structure on scales �h=1/
N. However, this fine struc-
ture is not seen on scales 1 /
N��h�1. Therefore, m�h� is
self-averaging and thus the linear susceptibility defined as
�=lim�h→0 �m�h� /�h is also self-averaging. It is also ex-
pected that � is equal the disorder average of �J. Note that
the scales �h and �h used in the definitions of �J and � are
completely different. While �h must be chosen smaller than
the typical spacing between the steps, which is likely to be of
order O�1/
N�, �h can be chosen to be arbitrarily small, but
fixed when the thermodynamic limit N→� is taken, such
that on the scale �h, the susceptibility is self-averaging. Ac-
cording to these results, there is level crossing of individual
TAP states upon infinitesimal changes in the values of the
magnetic field 	�h=O�1/
N��. We recall, however, that in
the present paper, we are interested instead in the evolution
of TAP states under small but finite changes of the external
parameters, i.e., changes that induce extensive variations of
the free energy. We want to know if the set of equilibrium
states at a given value of the external parameters coincides
with the set of equilibrium states at different values but this
does not exclude the possibility of some internal microscopic
reshuffling of the relative weights of the states.

The problem of the analytical continuation of the states is
in deep relationship with the existence of two susceptibilites.
This connection is the starting point of our work and was
emphasized by G. Parisi.11 According to Parisi’s argument,
the difference between the susceptibility and the intrastate
susceptibility in general implies that the equilibrium states at
different values of the external parameter cannot be the
same. Indeed from Eq. �3�, it follows that the magnetization
of the equilibrium states in the presence of a small but finite
magnetic field h becomes

m � ��1 − q̄�h . �9�

On the other hand, the analytical continuation of the old
equilibrium states would develop a smaller magnetization
��1−qEA�h, where qEA is the Edwards-Anderson order pa-
rameter. Therefore, the equilibrium states in the presence of a
small but finite field h had a nonzero magnetization per spin

even in the absence of the field

m � ��qEA − q̄�h . �10�

Therefore, the new equilibrium states cannot be the analyti-
cal continuation of the old equilibrium states.

Here an important point is that h is chosen arbitrarily
small but fixed when the thermodynamic limit N→� is
taken, i.e., h is at the scale of �h and not of �h. In particular,
at this scale, we have no problems of lack of self-
averageness. As we explained in the introduction, we are
interested in extensive level crossing; therefore, in the fol-
lowing, we are going to consider always variations in the
external parameter at scale �h. Note that this argument can
be applied whenever the susceptibility to a given field hy is
different from the intrastate susceptibility, i.e., whenever the
fluctuation of the conjugated parameter y, i.e., the second
term in Eq. �5�, is not zero. The fluctuations obviously vanish
if there is only one state.

III. EXTENSIVE LEVEL CROSSINGS

The argument of Sec. II predicts the presence of meta-
stable states with extensive nonzero magnetization in the
zero field. This may appear rather counterintuitive; however,
in the TAP context, their number can be computed. One can
indeed show that there is an exponential number of solutions
with nonzero magnetization, although with a smaller com-
plexity with respect to the solutions with zero magnetization.
In order to have a deeper look into the evolution of the phase
space, we consider a generalized complexity, i.e., the loga-
rithm of the number of TAP solutions with given values of
the free energy and of the magnetization

��f ,m� =
1

N
ln �

�

��m� − m���f − f�� . �11�

We want to study the evolution of the curve ��f ,m� under
the application of a magnetic field.

In Fig. 1, we show a schematic plot of the function
��f ,m� near the lower-band edge where the equilibrium
states are located. Near the equilibrium states and below the
critical temperature, the function can be expanded as

��f ,m� = �xf − am2, �12�

where x is the Parisi parameter and a is some parameter to be
determined, and we have shifted the free energy so that the

FIG. 1. Complexity of the TAP solution as a function of the free
energy and magnetization per spin.
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equilibrium free energy in the zero field is zero. Let us em-
phasize that the function ��f ,m� is, by definition, an exten-
sive self-averaging quantity. Now, we want to consider the
evolution of the states on this curve when the small field h is
switched on. The free energy of a state will be modified
according to

f�� = f� +
�f�

�h
h +

1

2

�2f�

�h2 h2 + O�h3� . �13�

By definition, we have m�=−�f� /�h, therefore, the new free
energy of the set of TAP solutions with given values of f and
m is given by

f� = f − mh +
1

2

�2f�

�h2 h2 + O�h3� , �14�

their magnetization is given by

m� = m +
�2f�

�h2 h + O�h2� . �15�

Expressing through Eq. �12� the free energy in terms of the
complexity c and the magnetic field, we get

f =
c

�x
+ bm2, �16�

where we defined

b = a/�x . �17�

Putting this expression into Eq. �14�, we obtained the new
value �after the field is switched on� of the free energy of the
states that in the zero field had complexity c and magnetiza-
tion m

f� = bm2 − mh +
1

2

�2f�

�h2 h2 + O�h3� +
c

�x
. �18�

The new equilibrium states are those that minimize f�. First
of all, we note that the minimum with respect to c is obtained
for c=0, this is consistent with the fact that the equilibrium
states under any circumstance below the critical temperature
should always have zero complexity, and therefore, the zero-
field TAP states that are candidates to become equilibrium
states in a field must must have zero complexity. Thus, we
are interested in the evolution of the equilibrium states along
the zero-complexity line f =bm2. In order to minimize f�
with respect to m, we note that the third term in Eq. �18�, in
principle, depends on m; but for values of m of order O�h�,
this variation is basically a third order effect, therefore, at
second order in h it can be considered as a constant. Then we
obtain

df�

dm
= 2bm − h = 0 → m =

h

2b
. �19�

Thus, the equilibrium states in the presence of a field are the
states that had a nonzero magnetization m=h /2b in the zero
field and the evolution of the TAP states is driven by exten-
sive level crossing, indeed the free energy difference between
these states was �f =h2 /4b in zero field while it becomes
negative �f =−h2 /4b in the presence of a field. This is the

same result obtained above: in the presence of a field, the
TAP solutions with lowest free energy are not the continua-
tion of the TAP solutions with the lowest free energy in the
zero field. Accordingly, the magnetization is given by

m� =
h

2b
−

d2f

dh2h + O�h2� , �20�

and the full linear susceptibility is given by

� =
1

2b
−

d2f

dh2 . �21�

In 1RSB models, TAP states with extensive difference in
the free energy have zero overlap with respect to each other;1

therefore, they are totally uncorrelated. Thus, extensive level
crossing automatically means strong chaos in the 1RSB sys-
tems.

The basic assumption of this derivation is the existence of
the zero-complexity curve f =bm2, which follows from the
existence of the function ��f ,m�. Once the existence of this
function is assumed, the nontrivial result is that the evolution
of the TAP states under a change in the magnetic field is
driven by extensive level crossing. As such, the previous
derivation can be extended to any couple �hy ,y� representing
an external field and its conjugated extensive variable, e.g.,
temperature and entropy, provided the zero-complexity curve
f =by2 exists. This assumption is equivalent to the assump-
tion of Sec. II that the parameter y� fluctuates over the states.
The connection with the result of Sec. II can be established
also at a quantitative level by showing that the two expres-
sions for the susceptibility Eqs. �21� and �5� are equivalent.
In order to do that, we introduce the function

	�
y� =
1

N
ln �

�

e−�Nf�+
yNy�. �22�

This is a summation over all TAP states with a weight which
depends also on the value of Y =Ny; when 
y =0, it reduces
to the Boltzmann weight such that 	�0� is minus the free
energy. From the definition, it follows that:

� �2	

�
y
2 �


y=0

= N��y�
2� − �y��2� . �23�

On the other hand, using the generalized complexity through
Eq. �16�, we can write

	�
� = maxc,y�c − �by2 −
c

x
+ 
yy� . �24�

Again, the maximum is at c=0 and the maximization with
respect to y gives

�	

�

= �y�
y

=

y

2b�
, �25�

which is linear with respect to 
y. Using Eqs. �25� and �23�,
we get
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�� �2	

�

�


y=0
=

1

2b
. �26�

This equation together with Eq. �23� proves the equivalence
between Eqs. �21� and �5� for the susceptibility, which can be
written as

�y = �y� + �� �2	

�
y
2 �


y=0

, �27�

where the first term is the generalized susceptibility inside a
state, e.g., the specific heat if hy is the temperature and y is
the entropy. Notice that we do not need to compute the intr-
astate susceptibility to infer the picture, it is sufficient to
check the existence of the zero-complexity line.

In Appendix A, we report the general method to compute
the function 	�
� for a generic model. In particular, in the
case of the magnetic field, we can show that the second
derivative of 	�
� has the correct value needed to recover
the right TAP susceptibility in either FRSB and 1RSB mod-
els

� �2	

�
m
2 �


m=0

= qEA − q̄ . �28�

Note that the derivation of this section assumes that the zero-
complexity curve f =bm2 is a self-averaging smooth func-
tion. Of course, at any finite N, this curve is actually made of
points; therefore, on sufficiently small m scale �i.e., scales
that go to zero with some proper power of 1 /N�, we expect it
to have rapid sample-to-sample fluctuations around its
sample-independent average. These fluctuations and the cor-
responding lack of self-averaging in the right-hand side �rhs�
of Eq. �23� are irrelevant at the much larger scales, which we
consider and to which the derivation of the present section
applies.

IV. SPHERICAL p-SPIN MODELS

In this section, we show that the picture of Sec. III applies
to 1RSB spherical p-spin models with single4 and multiple
p-spin interactions.12 In particular, the presence of chaos in
temperature can be unequivocally associated to the behavior
of the zero-complexity line as a function of the free energy
and of the entropy. Following Ref. 13, we consider the
Hamiltonian

H = − �
i1�¯�ip

N

Ji1¯ip
�i1

¯ �ip
− 
 �

l1�¯�lr

N

Kl1¯lr
�l1

¯ �lr
,

�29�

where the spins �i are subject to the spherical constraint
�i�i

2=N, and the Gaussian random couplings Ji1¯ip
and

Kl1¯lr
have variance p! /2Np−1 and r! /2Nr−1. The p+r spheri-

cal models may display a nontrivial thermodynamic behavior
when p�3 and r=2: in that case, there is a transition from a
1RSB thermodynamic phase �low 
� to a FRSB phase �large

�.12 On the contrary, if both p and r are strictly larger than 2,
the model is expected to have a normal 1RSB thermody-

namic behavior. This is the case we will analyze. In particu-
lar, we have studied numerically the case p=3 and r=4. The
TAP free energy density is13

�fTAP = −
�

N
�

i1�¯�ip

N

Ji1¯ip
mi1

¯ mip

− 

�

N �
l1�¯�lr

N

Kl1¯lr
ml1

¯ mlr
−

1

2
ln�1 − q�

−
�2

4
	�p − 1�qp − pqp−1 + 1�

− 
2�2

4
	�r − 1�qr − rqr−1 + 1� , �30�

where mi= ��i� are the local magnetizations, and q is the
self-overlap of a state, q=�imi

2 /N. In the case of the single
p-spin interaction,4,14,15 it is straightforward to see that there
is no chaos in temperature. Indeed by writing mi=q1/2ŝi,
where ŝi is the vector of the angular variables normalized to
one, we see that the TAP equations for the angular variables
do not depend on the temperature; therefore, the ordering of
the states does not change in temperature. The decomposi-
tion of the free energy in the angular part and the overlap
part breaks down if the model has more than a single p-spin
interaction, and this could lead to chaos in temperature. In
particular, in Ref. 16, the dynamical evolution under tem-
perature changes of the TAP states was considered between
the dynamical and the critical temperature. We note that with
some modification, the present picture of extensive level
crossing can be extended also in the region of temperatures
where the complexity of the equilibrium states is finite. On
the other hand, chaos in temperature in the p+r model below
Tc can be proven considering the free-energy shift between
two real replicas forced to have a given value of the
overlap.17 Here we want to show that this result can be re-
covered through the study of the entropic zero-complexity
line.

The computation of the complexity of the model �30� can
be done through standard methods like those sketched in
Sec. III and was presented �up to order 
2� in Ref. 13. The
complexity at fixed value of the free energy can be obtained
by extremizing the following effective action with respect to
the parameters B, T, q, and u

Ŝ = �u	g�q� + 
2h�q� − f� + �B2 − T2��1

4
p�p − 1��2qp−2

+ 
21

4
r�r − 1��2qr−2� −

1

2
ln�1

2
�2pqp−2 +

1

2

2�2rqr−2�

− ln T +
1

4
�2u2�qp + 
2qr� −

1

2
+

1

4
�2B2�pqp−2 + 
2rqr−2�

+ ��B + T�	A�q� + 
2C�q�� +
1

2
�2uB�pqp−1 + 
2rqr−1� ,

�31�

and where we used the following definitions:
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g�q� = −
1

2�
ln�1 − q� −

�

4
	�p − 1�qp − pqp−1 + 1� , �32�

h�q� = −
�

4
	�r − 1�qr − rqr−1 + 1� , �33�

�g

�mi
= A�q�mi, �34�

�h

�mi
= C�q�mi. �35�

In order to compute the complexity at a given value of the
free energy f and of the entropy s we must add to �31� a term

ss−
ss�q ,�� and extremize with respect to 
s. The function
s�q ,�� is the complexity of a given solution which can be
obtained from Eq. �30�

s�q,�� = −
dfTAP

dT
=

1

2
ln�1 − q� −

�2

4
	�p − 1�qp − pqp−1 + 1�

− 
2�2

4
	�r − 1�qr − rqr−1 + 1� . �36�

The corresponding saddle point �SP� equations can be solved
numerically. As noted in Ref. 13, there are two solutions of
the saddle point equations, one that is Becchi-Rouet-Stora-
Tyutin �BRST� symmetric and another that is not. The lower
band edge is described by the BRST solution. Numerically,
we start from this solution and consider the complexity of
states with entropy different from the equilibrium one. Solv-
ing the SP equations with respect to B ,T ,q ,u ,
s and with
the constraint that the complexity is zero yields the zero-
complexity curve.

In Fig. 2, we plot the entropic zero-complexity line for a
3+4 model at temperature T=.35�Tc and at values 
=.1
and 
=.2. Numerically, the second derivative of f�s� in s
=seq diverges as 1/
2 for 
→0. In this limit, the angular

variables can be factorized and the entropy of the states is
determined by their free energy; correspondingly, the two
branches of the zero-complexity curve join on a single line
s=styp�f�, which is the typical complexity of the states with
free energy f . Note that since the divergence is proportional
to 
2 it is consistent to consider the action �31� which is valid
at O�
2�. From the existence of the zero-complexity curve
follows that the dominant TAP states at different tempera-
tures are different. This implies chaos in temperature because
in a 1RSB system different states have vanishing mutual
overlap. In this context, the disappearance of chaos in the
limit 
→0 is determined by the divergence of the second
derivative of the zero-complexity line.

V. DISCUSSION

Our approach applies to all situations in which TAP states
at a given value of some external parameter hy �e.g., tem-
perature or magnetic field� can be continued analytically at
different values of hy. If this is the case, it must be possible
to characterize the set of states at a given value of hy from
the knowledge of the equilibrium states at another value of
hy. We have shown that this can be done by studying the
generalized complexity ��f ,y� and in particular the zero-
complexity line ��f ,y�=0. These arguments apply to 1RSB
models because the Hessian of the equilibrium TAP states is
nonvanishing and the states can be continued analytically. In
1RSB models, we could also establish a connection between
level crossings and chaos. In this context, absence of chaos
with respect to the external parameter hy �magnetic field or
temperature� appears when the support of the function
��f ,y� �y is the parameter conjugated to hy� shrinks to a
single line in the �f ,y� plane, otherwise chaos is present.
Thus, our results provide firmer grounds for the phenomeno-
logical picture proposed by Krzakala and Martin in Ref. 8.

The application of our approach to FRSB is complicated
by the fact that the equilibrium TAP states are marginal so, in
principle, we cannot be sure that they can be continued. Nev-
ertheless, one could study the zero-complexity line ��f ,y�
=0. In the case of magnetic field, this curve certainly exists
and has the correct slope qEA− q̄. It would be interesting to
check the existence of the zero-complexity line for the en-
tropy. This is a further motivation to obtain the quenched
solution for the complexity in the FRSB model. Provided the
zero-complexity lines exist in the FRSB model for a given
perturbation, another problem is to assess the stability of the
corresponding states; we suspect that they are not marginal.
However, in FRSB, the connection bewteen analytical con-
tinuation and chaos is less clear. Let us mention that the
equilibrium states of the FRSB spherical p+r model12 have
highly nonchaotic correlations with respect to temperature
changes,18 although they are marginal at any temperature. In
this respect, it would be interesting to check the existence or
not of the entropic zero-complexity curve of the FRSB
spherical model, which is the only FRSB model known to be
nonchaotic in temperature18 at variance with the SK model.19

Starting from the function ��f ,y�, we obtained the total
linear susceptibility using the level crossing argument. In-
deed to obtain a description of the evolution of the states at

FIG. 2. Zero-complexity line of the free energy as a function of
the entropy for the 3+4 spherical model with 
=.1 �dashed line�
and 
=.2 �continuous line�, the second derivative of f�s� in s=seq

diverges as 1/
2 for 
→0, in this limit the model has a single
p-spin interaction and chaos in temperature disappears.
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first order in hy, it was sufficient to consider ��f ,y�. To ob-
tain the next order, we must consider the complexity
��f ,y ,�y�, where �y is the intrastate susceptibility associated
to the field hy. Then the associated zero-complexity line f
= f�y ,�y� must be used in Eq. �18�. Extremizing with respect
to y and �y, we can obtain the value of the third derivative of
the TAP free energy with respect to the external field hy.
Higher orders are obtained in the same way; in general, to
obtain the kth derivative of the TAP free energy, we need
��f ,y ,�y , . . . ,�y

�k−1��, i.e., the complexity as a function of the
intrastate susceptibilities up to order k−1.

In the present paper, we focused on the evolution of den-
sity of TAP states under the variation of external parameters
over a small but finite range �h. As discussed in Sec. II, if
we go down to a scale of order �h�O�1/
N�, we will ob-
serve individual level crossings whose characters are
strongly non-self-averaging. Presumably this is relevant for
problems of heterogenous thermal fluctuations and responses
at mesoscopic scales,20–22 some of which have now become
accessible experimentally. Further investigation of the inter-
mediate scales between �h and �h will be interesting in this
respect.23
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APPENDIX A

In this appendix, we show how to compute the function
	�
�, which is basically the Legendre transform of the zero-
complexity curve f =by2. In the following, we assume that
there exists a local function y�mi ,qEA� such that the param-
eter y can be expressed as y�=�iy�mi

� ,q��� /N. This includes
the case of the magnetization and of the entropy. The com-
putation of the function 	�
y� can be done following stan-
dard techniques for computing averages over TAP solutions,
we present the result in the case of the SK model and skip
the details of the derivation, which are largely described in
the literature �see, e.g., Refs. 24 and 25�. In order to further
simplify the presentation, we report the expression of
	�
 ,0� defined as

	�
y,0� =
1

N
ln �, � � �

�

e
yNy�, �37�

the quenched disorder average of 	�
y ,0� can be computed
through the replica method

	�
y,0� = lim
n→0

1

n
ln �n. �38�

Using the supersymmetric formulation of Ref. 24, the disor-
der average of �n can be expressed as an integral over eight
macroscopic bosonic and fermionic variables �
��rab , tab ,qab ,
ab , �̄ab ,�ab , �̄ab ,�ab�

�n =� d� exp	N�1
�n� + N�2

�n�� , �39�

where the action is specified by

�1
�n� = − 
abqab −

rab
2

2�2 +
tab
2

2�2 + �̄ab�ab + 2�̄ab�ab + �̄ab�ab

�40�

and

�2
�n� = ln�� �

a

dmadxad�ad�̄a exp�xa�1�qaa,ma�

+ �̄a�a�2�qaa,ma� +
qab�2xaxb

2
+ rabmaxb + tab�̄a�b

+ 
abmamb + − �ab�ma�b − �̄amb�̄ab� − �ab�xa�b

− �̄axb�̄ab� + 
yy�ma,qaa��� �41�

and the functions �1�q ,m� and �2�q ,m� are given by

�1�q,m� = �2�1 − q�m + tanh−1�m� , �42�

�2�q,m� = �2�1 − q� +
1

1 − m2 . �43�

Note that the only modification with respect to the standard
computation �i.e., 
y =0� is in the presence of the term

yy�ma ,qaa� in the integral in �2

�n�. The second derivative of
	�
y ,0� at 
y =0 is given by

n
�2	

�
y
2 = � �2�2

�n�

�
y
2 
 + N��� ��2

�n�

�
y
�2
 − � ��2

�n�

�
y

2� ,

�44�

where the square brackets mean average with respect to the
action Eq. �39� and

��2
�n�

�
y
= ���

a

y�ma,qaa��� �45�

�2�2
�n�

�
y
2 = ���

ab

y�ma,qaa�y�mb,qbb��� − ���
a

y�ma,qaa���2
,

�46�

where the double brackets mean average performed with re-
spect to the integrand in the definition of �2

�n�. The previous
averages must be evaluated at 
y =0. The action �39� can be
evaluated through a saddle-point method. Note that, in gen-
eral, to evaluate the the second term in Eq. �44�, we need to
study the Hessian of the saddle point which, in general, is
very complicated. However, in the case of magnetic field
perturbation in the zero field, we have y�ma ,qaa�=ma, and
��2

�n� /�
m at 
m=0 is identically zero for symmetry reasons;
therefore, only the first term survives and we don’t need to
compute the Hessian of the SP. Thus, only the first term in

CHAOS IN GLASSY SYSTEMS FROM A THOULESS-… PHYSICAL REVIEW B 73, 064416 �2006�

064416-7



the rhs of Eq. �46� contributes to the second derivative of
	�
y ,0� and we recover the result

� �2	

�
m
2 �


m=0

= lim
n→0

1

n����
ab

mamb��
 = qEA − q̄ , �47�

where we have used that SP equations qab= ���abmamb��.

APPENDIX B

In this appendix, we show how to compute the sample-to-
sample fluctuation of the TAP susceptibility Eq. �5� follow-
ing the similar computation for the true thermodynamic sus-
ceptibility. The first term is the intrastate susceptibility and
does not fluctuate with the disorder, analytically this is a
consequence of the fact that it is a single replica quantity.1,6

The second term is the fluctuation of the total magnetization
over all TAP solutions N−1	�ij�mimj�− �mi��mj��, in order to
check if it is self-averaging, we compute the average of its
square. The computation can be done along the lines of the
same replica computation of the thermodynamic susceptibil-
ity fluctuations.6 The objects one needs to compute are aver-
ages of the form �mi,1mj,1�TAP�mi,2�TAP�mj,3�TAP, where 1, 2, 3
are different replicas with the same realization of the disor-
der where the square brackets mean summation over all TAP
states with the Boltzmann weight. Introducing source fields

i in the definition of ���� exp	−�f�+
imi,�� this can be
written as

�mi,1mj,1�TAP�mi,2�TAP�mj,3�TAP

= � �4

�
i,1�
 j,1�
i,2�
i,3
�1�2�3��1

−1�2
−1�3

−1. �48�

Now we multiply the quantity in the above disorder average
by a factor �n and divide the whole average by �n; taking the
limit n→0, the result does not change; therefore, we can
write

�mi,1mj,1�TAP�mi,2�TAP�mj,3�TAP = lim
n→0

�4

�
i,1�
 j,1�
i,2�
i,3
ln �n.

�49�

The expression of �n in presence of the source field can be
computed as in Appendix A, the result is

�n =� d� exp	N�1
�n� + N�2

�n����e
i,1mi,1+
i,3mi,3��

���e
j,1mj,1+
j,2mj,2�� , �50�

the derivative is

�mi,1mj,1�TAP�mi,2�TAP�mj,3�TAP = lim
n→0

���mi,1mi,3����mj,1mj,2��� ,

�51�

where the meaning of the double square brackets and of the
square bracket is the same as in Appendix A. In the thermo-
dynamic limit, these quantities can be averaged by the
saddle-point method, in particular using the saddle-point
equation with respect to 
ab, we get

�mi,1mj,1�TAP�mi,2�TAP�mj,3�TAP = q13q12. �52�

This must be summed over the different SP, instead we can
evaluate on a single SP the same object under all possible
permutations of the replica indices

�mi,1mj,1�TAP�mi,2�TAP�mj,3�TAP =
1

n�n − 1��n − 2� �
�a,b,c�

qabqac.

�53�

All the various terms can be evaluated with this method and
at the end it turns out that the rhs of Eq. �5� is not self-
averaging. Furthermore, as shown in Ref. 6, at the lower
band edge, the matrix qab, of the TAP computation coincides
with the Parisi solution, and one can show that its disorder
variance is equal to that of the thermodynamic susceptibility
computed in Ref. 6.
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