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We investigate quantum phase transitions in the spin-1 /2 Heisenberg antiferromagnet on square lattices with
inhomogeneous bond dilution. It is shown that quantum fluctuations can be continuously tuned by inhomoge-
neous bond dilution, eventually leading to the destruction of long-range magnetic order on the percolating
cluster. Two multicritical points are identified at which the magnetic transition separates from the percolation
transition, introducing a quantum phase transition. Beyond these multicritical points a quantum-disordered
phase appears, characterized by an infinite percolating cluster with short ranged antiferromagnetic order. In this
phase, the low-temperature uniform susceptibility diverges algebraically with non-universal exponents. This is
a signature that the quantum-disordered phase is a quantum Griffiths phase, as also directly confirmed by the
statistical distribution of local gaps. This study thus presents evidence of a genuine quantum Griffiths phenom-
enon in a two-dimensional Heisenberg antiferromagnet.

DOI: 10.1103/PhysRevB.73.064406 PACS number�s�: 75.10.Jm, 75.10.Nr, 75.40.Mg, 64.60.Ak

I. INTRODUCTION

Quantum phase transitions in low-dimensional quantum
Heisenberg antiferromagnets �QHAFs� have been the subject
of extensive investigations during the last two decades.1,2

The transition from a renormalized classical to a quantum-
disordered state can be triggered by various parameters, in-
cluding lattice dimerization, frustration and applied field.
More recently, special interest has focused on phase transi-
tions driven by geometric randomness of the lattice,3,4 in-
cluding site and bond disorder. Strong geometric disorder not
only breaks translational invariance and perturbs the ground
state of the pure system, but it can also destabilize renormal-
ized classical phases with long-range order �LRO� and drive
the system to novel disordered phases.

Various one-dimensional QHAFs with bond disorder have
been found to display unconventional quantum phases.5,6 For
example, the undimerized QHAF chain is driven into a
random-singlet phase6 with algebraically decaying spin-spin
correlations. The low temperature susceptibility diverges as
1/ �T log2 T� in this phase, independent of the details of the
bond disorder. In contrast, a dimerized chain shows a quan-
tum Griffiths phase7 beyond a critical disorder strength, with
exponentially decaying spin-spin correlations and a non-
universal power-law divergent susceptibility. In two dimen-
sions, the clean QHAF develops antiferromagnetic �Néel�
LRO at zero temperature.8 This introduces the intriguing
possibility of a genuine order-disorder transition, driven by
lattice randomness, i.e., from the Néel phase into one of the
above unconventional disordered phases.9

Site and bond dilution of the square lattice QHAF have
been the focus of several recent studies,3,4,13–15 motivated by
experiments on antiferromagnetic cuprates doped with non-
magnetic impurities.3,16,17 From a geometric point of view,
bond and site dilution reduce the connectivity of the lattice,
ultimately leading to a percolative phase transition18 beyond
which the system is broken up into finite clusters. In a clas-
sical spin system, this percolation transition is coupled to a

magnetic transition with the same critical exponents since
spontaneous magnetic order cannot survive beyond the per-
colation threshold. In a quantum spin system, on the other
hand, a progressive reduction of the lattice connectivity en-
hances quantum fluctuations in a continuous fashion, raising
the possibility of quantum destruction of magnetic order be-
fore the percolation threshold is reached. However, recent
studies of homogeneously site- and bond-diluted QHAFs on
the square lattice3,4,19,20 found that the magnetic transition
takes place exactly at the percolation threshold, due to the
fact that the percolating cluster at threshold shows LRO.4

The critical exponents of the correlation length and of the
order parameter, � and �, are found to take their classical
percolation values.4,21 Therefore, in this case the magnetic
transition is completely dominated by classical percolation.22

Alternative to the above classical percolation picture is
the quantum percolation mechanism, recently demonstrated
in a number of model systems.23–26 This scenario is based on
the fact that spins involved in locally strongly fluctuating
quantum states, such as dimer singlets and resonating va-
lence bonds �RVBs�, are weakly correlated with the remain-
der of the system. In a random network of spins, the local
strongly fluctuating states create weak links with small spin-
spin correlations. If these weak links are part of the backbone
of the percolating cluster, they can prevent the percolating
cluster from developing long-range order. Therefore, if lat-
tice dilution favors the local formation of such states, it is
possible to drive the system towards a quantum disordered
state before the percolation threshold is reached, thus decou-
pling percolation from magnetic ordering.

In this work we numerically scrutinize this quantum per-
colation scenario in the S=1/2 QHAF on a square lattice
with inhomogeneous bond dilution.27 The inhomogeneous
character of lattice randomness is the key ingredient to en-
hance quantum fluctuations, favoring the local formation of
RVB/dimer-singlet states. Based on large-scale quantum
Monte Carlo �QMC� simulations, we observe that the classi-
cal percolation scenario is preserved for moderate inhomo-
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geneity, up to a multicritical point beyond which the mag-
netic transition deviates from the percolation threshold. At
this point, the quantum percolation scenario sets in, leading
to a novel quantum-disordered phase. Such a phase has very
unconventional features, i.e., a finite correlation length but a
gapless excitation spectrum, and a diverging uniform suscep-
tibility at zero temperature with a nonuniversal exponent.
These signatures allow us to identify this phase with a genu-
ine two-dimensional quantum Griffiths phase.7,28,29

This paper is organized as follows. In Sec. II the model is
described, and in Sec. III, some technical aspects of the
simulations are reviewed. In Sec. IV we discuss in detail the
fate of antiferromagnetic order on the percolating cluster
upon tuning the inhomogeneity of bond disorder. The com-
plete phase diagram of the model is discussed in Sec. V.
Section VI deals with the emergence of the quantum-
disordered phase in the limit of randomly coupled ladders,
whereas Sec. VII is dedicated to the ground state properties
of the quantum-disordered regime. Conclusions are drawn in
Sec. VIII.

II. INHOMOGENEOUS BOND DILUTION OF THE QHAF
ON THE SQUARE LATTICE

We investigate the ground state and thermodynamics of
the S=1/2 QHAF on a two-dimensional square lattice with
inhomogeneous bond dilution. The Hamiltonian of this sys-
tem is given by

H = J �
�ij��D

�D
�ij�Si · S j + J �

�lm��L

�L
�lm�Sl · Sm. �1�

The sums run over the dimer �D� and ladder �inter-dimer�
�L� bonds, as indicated in Fig. 1�a�. The exchange couplings
are taken to be equal and antiferromagnetic �J�0�. ����
=D ,L� is a random variable drawn from a bimodal distribu-
tion taking values 1 �“on”� or 0 �“off”�. The inhomogeneity

of this model is of purely statistical nature, stemming from
the different probabilities of assigning the “on”-state ��i=1�
to the dimer bonds vs the ladder bonds. For D bonds this
probability is denoted by p��D=1�= PD, whereas for L bonds
it is denoted by p��L=1�= PL. The special case PD= PL rep-
resents the previously studied homogeneous bond-dilution
problem.4,18 In the general inhomogeneous case PD� PL,
two limits are noteworthy �see Figs. 1�b� and 1�c��: The case
PD=1, PL� �0,1� corresponds to a system of randomly
coupled dimers, and the opposite case PL=1, PD� �0,1� cor-
responds to randomly coupled ladders. The degree of inho-
mogeneity can be parametrized by introducing a variable

� = arctan� 1 − PL

1 − PD
	 �2�

such that the limiting cases of randomly coupled ladders,
homogeneous bond dilution and randomly coupled dimers
correspond to �=0, � /4, and � /2, respectively.

It is evident that the inhomogeneous nature of bond dilu-
tion in the lattice enhances quantum fluctuations in the mag-
netic Hamiltonian. In the strongly inhomogeneous limits �
→0, � /2 the structure of the percolating cluster is geometri-
cally built from weakly coordinated segments of ladders ��
→0�, and weakly coordinated dimers ��→� /2�, e.g, finite
necklace-like structures and finite randomly decorated chains
�see Fig. 2�. Both, antiferromagnetic Heisenberg ladders30

and decorated chains,31–33 have quantum-disordered ground
states with a finite correlation length �0. In antiferromagnetic
ladders the ground state has a RVB nature,34 and for the
necklace it has a dimer-singlet nature.31,32 When segments of
such structures become part of a larger cluster, as it is the
case in the inhomogeneous percolation model, they locally
retain ground state properties similar to the thermodynamic
limit if their length l is large compared to the correlation
length �0. This represents the core mechanism of nontrivial
enhancement of quantum fluctuations through bond dilution,
leading to quantum disordered phases.

III. NUMERICAL METHODS

The purely geometric problem of inhomogeneous perco-
lation is studied using a generalized version of a highly effi-
cient classical Monte Carlo algorithm.36 In turn, the quantum
magnetic Hamiltonian Eq. �2� is investigated by Stochastic
Series Expansion �SSE� QMC simulations based on the

FIG. 1. �Color online� �a� Decomposition of the square lattice
into dimer �D� and ladder �L� bonds; �b� randomly coupled dimer
limit; �c� randomly coupled ladder limit.

FIG. 2. �Color online� Inhomogeneous bond dilution favors the
formation of local strongly fluctuating quantum states. The green
ellipses indicate such local dimer-singlet, plaquette-singlet, and
ladder-like RVB states: �a� PL� PD; �b� PD� PL.
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directed-loop algorithm.35 The ground state properties are
systematically probed by efficiently cooling the system down
to its physical T=0 behavior via a successive doubling of the
inverse temperature � �Ref. 4�. This approach is necessary
since in two-dimensional �2D� diluted systems 2D correla-
tions are often mediated by narrow quasi-one-dimensional
links, such that the temperature scale at which these correla-
tions set in is much lower than in the clean 2D case.

The scaling analysis of the quantum simulation results is
carried out in two complementary ways.4 In the first ap-
proach, the lattice size is fixed at L	L, and the entire system
is simulated, including percolating and nonpercolating finite
clusters. In the second approach, a fundamental theoretical
tool is used to ascertain the presence or absence of order in
the system: We focus exclusively on the percolating cluster,
i.e., discarding the finite clusters that cannot carry long-range
order. On a finite L	L lattice with periodic boundary con-
ditions the percolating cluster is identified as the largest clus-
ter, winding around at least one of the two spatial dimen-
sions. The advantage of this approach is that a single run of
QMC simulation evaluates the observables on both the full
lattice and the largest �percolating� cluster. At the same time
the largest cluster has non-negligible size fluctuations �of or-
der L�, leading to a significant error in the QMC data. An
alternative approach, eliminating these size fluctuations, is to
grow the percolating cluster freely from an initial seed up to
a fixed size Nc but without any restriction of lattice bound-
aries. Starting from a single occupied bond, one visits the six
neighboring bonds, activating them with probability PD �PL�
if they are D �L� bonds, etc. The procedure is repeated until
no new bonds are generated. The cluster geometry is ac-
cepted only if its final number of sites matches exactly the
required Nc. A drawback of this procedure is that the cluster
build-up becomes time consuming for large Nc and away
from the percolation threshold because of the large rejection
rate.

In the full-lattice studies, L values up to 64 were used.
Within the �-doubling scheme, inverse temperatures as high
as �=256L have proven to be necessary to observe the
physical T=0 behavior. For the studies on fixed-Nc clusters
we considered Nc values up to 2048 and inverse temperatures
as high as �=8Nc. For each lattice size and for each point
P= �PD , PL�, 102–103 realizations of the diluted lattice/
percolating cluster were generated independently to obtain
disorder-averaged observables.

IV. MAGNETISM ON THE PERCOLATING CLUSTER

In this section, QMC results are discussed which address
the evolution of antiferromagnetic order on percolating clus-
ters upon tuning the nature of bond dilution from homoge-
neous ��=� /4� to inhomogeneous ��→0, � /2�. A funda-
mental observation4 is that the presence or absence of
magnetic order in a diluted system and the nature of the
transition from order to disorder are determined by the mag-
netic behavior of the percolating cluster. In two dimensions,
only one percolating cluster can exist in the system. We de-
note with �Mc� the disorder-averaged ��¯�� staggered mag-

netization per site of a percolating cluster, which is estimated
by

�Mc� = 
�mc
2� =
� 3

Nc
2�

ij

�c��− 1�i+j
Si

z
Sj

z� . �3�

Here the summation ��c� is restricted to sites contained in the
percolating cluster, and Nc is the total number of these sites.
This is to be contrasted with the overall magnetization of the
diluted lattice with N=L2 sites,

�M� = 
�m2� =
� 3

N
2�

ij

�− 1�i+j
Si

z
Sj

z� . �4�

Given that only the percolating cluster contributes to
long-range order in the thermodynamic limit, one finds that
for N→


�m2� =� 3

N2�
ij

�c��− 1�i+jSi
zSj

z� = �Nc
2

N2mc
2� . �5�

Moreover, exploiting the self-averaging property of the size
distribution of the percolating cluster,4 close to the percola-
tion threshold one can use

�M�P��  A�P − Pc
�cl���Mc�P� , �6�

where P= �PD , PL� is the control parameter of the inhomoge-
neous percolation problem, and P=Pc

�cl� defines the classical
critical line of percolation thresholds in the �PD , PL� space.
In Eq. �6� we have used the critical behavior of the so-called
network strength �Nc /N�A�P−Pc

�cl���, where A is a constant
amplitude, and �=5/36 is the critical exponent of classical
percolation.18

From Eq. �6� it is evident that, if Mc�Pc
�cl���0, the

dilution-driven transition from magnetic order to disorder co-
incides with the classical percolation transition, both in terms
of its location and of its critical exponents. Therefore, only
the absence of antiferromagnetic order on the percolating
cluster can lead to a decoupling between the magnetic tran-
sition and the geometric percolation threshold.

The critical curve P=Pc
�cl�, determined from classical

Monte Carlo simulations, is shown in Fig. 3. Despite the
inhomogeneous nature of percolation for PL� PD, excellent
scaling of the classical MC results is observed using the two-
dimensional percolation exponents.18 This demonstrates that
the universality class remains unchanged along the critical
curve.

Starting from the classical Monte Carlo result, the evolu-
tion of the order parameter can be tracked on the percolating
cluster �Mc�Pc

�cl��� along the critical line P=Pc
�cl� to monitor

the effect of quantum fluctuations enhanced by inhomogene-
ity. To this end, we perform a scaling study of the staggered
magnetization on percolating clusters for fixed size Nc, with
Nc up to 2048 and �=8Nc. The obtained data are extrapo-
lated to the thermodynamic limit by a three-parameter poly-
nomial fit �mc

2�Nc��= �mc
2�
��+aNc

−1/2+bNc.
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At the homogeneous bond percolation threshold PD= PL
=0.5 the percolating cluster is found to have antiferromag-
netic long-range order, in agreement with Ref. 4. However,
the finite value of the order parameter is strongly reduced as
the inhomogeneity is turned on, both in the “dimer” ��
→� /2� and the “ladder” ��→0� directions, until it vanishes
at nontrivial � values, �L0.34 in the ladder limit and �D
1.23 in the dimer limit. This means that inhomogeneous
percolation exhibits nonlinear quantum fluctuations that are
able to destroy the antiferromagnetic long-range order, in
contrast to the homogeneous percolation case4 with a renor-
malized classical ground state.

According to Eq. �6� this must be reflected in a profound
change of the critical properties, since the vanishing of the
staggered magnetization on the percolating cluster decouples
the magnetic transition from the percolation threshold. Be-
yond the two critical values �L and �D, a higher concentra-
tion of bonds will be required for the system to magnetically
order than for the lattice to percolate, thus opening up an
intermediate phase with a novel quantum-disordered ground
state.

V. PHASE DIAGRAM

In this section, QMC results are discussed for the mag-
netic phase diagram in the �PD , PL� plane. The magnetic

transitions are located via scaling of the spin-spin correlation
length �, extracted from the structure factor through the sec-
ond moment estimator.37 The inhomogeneity of bond dilu-
tion breaks the discrete rotation symmetry of the lattice, such
that two distinct correlation lengths �x and �y need to be
considered along the x and y lattice directions. At critical
points separating 2D long-range order from disordered
phases, both correlation lengths must scale linearly with the
lattice size, �x ,�y �L, regardless of the universality class of
the transition. In locating the magnetic transitions we have
verified that this condition is satisfied. This leads to the con-
clusion that, despite its inhomogeneity, the magnetic system
has unique well-defined phase transitions.

The resulting phase diagram is shown in Fig. 4. The mag-
netic transition line coincides with the percolation line for
moderate inhomogeneity. As discussed in the previous sec-
tion, in this region of the phase diagram the percolating clus-
ter at the percolation threshold is antiferromagnetically or-
dered. Therefore, not only the magnetic transition and the
geometric transition coincide, but also the critical exponents
of the magnetic transition are those of 2D percolation,23 ac-
cording to Eq. �6�.

For strong inhomogeneity. the scenario of a classical per-
colation transition in the magnetic Hamiltonian is precluded
by nonlinear quantum fluctuations. In fact, two multicritical
points occur, in the ladder and in the dimer direction, beyond
which the magnetic transition decouples from the percolation
threshold. The location of these multicritical points is quan-
titatively consistent with the vanishing of antiferromagnetic
order on the percolating cluster at two critical values of the
inhomogeneity parameter � �Fig. 5�.

Beyond the two multicritical points, intermediate quan-
tum phases appear, in which antiferromagnetic order is ab-
sent on the percolating cluster both at and away from the
percolation threshold. These regions represent novel

FIG. 3. �Color online� Upper panel: Classical phase diagram for
the inhomogeneous bond-percolation problem on the square lattice.
The angle � parametrizing the critical curve is indicated. Lower
panel: Scaling plots for the network strength Nc /N in the two
strongly inhomogeneous cases PD=0.9 and PL=0.9. An excellent
data collapse is realized, using the two-dimensional �2D� percola-
tion exponents �=5/36 and �=4/3, and with PL,c

�cl�=0.4007 �PD

=0.9� and PD,c
�cl� =0.0107 �PL=0.9�.

FIG. 4. �Color online� Upper panel: Scaling of the disorder-
averaged squared staggered magnetization on the percolating clus-
ter with fixed size Nc. The different curves correspond to various
points along the classical percolation transition. The continuous
lines represent quadratic fits. Lower panel: Extrapolated thermody-
namic values of the staggered magnetization from the upper panel
as a function of the inhomogeneity parameter �. The dashed line is
a guide to the eye.
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quantum-disordered phases on an infinite family of 2D per-
colated random lattices. Representative structures of this
family are shown in Fig. 6, together with the homogeneous
percolating cluster. It is remarkable that the homogeneous
percolating cluster �Fig. 6�b�� has long-range antiferromag-
netic order in the thermodynamic limit, whereas the other
percolating clusters in Figs. 6�a�, 6�c�, and 6�d� do not. In
fact, the latter structures have a significantly higher average
number of bonds per site than the homogeneous percolating
cluster, which has a fractal dimension18 lower than 2 �Df

=91/48�. A detailed discussion of the nature of the quantum-
disordered phase will be given in Sec. VII.

The evolution of the critical exponents upon tuning inho-
mogeneity has been investigated in Ref. 23. Surprisingly, the
two multicritical points do not mark an evident discontinuity
in the universality class of the model, and the classical per-
colation exponents appear to persist also for intermediate in-
homogeneity beyond the multicritical points, changing to
radically different values only in the extreme inhomogeneous
limits. Therefore, the magnetic quantum phase transitions
close to the multicritical points appear to retain a percolative
character. This result can be understood within the following
argument. To destroy the long-range nature of a random net-
work it is sufficient to cut a few links on its backbone. This
implies that the nonlinear quantum fluctuations leading to
quantum-disorder on the percolating cluster need only have
short-wavelength components, in contrast to conventional
quantum phase transitions in translationally invariant lattices.
Indeed, strongly fluctuating states appearing on links made
of segmented ladders or decorated chains �see Sec. II� have a
markedly local effect on magnetic correlations, i.e., they
magnetically decouple the portions of the percolating cluster
connected through that link. This effect is equivalent to geo-
metrically removing that link, thus leaving two portions of
the cluster disconnected.23 If weak links occur on the back-
bone of the percolating cluster, this mechanism is sufficient
to lead to quantum disorder. Only quantum fluctuations with
wavelengths comparable to the length of the weak link are
required. To reestablish magnetic correlations between the
two portions of the percolating cluster disconnected by quan-
tum fluctuations, it is then necessary to add more bonds to
the cluster in order to find an alternative path for magnetic
correlations to spread over the cluster. Since this process is
of geometrical character it endows the quantum phase tran-
sition with a percolative nature.

The above picture of a percolative quantum phase transi-
tion breaks down for strong inhomogeneity. In this limit, the
building blocks of the percolating cluster are the strongly
quantum fluctuating substructures depicted in Fig. 2, and
hence the quantum phase transition is driven by the compe-
tition between the energy scale of the gap above the ground
state of such substructures and the energy scale of the spa-
tially random couplings between the substructures. In a real-
space picture, the competition occurs between the finite cor-
relation length of the substructures and the characteristic
length set by the spacing between the spatially random cou-
plings. This competition will be discussed in detail in the
next section. The quantum phase transition is completely dis-
connected from classical percolation of the lattice, and it is
reasonable to expect for it to be in a different universality
class, as concluded in Ref. 23.

VI. CRITICALITY NEAR THE LADDER LIMIT

So far, the onset of the quantum disordered phases was
discussed, approaching them from the homogeneous limit of
Eq. �1�. A complementary understanding of the novel quan-
tum phase and the associated quantum phase transitions can
be gained by starting from the extreme inhomogeneous limit
of randomly coupled ladders ��=0�. This limit lends itself to
a very simple analysis in terms of the properties of the single

FIG. 5. �Color online� Phase diagram of the spin-1 /2 QHAF on
the inhomogeneously bond-diluted square lattice.

FIG. 6. �Color online� Percolating clusters for the bond-diluted
square lattice with size 24	24 and periodic boundary conditions:
�a� PD=0.15, PL=0.8; �b� PD=0.5, PL=0.5 �homogeneous case�;
�c� PD=0.9, PL=0.45; �d� PD=1.0, PL=0.44 �randomly coupled
dimers�.
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spin-1 /2 antiferromagnetic Heisenberg ladder.
In the limit of PL=1, the system is composed of an array

of two-leg ladders randomly coupled by D bonds. The prob-
ability of activation of a dimer bond is reflected in the aver-
age distance �r� of two D bonds along a column separating
two neighboring ladders, namely PD=1/ �r�. A single D bond
is sufficient to connect two ladders geometrically. In other
words, �r�=L is sufficient to connect all ladder subsystems
on a L	L lattice. Taking the limit L→
, one obtains imme-
diately PD→0. Thus geometrically the system percolates at
any infinitesimal concentration PD�0 and the percolating
cluster is the entire lattice itself.

However the system does not develop antiferromagnetic
order until a finite value PD0.32 is reached. This is not
surprising since each two-leg ladder has a quantum-
disordered ground state with a finite excitation gap. This gap
has to be overcome before the Néel ordered state can become
the ground state. A more quantitative argument can be for-
mulated based on the fact that each isolated ladder has a
finite correlation length34 �ladder3.19. One can imagine a
renormalization group transformation that creates effective
block spins from all the spins within a correlation volume in
such a way that all block spins are perfectly uncorrelated
with each other �see Fig. 7�. When turning on the D bonds, it
becomes evident that, to establish long-range correlations in
the system, it is necessary to have a string of block spins
percolating from one side to the other of the system. Given
that all block spins are independent within the same ladder,
this is only possible if, on average, each block spin is con-
nected by a D bond to both its right and left neighboring
block spin. This requires an average spacing of the D bonds
of �r��ladder on each column, which in turn leads to the
following estimate of the critical concentration of dimer
bonds

PD,c =
1

�ladder
. �7�

Despite the simplicity of the argument, this estimate is sur-
prisingly good: PD,c0.313 to be compared with the QMC
result PD,c=0.32�1�.

Interestingly, this argument can be extended to the case of
randomly coupled weakly diluted ladders, namely for PL
�1. The correlation length of the ladder remains the domi-
nant length scale of the problem, as long as it is much
smaller than the new length scale introduced by the dilution

�l� =
1

�1 − PL�2 , �8�

corresponding to the average length of the ladder segments
after dilution.

To test to which extent the above argument is applicable
we performed SSE-QMC simulations on a single bond-
diluted two-leg ladder to determine the evolution of the cor-
relation length upon dilution. The results are shown in Fig. 8.
For low doping concentrations, we observe that the average
correlation length of the ladder increases moderately. For
higher concentrations of missing bonds, the average ladder
length �l� becomes comparable to the correlation length,
which then crosses over to a decreasing behavior simply re-
flecting that of �l�.

We now focus on the increasing tendency for small dilu-
tion. This behavior reflects various competing mechanisms.
The dominant effects having the highest probabilities �O�PL�
and O�PL

2�� are:
�a� The removal of a rung bond results locally in two

uncoupled S=1/2 free moments which introduce a local
staggered modulation of the adjacent spins38,39 within a cor-
relation volume ��ladder �Fig. 9�a��. This leads to a local
increase in the antiferromagnetic correlations along the legs.

�b� If two rung bonds are removed sufficiently close to
each other, the induced local antiferromagnetic modulations
of the ladder ground state “lock in phase,” leading to an
effective coupling between the free moments, exponentially
decaying with the distance in the limit of low doping,39,40

Jeff � �− 1�i−j exp�− �i − j�/�ladder� . �9�

These long-range interactions also lead to an increase of the

FIG. 7. �Color online� Cartoon of the ordering mechanism in
randomly coupled ladders. When PD=1/ �r�1/�ladder �see text�
percolating strings of block spins �rectangles� appear in the system.
The divergence of the correlation length along such strings drives
the onset of long-range correlations between the strings and ulti-
mately of 2D long-range order.

FIG. 8. Correlation length of the bond-diluted 128	2 ladder
compared with the average ladder length �l�. The data for �ladder are
taken at �=2048; comparison with data at �=4096 �not reported�
shows no significant deviation.
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correlation length in the system through an order-by-disorder
mechanism �Fig. 9�b��.

�c� The removal of one leg bond, on the contrary, leads to
a local enhancement of the rung-singlet component of the
state of the two adjacent rungs �Fig. 9�c��. This mechanism
weakens the correlations along the two legs.

Effect �c� has twice the probability compared to the ef-
fects �a� and �b� because there are twice as many leg bonds
as rung bonds. The nontrivial competition between correla-
tion enhancement �a� and �b� and correlation suppression �c�
has the combined effect that in bond-diluted ladders, the cor-
relation length always remains finite down to zero tempera-
ture. This is to be contrasted with the case of site-diluted
ladders, in which the correlation length diverges algebra-
ically with decreasing temperature, ��T−0.4, as reported in
Ref. 41. �Obviously, even in the site-diluted case the average
correlation length is eventually upper-bounded by the aver-
age length of the ladder segments.� It is interesting to note
that for the case of site dilution, correlation-suppressing ef-
fects are not present beside the simple fragmentation of the
ladder.

The absence of diverging correlations in bond-diluted lad-
ders is crucial for the occurrence of an extended quantum-
disordered phase. The finite correlation length of a single
ladder for PL�1 allows us to repeat the RG argument
sketched in Fig. 7 for the case of bond-diluted ladders. One
needs a finite and non-classical concentration of dimer bonds
PD,c to drive the system into a Néel ordered phase, directly
related to the quantum correlation length of the system �ladder,
as long as it is significantly lower than the classical length
�l�:

PD,c�PL� 
1

�ladder�PL�
. �10�

The above estimate is a theoretical prediction for the
quantum-critical curve Pc= �PD,c , PL,c�, which can be directly
compared with the QMC results, shown in Fig. 10. The range

of quantitative validity of Eq. �10� is surprisingly large, ex-
tending down to PL0.875, which is interestingly also the
value where the quantum correlation length �ladder�PL� starts
to cross over towards the decreasing classical behavior �Fig.
8�. At this point the ground state of the ladder segments is
strongly altered by the presence of the dimer bonds, and
hence the argument leading to Eq. �10� breaks down.

VII. THE QUANTUM-DISORDERED PHASE:
CORRELATIONS AND GRIFFITHS-MCCOY

SINGULARITIES

In this section, we discuss the nature of the quantum-
disordered phase. Ground-state properties and thermody-
namic observables are considered which reveal the nature of
the low-lying excitation spectrum. A fundamental aspect of
this phase, as it is typical for disordered systems, are large
variations in the local properties of the system, reflecting the
local geometric structure defined by disorder. In the previous
sections, we have discussed how the presence of segments of
ladders or decorated chains leads to the local formation of
RVB/dimer-singlet states. At the same time, bond dilution of
ladders leads to the appearence of S=1/2 local degrees of
freedom, effectively interacting across the strongly quantum
fluctuating regions. The coexistence of such different subsets
of spins within the same system raises the question of what
the global nature of the ground state really is.

A. Short-range correlations

We first characterize the ground state in terms of global
correlation properties. The absence of magnetic order in this
phase has already been discussed in Sec. IV. Figure 11 shows
the staggered structure factor S�� ,�� for a representative
point �PD=0.15, PD=0.85� in the quantum disordered phase
on the “ladder” side of the phase diagram in Fig. 5. The
finite-temperature data for S�� ,��, obtained using
�-doubling, are extrapolated to the limit T→0 by accounting
for power-law temperature corrections up to fourth order:

FIG. 9. �Color online� Dominant effects of bond dilution on a
two-leg ladder: �a� Local antiferromagnetic modulation due to a
missing rung bond; �b� effective couplings between spins missing
their rung bond; �c� enhancement of the singlet component �indi-
cated by an ellipse� of the two rung dimers adjacent to a missing leg
bond.

FIG. 10. �Color online� Phase diagram of the QHAF on the
inhomogeneously bond-diluted square lattice �see also Fig. 4� close
to the ladder limit and compared with the single-ladder prediction
PD,c=1/�ladder�PL� �see text�.
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S��,�;T� = S��,��T=0 + �
i=1

4
ai

�i �11�

where the ai’s are fitting coefficients. The extrapolated T=0
values of S�� ,�� are shown in the inset of Fig. 11 as a
function of system size. They clearly display saturation for
L→
, proving not only that the system is disordered, but
also that it has finite-range correlations.

This fact is further reflected in the correlation length �x�y�
along the two lattice dimensions, shown in Fig. 12. A fitting
procedure similar to Eq. �11� is used to eliminate polynomial
finite-temperature correction. The �T=0 values so obtained
�right panel of Fig. 12� suggest convergence towards a finite
value for L→
, although the correlation length is large for
the particular point �PD=0.15, PD=0.85�, and, even for the
largest considered size �L=72�, � does not display full satu-
ration. A polynomial fit ��L�=�
+a /L+b /L2 for L�48
yields saturation values �x,
=9�1� and �y,
=12.5�5�, result-
ing in a considerable correlation volume of �100 sites. It is
important to keep in mind that the finite correlation length in
the quantum disordered system varies strongly with the de-
gree of inhomogeneity, and it can become as small as ��3
in the limit of randomly coupled ladders. For instance, Fig.
13 shows the finite-size scaling of the static structure factor
and correlation lengths for a point closer to the ladder limit,
PD=0.15 and PL=0.9. For this point one observes excellent
temperature saturation of the data up to L=64 for �
16 384 without the need of any fitting procedure. More-
over, the zero-temperature data reported in Fig. 13 show a
much better saturating behavior within the system sizes con-
sidered, leading to the asymptotic values �x,
=2.5�1� and
�y,
=5.4�2�.

A clear picture of the short-range nature of correlations
also emerges from real-space images of

• the local staggered structure factor,

S��,�;i� = �
j�i

�− 1�i+j�Si
zSj

z�0; �12�

• the correlation function C�0, i�= �S0
zSi

z�0 between a ref-
erence site and all the other spins;

• the energy of each bond E�ij�=J�Si ·S j�0,
all shown in Fig. 14 for a given sample corresponding to a
representative point of the quantum-disordered phase on the
“ladder side.” Here the symbol �¯�0 indicates the expecta-
tion value associated with the ground state of the specific
sample considered, not to be confused with the disorder av-
erage �¯�.

FIG. 11. �Color online� Temperature and finite-size scaling of
the static structure factor S�� ,�� for a representative point in the
quantum-disordered regime �PD=0.15, PL=0.85�. Dashed lines are
a quartic polynomial fit in T=�−1 �see Eq. �11�� to extrapolate to the
�→
 limit �when required�. Inset: �→
 extrapolated values of
the static structure factor plotted vs system size, clearly showing
saturation in the thermodynamic limit.

FIG. 12. �Color online� Left panel: Temperature and finite-size
scaling of the correlation length along the two lattice directions ��x

and �y� for a representative point in the quantum-disordered regime
�PD=0.15, PL=0.85�. Dashed lines are a quartic polynomial fit in
T=�−1 to extrapolate to �→
 �when required�. Right panel: �
→
 extrapolated values of the correlation length�s� vs system size;
the dashed lines are polynomial fits up to second order in L−1 on the
points for L�48 to compensate for the finite-size effects.

FIG. 13. �Color online� Finite-size scaling of the T=0 static
structure factor and correlation length�s� for a point in the quantum-
disordered regime �PD=0.15, PL=0.9� closer to the ladder limit.
The dashed lines associated with the correlation length data are
quadratic fits ��L�=��
�+a /L+b /L2.

YU, ROSCILDE, AND HAAS PHYSICAL REVIEW B 73, 064406 �2006�

064406-8



Starting with the bond energy, we observe that quantum
fluctuations introduce a wide range of variability in its val-
ues, energetically promoting weakly correlated dimers or
quadrumers and rung bonds on ladder segments, at the ex-
penses of the energy of the adjacent bonds �due to the fact
that a S=1/2 particle can form a singlet with only one other
S=1/2 particle�. In particular the rare D bonds have in gen-
eral the weakest energies, due to the strong tendency of the
energy to be minimized on the ladder segments. This leads to
a clear quantum suppression of correlations in the direction
transverse to the ladders.

The local staggered structure factor of Eq. �12� measures
the “effective correlation volume” �integral of the antiferro-
magnetic correlation function� around each spin, thus identi-
fying the spins that are most strongly correlated with the
remainder of the system. In Fig. 14�a� we observe that only a
portion of the spins has a sizable local structure factor, when
they belong to regions with a larger local coordination num-
ber. In Fig. 14�b� we have picked a site on a dangling bond
attached to a segment of a ladder, and calculated its correla-
tions to the rest of the system. Compared with Fig. 14�a�, we
observe that the correlation volume around the chosen spin is
considerably smaller than the cluster of “correlated” spins
identified by the local structure factor. This implies that spins
that are most correlated with the remainder of the system are
not all correlated with each other. The finite-range nature of
correlations is also clearly shown in the picture, along with
the nonmonotonic decay of correlations with distance. The
latter is due to the fact that a dangling spin is mostly corre-
lated with spins not involved in a local singlet state, even
over long distances, due to the effective long-range cou-
plings discussed in Sec. VI. Nonetheless, even in the pres-
ence of such couplings, correlations decay significantly with
distance. This picture is to be contrasted with the case in
which long-range couplings give rise to a genuine order-by-
disorder phenomenon, as for instance in the site-diluted
dimerized systems treated in Ref. 42. There the real-space
image of C�0, i� shows very little spatial decay of the corre-
lations between the free moments of the system.

B. Griffiths-McCoy singularities

In this section, the nature of the low-lying excitation spec-
trum in the quantum-disordered phase is discussed. In a
clean system, the presence of a finite real-space correlation
length implies finite correlations also in imaginary time, i.e.,
the existence of a gap in the excitation spectrum. In disor-
dered systems, however, this is not necessarily the case. The
disorder considered here is completely uncorrelated in real
space but perfectly correlated in imaginary time, such that
long-range correlations in the time dimension �and thus ab-
sence of a gap� may coexist with short-range real-space cor-
relations.

The nature of the low-lying excitation spectrum is re-
flected in the low-T uniform susceptibility. The global uni-
form susceptibility of the system is typically dominated by
the Curie contribution from odd-numbered finite clusters,
which masks the behavior of the quantum-disordered perco-
lating cluster. Hence, in the following discussion the contri-

FIG. 14. �Color online� Real-space images of the bond energy
�both panels�, local static staggered structure factor S�i� �see text�
�a� and of the static staggered correlations C�0, i� between a refer-
ence point on a dangling bond and the remainder of the system �b�,
for the percolating cluster on a 32	32 sample with PD=0.15 and
PL=0.85 at �=8192. The thickness of each bond is proportional to
its energy, whereas the radius of the dots in �a� and �b� is propor-
tional to the local value of S�i� and C�0, i�. In �a� red boundaries
highlight the regions where local correlations exceed the average
value, namely where S�i��S�� ,��. In �b� the red boundaries mark
the correlation volume beyond which C�0, i�8	10−3, corre-
sponding to a distance �in units of the correlation length� �ri� /�
 ln�C�0,0� /C�0, i��3.4.
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butions from the finite clusters are neglected. Instead, we
focus on the uniform susceptibility of the percolating cluster
with an even number of sites Nc:

�u,c =
�

Nc
�
ij�c

�Si
zSj

z� . �13�

The results for �u,c as a function of temperature, both in
the ladder regime and in the dimer regime, are shown in Fig.
15. A gapped spectrum would imply an exponentially van-
ishing susceptibility as T→0. However, we find a non-
vanishing susceptibility in this limit, and observe that �u,c
instead displays a power-law divergence

�u,c � T�−1 �14�

with ��0, such that this divergence is not Curie-like. In
particular, �=��P� varies continuously as one scans across

the quantum-disordered region: �0.09÷0.2. This clearly
shows that the system is not only gapless, but that its gapless
excitations lead to singularities in the response to an external
field.

Quantum-disordered phases with divergent response prop-
erties at T→0 are familiar in the literature of disordered
systems. They are classified as quantum Griffiths phases, and
have been theoretically shown to exist in bond-disordered
dimerized chains,7 in bond-disordered S=1 �Haldane�
chains,43,44 and in disordered transverse-field Ising
models10–12 �see Ref. 45 for a recent review�. As in our
model, their central feature is the coexistence of short-range
correlations together with so-called Griffiths-McCoy singu-
larities in the response functions. Such singularities are due
to the anomalous role played by local low-energy excitations
living on rare regions of the system.

What are the excitations leading to the singular response
in our model? To answer this question, we focus on the lad-
der limit, referring to the discussion of bond dilution in lad-
der systems given in the previous section. There, it was ob-
served that bond dilution leaves free S=1/2 moments
interacting via effective long-range couplings, Jeff, exponen-
tially decaying with the distance. The presence of this weak
energy scale in the system immediately populates the low-
lying spectrum down to the ground state. For any arbitrarily
small energy, one can always find two S=1/2 moments
which are sufficiently far from each other to be coupled with
this energy. Nonetheless, to be able to excite the system at
this energy scale only, one needs the two moments to be
separated by a large clean region, such that one can rotate all
moments at one end of this region of a given angle, leaving
the higher-energy couplings at shorter range unchanged �see
Fig. 16�. Therefore on the one hand there is an exponentially
small energy of the localized excitation, leading to an equally
weak local gap �:

FIG. 15. �Color online� Low-temperature uniform susceptibility
of the percolating cluster in the quantum-disordered regime: Ladder
regime �upper panel� and dimer regime �lower panel�. The solid
lines are power-law fits of the form �u,c�T−1+�, and the resulting
fit coefficients � are indicated. In the upper panel, the percolating
cluster is picked as the largest cluster in a 64	64 lattice, whereas
in the lower panel it is grown freely from a seed site up to a fixed
site of Nc=1024 �see Sec. III�.

FIG. 16. �Color online� Sketch of a low-energy excitation in the
bond-diluted ladder system. �a� Four spins with missing rung bonds
are coupled across a clean region of length l with weak effective
couplings Jeff�exp�−�l�; �b� rotating the spins at one end of the
clean region by the same angle, spin excitations occur on the
weaker bonds only, leaving the stronger ones unchanged.
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� � exp�− �l� , �15�

but, at the same time, the presence of a large clean region of
length l between the free moments is a rare event with ex-
ponentially small probability

w�l� � �1 − PL�l � exp�− cl� . �16�

By substituting Eq. �15� into Eq. �16� with the appropriate
metric term to preserve the normalization condition of the
probability distribution, the two exponentials compensate
each other, leaving a power-law distribution46 of the local
gap �:

w��� � �c/�−1. �17�

A very similar argument can be applied to the dimer limit
of the model. Here, e.g, an exponentially rare long clean
decorated chain with weakly interacting spins at its ends
leads to a similar probability distribution of local gaps.

The above result has immediate consequences for the
thermodynamics of the system,10 giving rise to the observed
power-law behavior of the uniform susceptibility ��T�−1

where �=c /�. In particular the constant c is clearly disorder-
dependent �c= �ln�1− PL�� via Eq. �16��, such that � is ex-
pected to be nonuniversal, as it is observed in our data.

In order to verify the microscopic interpretation of the
QMC results for �u,c in terms of a power-law distribution of
the local gaps, Eq. �17�, we study an observable that directly
probes the local gap, i.e., the local susceptibility,46

�loc,i � �
0

�

d��Si
z���Si

z�0�� . �18�

Hence, if the ith spin is involved in a local quantum state
with a local gap �, one obtains in the large-� �low-T� limit:

�Si
z���Si

z�0�� � exp�− ��� , �19�

such that, upon imaginary-time integration

�loc,i �
1

�
. �20�

By a simple change of variables in Eq. �17� one then finds a
probability distribution for the local susceptibility,

w��loc� � �loc
−1−�, �21�

which is more conveniently recast in the form

ln w�ln �loc� � − � ln �loc, �22�

i.e., the function ln w�ln �loc� has a tail linear in �ln �loc� and
a slope that directly yields the exponent �.

Figure 17 shows results for the logarithmic distribution of
the local susceptibility, Eq. �22�, on sites of the percolating
cluster only, for a representative point in the quantum-
disordered phase �PL=0.9, PD=0.1� and for various system
sizes at very low temperatures ��=128L�. Consistent with
the Griffiths-singularity scenario, one observes a linear tail in
ln w�ln �loc�, reflecting the power-law tail of w��loc� for all
considered system sizes. This tail shows a strong size depen-
dence, with a decreasing slope for increasing size, and cross-
ing over into a nonlinear finite-size tail for large �loc values.

The tail of the distribution w��loc� is the result of rare events
associated with clean regions and exponentially small gaps,
such that finite-size corrections significantly affect the tail
statistics. Nonetheless, the extracted values of the tail slope �
converge towards the range �0.2÷0.3, fully consistent
with the independent estimate obtained from the low-
temperature behavior of the global susceptibility �u,c in the
ladder limit. This result completes the picture of a quantum
Griffiths phase for the quantum-disordered region of the sys-
tem.

VIII. CONCLUSIONS

In this work, we have investigated the highly nontrivial
interplay between quantum fluctuations and geometric disor-
der realized in the inhomogeneously bond-diluted quantum
Heisenberg antiferromagnet on the square lattice. We have
observed that the inhomogeneous nature of bond dilution
allows for a continuous tuning of quantum fluctuations from
linear to nonlinear. Inhomogeneity enables us to tune the
system from a renormalized classical phase, in which the
magnetic transition is purely driven by geometric percola-
tion, to a genuine quantum regime in which the magnetic
transition is decoupled from the percolation transition.
Hence, a quantum-disordered phase appears between the
magnetic and the percolation transition. This phase has the
nature of a quantum Griffiths phase, characterized by finite-
range correlations coexisting with a divergent uniform sus-
ceptibility.

This represents, to our knowledge, the first evidence of a
quantum Griffiths phase in disordered two-dimensional
Heisenberg antiferromagnets,47 the previous observations be-
ing limited so far to one-dimensional Heisenberg
antiferromagnets7,43,44 and one- and two-dimensional quan-
tum Ising models.10–12,46 Given the relevance of the two-
dimensional Heisenberg model to the physics of cuprate ox-
ides, we believe that this finding represents an important step

FIG. 17. �Color online� Probability distribution of the local sus-
ceptibility for a representative point in the quantum-disordered
phase �PD=0.15, PD=0.9�, taken at �=128L. The slope of the lin-
ear tail of the distribution is proportional to the � exponent in the
thermodynamic limit �see text�.
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towards the possibility of the experimental observation of a
quantum Griffiths phase.

Obviously, the most natural form of disorder in real
Heisenberg antiferromagnets is site dilution, realized by dop-
ing of nonmagnetic impurities in the magnetic lattice.3 Bond
dilution can, in principle, be realized by vacancies in the
nonmagnetic lattice, in particular by vacancies on the sites of
the nonmagnetic ions involved in the superexchange paths.
The presence of such vacancies naturally alters the local
electronic structure of the system, such that its effect on the
magnetic Hamiltonian may be more elaborate than simple
bond dilution, and it might even introduce excess charge
carriers in the system. The doping of the nonmagnetic ions
involved in the superexchange paths with other nonmagnetic
species introduces instead bond disorder,48 whose effect can
in principle be arbitrarily close to that of bond dilution.

Beside the technical challenges in realizing bond dilution
�and bond disorder in general� in real antiferromagnets, a
fundamental aspect of this work is the central role of inho-
mogeneity in the search for quantum phases induced by dis-

order in 2D Heisenberg antiferromagnets. Recent studies49

show that the Néel ordered state of the square-lattice Heisen-
berg antiferromagnet is extremely stable towards homoge-
neous bond disorder, and homogeneous bond dilution de-
stroys Néel order only at the classical percolation threshold.4

Hence, inhomogeneity is an essential ingredient to realize
strong enhancement of quantum effects through disorder be-
yond the previously investigated scenarios.
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