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Using the transfer matrix theory, we provided the band structure of flexural waves in an Euler-Bernoulli
beam with locally resonant structures, with two degrees of freedom, i.e., a resonator with vertical and rotational
vibration. The frequency response function of a finite periodic system was calculated by the finite element
method. The material damping of rubber makes the gaps wider in the calculation. These theoretical results
show a good agreement with those of the experiment. The measured result provides an attenuation of over
20 dB in the frequency range of the band gaps. The existence of low-frequency band gaps in such a beam
provides a method of flexural vibration control of beams.
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I. INTRODUCTION

In the last decade, the propagation of elastic or acoustic
waves in periodic composite materials that are called
phononic crystals �PCs� has received much attention.1–13 In
the frequency ranges of complete elastic band gaps, sound
and vibration are both forbidden. This is of interest for ap-
plications such as frequency filters, vibrationless environ-
ments for high-precision mechanical systems, design of new
transducers, and so on.

Elastic or acoustic wave band gaps from the Bragg reflec-
tion mechanism in periodic beams were researched early.2–5

In Ref. 2, the authors studied the flexural vibration propaga-
tion in straight beams with periodic structures theoretically
and experimentally. The periodic beams comprise continuous
elements of two different material and geometrical types
connected in alternating sequence. Also the Bragg gaps of
acoustic waves in waveguides with periodic side branches
have been studied theoretically and experimentally.3–5 The
emphasis of these studies3–5 was on the propagation of the
fluid or acoustic wave in a tube with side branches. However,
for the Bragg gaps, the spatial modulation must be of the
same order as the wavelength in the gap. This would require
structures with the size of outdoor sculptures in order to pre-
vent environmental noise or bigger for the vibration shield-
ing of common machines.1

The pioneering work of Liu et al.1 opened an additional
field of PCs. The authors studied three-dimensional PCs con-
sisting of cubic arrays of coated lead spheres �the coating is
a thin film of a soft material� immersed in an epoxy matrix,
i.e., locally resonant �LR� PCs. They predicted the appear-
ance of a gap in a frequency range two orders of magnitude
lower than the one resulting from Bragg scattering, which
spurred further research.8–10 The two-dimensional counter-
parts, i.e., lattices of coated cylinders in epoxy, have also
been studied.11–13

A flexural beam carrying one or several elastically
mounted concentrated masses, such as engines, motors, os-
cillators, or vibration absorbers, is often encountered in the
fields of mechanical, civil, and aeronautical engineering.14,15

An Euler-Bernoulli beam carrying multiple spring-mass sys-
tems with one or two degrees of freedom �1DOF or 2DOF�
has been researched, but only the natural frequencies of such
a constrained Euler-Bernoulli beam system have been
considered.14 The lumped-mass method was introduced to
study the band gaps of flexural elastic waves in an infinite
beam with LR structures,6 but the numerical calculation
methods are so complex that the authors had to distinguish
which dispersive curves are useful for research in flexural
waves. The important dispersive curve in the gap for the
2DOF systems was not found.

In this paper, we research flexural vibration band gaps in
an Euler-Bernoulli beam with 2DOF LR structures. The band
structures of flexural waves in the Euler-Bernoulli beam are
calculated with the exact transfer matrix �TM� theory. To
compare the band gap of the infinite system and the trans-
mission coefficient of the finite system, the transmission fre-
quency response function �FRF� of a finite sample of the
structure is calculated with the finite element �FE� method.
Finally all the theoretical results are validated with a vibra-
tion experiment.

II. THEORY OF THE TM

Figure 1 shows a simple model of an Euler-Bernoulli
beam with periodical 2DOF LR structures. The beam is at-
tached periodically with harmonic oscillators. One LR oscil-
lator consists of two springs k and one mass m. The lattice
constant is a.

The governing differential equation for free flexural vibra-
tion of the Euler-Bernoulli beam can be written as follows:17

�2

�x2�EI
�2y�x,t�

�x2 � + �A
�4y�x,t�

�t4 = 0 �1�

where � and E are the density and Young’s modulus, respec-
tively, A is the cross-section area, and I is the moment of
inertia with respect to the axis perpendicular to the beam
axis. y�x , t� is the dynamic displacement at x. We consider
the normal-mode condition y�x , t�=X�x�exp�i�t�, where � is
the circular natural frequency.
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For an Euler-Bernoulli beam, the amplitude X�x� reads as

X�x� = A cos��x� + B sin��x� + C cosh��x� + D sinh��x�
�2�

where �4=�A�2 /EI.
For the first section of the nth cell shown in Fig. 1�b�, the

amplitude

Xn1�x�� = An1cos��x�� + Bn1sin��x�� + Cn1cosh��x��

+ Dn1sinh��x�� �3�

where x�=x−na, na�x�na+ l. Similarly, for the second
section of the nth cell, the amplitude can be written

Xn2�x�� = An2cos��x�� + Bn2sin��x�� + Cn2cosh��x��

+ Dn2sinh��x�� �4�

where x�=x−na, na+ l�x� �n+1�a.
As for the nth 2DOF LR oscillator, considering the equi-

librium condition for all the forces in the y axis, including
the inertial force and the moment about the center of the
gravity On, one obtains14

− fn1�t� − fn2�t� − mZ̈n�t� = 0, �5�

fn1�t��On − xn1� − J�̈�t� − fn2�t��xn2 − On� = 0 �6�

where fn1�t� , fn2�t� are the interactive forces between the
2DOF LR oscillator and the beam at the two attaching points
xn1 and xn2, respectively, and m and J are the mass and mass
moment of inertia of the oscillator, respectively. Zn�t�
=Vnexp�i�t� is the displacement of the nth LR oscillator at
the center of gravity, Vn is the amplitude of displacement.
�n�t�=�nexp�i�t� is the torsional displacement of the nth LR
oscillator, and �n is the rotational angle.

The forces fn1�t� and fn2�t� are given by

fn1�t� = k�Zn�t� − y�xn1,t� − �On − xn1��n�t��

=k�Vn − Xn1�xn1� − l�n�exp�i�t�

�Fn1exp�i�t� , �7�

fn2�t� = k�Zn�t� − y�xn2,t� + �xn2 − On��n�t��

=k�Vn − Xn2�xn2� + l�n�exp�i�t�

�Fn2exp�i�t� . �8�

Substituting Eqs. �7� and �8� into Eqs. �5� and �6� leads to

Vn = k
Xn1�xn1� + Xn2�xn2�

2k − m�2 , �9�

�n = kl
Xn1�xn1� − Xn2�xn2�

J�2 − 2kl2 , �10�

where 2l is the distance between the two attachment points
xn1 and xn2.

Using Eqs. �3� and �4�, one can obtain

Xn1�xn1� = Xn1�0� = An1 + Cn1, �11�

Xn2�xn2� = Xn2�l� = An2cos��l� + Bn2sin��l� + Cn2cosh��l�

+ Dn2sinh��l� . �12�

These results are now used to deal with the dispersive rela-
tion of the Euler-Bernoulli beam with LR structures.

The continuities of displacement, slope, bending moment,
and shear force at the attachment points xn2, i.e., x=na+ l,
give

Xn1�l� = Xn2�l� , �13a�

Xn1� �l� = Xn2� �l� , �13b�

EIXn1� �l� = EIXn2� �l� , �13c�

EIXn1� �l� = EIXn2� �l� − Fn2. �13d�

Substituting Eqs. �3� and �4� into Eqs. �13� and using Eqs.
�7� and �8�, one can obtain the matrix form

K1�n2 = H1�n1 �14�

where �n2= �An2 Bn2 Cn2 Dn2�T, �n1= �An1 Bn1 Cn1 Dn1�T.

FIG. 1. �a� A simple model of the Euler beam carrying multiple 2DOF LR structures; �b� the force equilibrium of the nth 2DOF LR
structure.
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The continuities at the attachment points xn1, i.e., x=na,
give

X�n−1�2�a� = Xn1�0� , �15a�

X�n−1�2� �a� = Xn1� �0� , �15b�

EIX�n−1�2� �a� = EIXn1� �0� , �15c�

EIX�n−1�2� �a� = EIXn1� �0� − Fn1. �15d�

Analogously, one can obtain

K2�n1 + K3�n2 = H2��n−1�2. �16�

Based on Eqs. �14� and �16�, the relation between the nth cell
and �n−1�th cell is given by

�n2 = T��n−1�2 �17�

where T=K1
−1H1�K2+K3K1

−1H1�−1H2 is the transfer matrix.
However, due to the periodicity of the infinite structure in

the x direction, the Bloch theorem18 guarantees

�n2 = eiqa��n−1�2 �18�

where q is the wave vector in the x direction.
Inserting Eq. �18� into Eq. �17� yields a standard eigen-

value problem of 4	4 matrix:

�T − eiqaI� = 0, �19�

where I is the 4	4 unit matrix. In other words, for given �,
Eq. �19� gives the values of q. Depending on whether q is
real or has an imaginary part, the corresponding wave propa-
gates through the Euler-Bernoulli beam �passband� or is
damped �band gap�.

As for a finite sample, attenuation modes in the band gaps
can exist. Thus, the propagation of elastic waves within the
specific frequency ranges can only be weakened, not totally
forbidden. In order to describe the propagation of flexural
waves in the finite sample correctly, we employ the FE tech-
nique to calculate its transmission FRF.

III. THEORETICAL AND EXPERIMENTAL RESULTS

We design the beam with periodic LR structures shown in
Fig. 2. The beam is constructed from an aluminum tube with
the inner and outer radii being r0=7	10−3 and r1=1
	10−2 m, respectively. The unit of the LR structure is com-
posed of a soft rubber ring with outer radius r2=1.5

	10−2 m and a heavy metal Cu ring with outer radius r3
=1.95	10−2 m. The length of the rubber ring is h=1
	10−2 m, and the length of the Cu ring is 2l=6	10−2 m.
The cross-section area of the beam is A=1.602	10−4 m2

and the moment of inertia I=5.968	10−9 m4. The lattice
constant is a=1.5	10−1 m. �1, E1, and G1 are the density,
Young’s modulus, and shear modulus of rubber; �2 is the
density of Cu.

For the rubber ring, the radial stiffness is19

k =

�5 + 3.29H2�G1h

ln�r2/r1�
�20�

where H=h / �r1+r2�ln�r1 /r2� is the shape coefficient.
The elastic parameters employed in the calculations are

�Al=2600 kg/m3, EAl=7.0	1010 Pa, GAl=2.7	1010 Pa,
�rubber=1300 kg/m3, Erubber=7.7	106 Pa, Grubber=2.6
	105 Pa, �Cu=8950 kg/m3. Based on Eq. �20�, the spring
stiffness of the rubber ring is k=1.65	105 N/m. The mass
of the Cu ring is m=2.6	10−1 kg.

Figure 3�a� illustrates the band structure of the Euler-
Bernoulli beam with LR structures shown in Fig. 2. We can
find one complete band gap within 800 Hz. The low fre-
quency gap extends from a frequency of 176.3 up to
408.8 Hz. The flexural wave cannot propagate through the
Euler-Bernoulli beam in this frequency range.

A remarkable feature in Fig. 3�a� is the flat branches
crossing the whole Brillouin zone. The branches are real and
converged. In order to investigate the reason for the flat
bands, we calculate the FRF of the flexural vibration with
nine LR oscillators by the FE method. The FRF of vibration
has been used to describe the gaps effectively.16 In the cal-
culation, a white noise in the y direction from 0 to 800 Hz is
excited in one end of the beam. The frequency response of
the other end of the beam is shown as the continuous line in
Fig. 3�b�. There is one sharp drop in the frequency response
curve extending from 180 to 410 Hz, which is in very good
agreement with the band structure. One resonant peak ap-
pears in the gap at about 220 Hz, whose frequency corre-
sponds to the second flat band in the band structure. These
resonant modes at the selected points T1, T2, and T3 in Fig. 3
are illustrated in Figs. 4�a�–4�c�. In Fig. 4, the dashed lines
illustrate the primal deformation, and the solid lines illustrate
the maximum deformation in vibration. For the point T1 �Fig.
4�a��, the amplitude of the vibrations is well concentrated in
the resonators, and it is very small in the hosting beam. The
vibration direction of the resonators is vertical to the beam.
At point T3 �Fig. 4�c��, the lattice vibrations are almost the
same except that the vibrations in the hosting beam are no-
table and in the reverse phase to the resonators. The time-
harmonic forces from oscillator to host beam split the origi-
nal dispersion curves, and a band gap is generated. The rule
used to judge whether a resonant mode in PCs can result in a
corresponding subfrequency gap7 is still applicable to the
beam with LR structures. The two resonant modes at T1 and
T3 show that vertical vibration is the key factor for gap for-
mation. As for the point T2 �Fig. 4�b��, the vibration is also
localized in the oscillators but it vibrates like a teetertotter
due to the moment of inertia of the Cu ring. The two reso-

FIG. 2. Model of the Euler-Bernoulli beam with 2DOF LR
structures.
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nant modes at T1 and T2 describe the two DOF of the reso-
nators. For the antiresonant modes of T1, T2, and T3, the
vibration in the beam can be transferred to the resonators as
a function of the dynamic vibration absorbers. Therefore
three transmission minima appear in the FRF labeled as N1,
N2, and N3. But we find an additional transmission minimum
inside the stop band at 315 Hz, labeled N4. The deformation
of the first cell is shown in Fig. 4�d�; a vertical vibration
coupled with torsional deformation in resonator can be
found. So the minimum in the FRF at point N4 appears. But
the effect of the coupled vibration mode is not strong; there
is no resonant peak appearing in the FRF.

From Fig. 4�a�, the displacement of the aluminum tube is
assumed to be negligible in comparison to the vibration of
the resonators. So substituting Eqs. �7� and �8� into Eq. �5�,
using y�xn , t�=0, we can obtain the vertical resonant frequen-
cies at T1 as

f1 =
1

2

�2k

m
= 177 Hz. �21�

Analogously, the deformation of resonators at T2 corre-
sponding to the flat band in Fig. 3�a� is dominant as shown in
Fig. 4�b�. Using Eq. �6� and y�xn , t�=0, we can obtain the
torsional resonant frequencies at T2 as

f2 =
1

2

�2kl2

J
= 250 Hz. �22�

The frequency f1 is in very good agreement with the FRF.
But as for frequency f2, the rubber ring generates shear de-
formation �see Fig. 4�b��; the rubber shear stiffness is less
than the radial stiffness. So the rotational resonant frequency
at T2 is lower than f2.

In order to verify the results calculated with the TM and
the FE method, an Euler-Bernoulli beam with nine LR oscil-
lators as in the simulation model in Fig. 3�a� was fabricated
and a vibration experiment was performed. The test sample
and the experimental system are shown in Figs. 5�a� and
5�b�, respectively. We chose the experimental scheme that
had been adopted earlier;3 a white-noise signal with band-
width from 0 to 1000 Hz is input into the vibration shaker,
which transmits vibrations to the left end of the beam
through the accelerometer. Then flexural waves propagate
through the beam. The acceleration at the right end of the
beam is measured with an accelerometer.

The dotted line in Fig. 3�b� illustrates the measured trans-
mission FRF for this beam with nine LR oscillators. The
frequency range of strong attenuation in the measured trans-
mission FRF curve is from 170 to 785 Hz. Comparing with
the theoretical result �continuous line in Fig. 3�b��, one can
see two obvious differences. As shown in Fig. 3�b�, the gap
width becomes wider than the theoretical gap width and the
resonant peak at T2 in the theoretical FRF does not appear in
the experimental result. The difference is completely due to
the effect of the rubber material damping.

FIG. 3. �Color online� �a� Band structure of the Euler-Bernoulli beam with 2DOF LR structures, with lattice a=1.5	10−1 m. �b�
Calculated and measured transmission FRF corresponding to samples of nine cells. The continuous, dash-dotted, and dashed lines represent
the FRF calculated by the FE method with the structural damping coefficient of rubber material �=0, 0.05, and 0.5, respectively. The dotted
line represents the measured result.

FIG. 4. The vibration deformation calculated
by the FE method corresponding to correspond-
ing to points �a� T1, �b� T2, �c� T3, and �d� N4 in
Fig. 3, respectively. The dashed �solid� lines illus-
trate the primal �maximum� deformation,
respectively.
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Now, we calculate the FRF with the effect of the struc-
tural damping coefficient of the rubber material. The dash-
dotted and dashed lines in Fig. 3�b� represent the FRF with
structural damping coefficients of the rubber material �
=0.05 and 0.5, respectively. From Fig. 3�b�, we can draw the
conclusion that the damping of the rubber will depress the
resonant peak at T2 even with a small damping coefficient.
So the transmission maximum at T2 on Fig. 3�b� cannot be
measured in the experimental result. Also, the gap width will
increase as the damping coefficient of rubber increases, but
the maximum attenuation value in the gap decreases. So the
transmission minima inside the stop band will vanish. When
the damping coefficient of the rubber is �=0.5, the theoret-
ical and experimental results match well.

IV. CONCLUSIONS

In conclusion, low-frequency flexural wave band gaps in
an Euler-Bernoulli beam with 2DOF LR structures are stud-

ied theoretically and experimentally. The dispersive relation
was provided effectively by TM theory. A more physical un-
derstanding of the LR modes is investigated by a vibrational
mode calculation using the FE method. Also the effect of the
material damping in rubber was considered in the calcula-
tion. Finally an experimental system was designed to verify
all the theoretical results. The measured result provides an
attenuation of over 20 dB in the frequency range of the band
gaps, which matches perfectly with the theoretical predic-
tion. The gaps investigated in this paper provide a method
for the flexural vibration control of beams.
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