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Melting behavior of single two-dimensional crystal
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In an experimental system millimeter-sized steel balls repel each other through the Coulomb force to imitate
a two-dimensional (2D) atomic lattice in a vacuum both topologically and dynamically. Care has been taken to
avoid the formation of grain boundaries. This 2D single crystal melts into a liquid via the hexatic state
consistent with the Kosterlitz-Thouless-Halperin-Nelson-Young scenario. Initially in the melting process de-
fects of the 2D lattice tend to emerge from the edge of the crystal. These defects are found to be close to the

liquid state according to the Lindemann and Born criteria, confirming the idea of edge melting.
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I. INTRODUCTION

Melting in two dimensions (2D) may serve the purpose of
probing the rich details of the melting process in 3D, once
envisaged as a single point in the phase diagram without
much features.'” To this end we must be careful that the
experimental system for 2D melting should possess some
important aspects of 3D melting, such as the correlated mo-
tion of particles (phonon) and a clearly defined surface of the
particle ensemble, etc.

The colloidal suspension system has been used with un-
paralleled success in helping us to understand 2D melting,®°
particularly in terms of the elaborate theory of Kosterlitz,
Thouless, Halperin, Nelson, and Young (KTHNY).!%-!4 In
this theory 2D melting is mediated by defects of the lattice,
which is well modeled by the colloidal system topologically.
However, other aspects of the lattice—for example, the pho-
non properties—may be overwhelmed by the viscosity of the
colloidal suspension medium. Furthermore, it is apparently
difficult to make a single-colloidal-particle crystal with a
clear boundary to study the important effect of surface
melting!’ [edge melting in 2D (Ref. 1)]. Indeed the experi-
mental evidence has been inconclusive with respect to the
KTHNY scenario.!

In this communication we study the melting behavior of a
single 2D crystal, which is developed in an experimental
system capable of modeling both the topological and dy-
namic properties of a atomic lattice in a vacuum. This crystal
is made from millimeter-sized steel balls which repel each
other via a Coulomb interaction. The relatively massive
balls, compared to the frictional force, make the phonon
properties of the system more significant than in the colloidal
system.!6-2!

We apply a range of diagnostics, including the Voronoi
diagram, the pattern of light scattering, the autocorrelation
(g,) and bond-orientational-correlation (g¢) functions, the lo-
cal displacement of the balls, and the elastic shear modulus
of the crystal, to determine the state of the ball ensemble in
our experimental system.??> We find that the 2D single crystal
does melt continuously over a period of temperatures in ac-
cordance with the KTHNY scenario. In particular we find
clear evidence of the hexatic state, one of the key predictions
of the KTHNY theory.
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We find that (the first time to our knowledge) particles in
topological defects have distinctive dynamic properties. In
particular we find that the Lindemann criterion is close to
being exceeded in the defects even at the lowest temperature:
judged by the Lindemann criterion the particles in the defects
in a 2D crystal are always close to being melted. We also find
that the defects are mechanically weak: they offer less shear
resistivity compared with the bulk, another sign of early
melting.

We find that, when the ball ensemble is still in the solid
state, the defects tend to emerge from the edge of the 2D
crystal, spreading to the interior when temperature increases,
giving experimental confirmation of the idea of surface melt-
ing. Sometimes the defects form a straight line along one of
the crystal vectors, reminiscent a fault line in a crystal. We
also find a close correlation in locations between the defects
and the so-called Lindemann particles, which mark the melt-
ing sites in the crystal.

This communication is arranged as follows. In Sec. II we
describe the experimental system. In Sec. III we calibrate the
Coulomb force. In Sec. IV we measure the velocity of the
balls. In Sec. V we define the reduced temperature and test if
the ball ensemble is in thermal equilibrium. We describe the
liquid and hexatic states in Secs. VI and VII. We prove that
defects tend to gather near the edge of the ball ensemble
when it is in the solid state in Sec. VIII. We study the Lin-
demann and Born criteria in Secs. IX and X. We give brief
conclusions in Sec. XI.

II. EXPERIMENTAL SYSTEM

We place millimeter-sized steel balls on a smooth alumi-
num substrate; both must be thoroughly cleaned first with a
chemical solvent and then distilled water. We position an
electrically conductive cover above the substrate, which is
transparent, allowing us to capture charge-coupled-device
(CCD) images, which are processed to let each ball be im-
aged by a single pixel. The balls start to repel each other
when we apply a few thousand volts across the cover and the
substrate.!” The nature of repelling appears to be predomi-
nately Coulomb, for the reason that there are net charges on
the balls. Indeed when we place an insulating plate beneath
the balls, which stops the flux of net charges from the sub-
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strate, the repelling force between the balls becomes much
weaker. Apparently the dipole interaction, which is the result
of charge separation and cannot be stopped by the insulating
plate, is dominated by the Coulomb interaction. We adjust
this Coulomb interaction to vary the (reduced) temperature
of the ball ensemble.

The substrate is rimmed by a hexagonal frame, which also
repels the balls, in order for the ball ensemble to develop into
a single 2D crystal. The lattice of the ensemble tends to align
with the edges of the frame. We find that, when the frame is
rectangular, which is incompatible with a hexagonal lattice, a
grain boundary (or boundaries) will develop. It is worth
mentioning that, even when the frame is hexagonal, the 2D
crystal always hosts a few defects (non-six-sided cells in the
Voronoi diagram) for the reason that the ensemble does not
have the exact number of balls requested by a perfect 2D
crystal (7, 19, ... and so forth).20

The substrate is suspended on a number of strings to al-
low free horizontal movement. The length of the strings can
be adjusted to level the substrate. Sometimes the substrate
has to be tilted slightly in order to introduce a gravitational
gradient over the ball ensemble to compensate a slight gra-
dient of the Coulomb force, which is the result of electric
leakage from the transparent upper electrode via its support
or air. We attach a small electric motor to the substrate to
drive an eccentric flying wheel to feed kinetic energy into the
system. The motor runs at a constant rate in order to avoid
complications (for example, resonance) which may take
place when the speed of the motor varies.

III. COULOMB FORCE CALIBRATION

In order to calibrate the Coulomb interaction, we place
169 ball bearing balls, 2 mm in diameter, on a square sub-
strate which is leveled in Fig. 1(a) but tilted in Fig. 1(b). For
simplicity we assume f=C/r?, where f is the Coulomb force
between two balls, separated by a distance r, and C a con-
stant. Therefore, within the constant C, we can calculate f
from the locations of the balls, f; being the force that de-
forms the lattice in Fig. 1(b). On the other hand, we know
fi=mg sin 6, m being the mass of the balls, g gravitational
acceleration, and # angle of substrate inclination: C can be
calibrated. We find

2 2
f=27760V2<§) (IS) , (1)

r

which leads to the theoretical values of f; in Fig. 1(c). Here
R is the radius of the steel ball, H the height of the cover
above the substrate, and V the voltage (=8750 V when mea-
suring f). In Eq. (1) the factor of 2 implies that the charges
on the ball generate a potential with a value 0.707VR/H. We
can find the same potential between the cover and the sub-
strate at the level 0.707R above the substrate; see Fig. 1(c).

In the above measurement we have to know f,, which is
the repelling force between the balls and the confining frame
of the substrate. We calculate f, in the 169 locations occu-
pied by the balls in Fig. 1(a) on the basis that f, and f, are
balanced when the substrate is leveled. We extrapolate nu-
merically the 169 values of f, to the whole interior of the
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FIG. 1. Coulomb force measurement. (a) The substrate is lev-
eled. (b) The substrate is tilted to deform the particle lattice. (c)
Component of gravity force (f;, in 107® N) calculated theoretically
from deformed lattices at different angles of substrate inclination (6,
in degrees). The calculation is performed twice when 6 increases
from and returns to O.

frame in order to know the effect of f, when the balls change
their locations on the tilted substrate. We find Eq. (1) again in
another measurement with balls 5 mm in diameter.

In our melting experiment H=10 mm, R=1 mm, and V
varies between 6.5 and 9.6 kV. According to Eq. (1) and the
formula f=Q?%/4meyr* we have

0=32~48x% 10%, (2)

which can be compared with the rough estimation 10% in
Ref. 18. We cannot charge the balls much further; otherwise,
they will be lifted up from the substrate by the voltage and
jump up and down violently. We emphasize that both Egs.
(1) and (2) are associated with our simple model assuming
that the balls are point charges in a vacuum. In an alternative
model the electrically conductive substrate is seen as a mir-
ror, where each ball has an “image” with equal but opposite
charges to weaken the repelling force, so that Q has to be-
come much stronger: charges on a ball must generate a po-
tential ~2.88VR/H, exceeding the potential at the top of the
ball (see Fig. 1) which is apparently unreasonable. In reality
Q might be moderately higher than the values in Eq. (2).

IV. VELOCITY DISTRIBUTION

In our experiment the substrate shakes the balls to feed
kinetic energy into the system, a method which differs from
the natural process of heating. Therefore we must verify if
the velocities of the ball are of a Maxwellian distribution in
order to simulate the melting process properly. We place 604
balls (2 mm diameter) on a hexagonal substrate and let the
motor rotate at 3.43 Hz. Motion of the substrate itself is
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FIG. 2. Traces of 604 balls in an ensemble (I'=50). These are
found from 50 digitized CCD images taken in ~10 s.

hardly detectable: the image of a ball pinned on the substrate
almost always falls into the same pixel (displacement
<0.235 mm). We treat the substrate as static in CCD image
processing. On the other hand, motion of the balls can be
detected easily. We trace the trajectories of each balls from
the sequential CCD images (Fig. 2). Then we calculate the
velocities of the balls from their displacement and time in-
terval between two images. We find

1
§m<v2> =26~37%x107107] (3)

when V varies between 6.5 and 9.6 kV, where m and v are
the mass and velocity of a ball and the angular brackets stand
for ensemble average. In Ref. 18 movement of the balls rela-
tive to the substrate is ignored. Instead the balls are assumed
to spin like gyros at the rate of the motor shaking the sub-
strate, so that the kinetic energy of a ball is determined by
ma?*d*/2, where o is the angular frequency of shaking, d
=2R the ball diameter, giving 1.85X 10787, and 3.00
X 1078 J for a ball in Ref. 18 and our experiment, respec-
tively.

In Fig. 3 we plot the theoretical Maxwellian probability
together with the experimental result. The mean velocity for
the theoretical curve is chosen to be identical to the experi-
mental mean velocity. The experimental data are collected
from 50 CCD frames (~34 complete cycles of the driving
motor, same V). These data are relatively sparse at low ve-
locities, because with a CCD camera we can only sample the
location of a ball as a pixel; i.e., the balls can only move 1,
1.414, 1.732, 2, ..., in units of pixels. In general the theory
and experiment match closely. There are some discrepancies,
notably that the experimental probability does not vanish for
static balls, because slow-moving balls may be picked by the
CCD camera as static if they are unable to move more than
half a pixel in one CCD frame.

V. REDUCED TEMPERATURE

We identify the state of the ball ensemble with the famil-
iar parameter
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FIG. 3. Theoretical Maxwellian probability and experimental
observation, I'=31. The velocity is in the unit of pixel/Az, At being
the time the CCD camera changes a frame. On average the differ-
ence in probability is 0.03 between theory and experiment.

Q2

- dmeyakyT’

(4)

where a is the ensemble average of r in Eq. (1), kgT the
kinetic energy of a ball, and €, the vacuum permittivity. Al-
though I' is designed for the Coulomb interaction, it is often
employed for other interactions.” In our experiment a
=4.5 mm (~ 19 pixels) which leads through Egs. (2) and (3)
to I'=50-14, or 1/I'=0.02-0.07. We will refer to 1/T"
(#7) as the reduced temperature (or temperature for short).

When we assign a single temperature to the ball ensemble
to mark its state, we imply that the ensemble is in thermo-
dynamic equilibrium. Therefore we have to verify if Q and
kgT are uniform over the ensemble. In Fig. 4 we show the
distribution of the bond length (distance between neighbor-
ing balls) from 50 CCD images of the ball ensemble at the
same temperature, where the standard deviation of the bond
length is ~8%, despite the fact that the balls are constantly
agitated by the vibrating substrate. Apparently the repelling
force between the balls is fairly uniform, which indicates that
Q is uniform.

When the temperature increases, on average the bond
length also increases, but only slightly. We see from Fig. 5
that, when I' is reduced from 50 to 14, the average bond
length increases only by 2%. It appears that, although Cou-
lomb repulsion becomes much stronger when we increase
the voltage across the substrate and cover by 48%, the repul-
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FIG. 4. Histogram of 1271 bonds, collected from 50 CCV im-
ages, in the ball ensemble at I'=50. On average the bond length is
4.49 mm with standard deviation 0.37 mm (8.2%).
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FIG. 5. Bond length (mm) against temperature. At each I" the
bond length is averaged first over the ball ensemble and then over
50 CCD images. The range of variation in bond length is less than
2% when I' varies between 14 and 50.

sion between the balls and frame of the substrate also be-
comes much stronger, such that the volume of the ball en-
semble remains virtually constant.

We define the mean velocity of the ball as

50

1
E(ri) = 52 v(ri’tn)’ (5)
n=1

where the summation is over the 50 sampling moment ¢, in
~10 s (~34 complete cycles of the driving motor; see Sec.
IV) and r; marks the mean coordinates of the balls, i
=1,2,...,604. We plot ¥ as a gray-scale map in Fig. 6 which
measure the uniformity of k37T over the ensemble. There is a
ball in each of the Voronoi cells, which are drawn in accor-
dance with the instant coordinates of the balls at a certain
moment 7,. Tones of the cells are determined in accordance
with the magnitude of v. It is apparent that most cells are of
similar tones; i.e., kT is fairly uniform.

VI. LIQUID STATE

We detect the liquid state primarily through the numeri-
cally generated pattern of Bragg scattering. We use a pro-

FIG. 6. Gray-scale map of v when I'=50 (standard deviation
9.9%); see Eq. (5). Boundary balls are shown as dots, also scaled in
accordance with their mean velocity. Grays in the scale bar range
from the minimum to maximum values of 0.
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FIG. 7. Enlarged traces of balls and patterns of light scattering
for the ensemble of 604 balls shown in Fig. 2: top I'=50 (solid),
middle I'=28 (hexatic), and bottom I'=18 (liquid).

gram for fast Fourier transform to convert the lattice in real
2D space into a lattice in reciprocal space which resembles
closely the pattern of x-ray or electron diffraction from mo-
lecular 2D ensembles.?* It is clear from the upper row in Fig.
7 that in the solid state the scattering pattern is featured with
discrete bright spots in a hexagonal array. We identify the
liquid state once the scattering pattern is reduced to a few
rings without the bright spots, as is shown in the bottom row
in Fig 7. The temperature at which the ball ensemble is
melted into a liquid can be detected without ambiguity, be-
cause the bright spots in the scattering pattern vanish
abruptly. This is reflected in Fig. 8, which shows a clear gap
between the gray and dashed gray curves of gg4; the latter
arise when the bright spots vanish. Indeed these bright spots
indicate the existence of bound-orientational order and gg is
designed to measure it.>> We find in our experiment the ball
ensemble melts into the liquid state when I'=22.8, which is
associated with our simple model that the balls are point
charges in a vacuum and might become somewhat higher
when the presence of the metallic substrate is taken into ac-
count; see Sec. III.

In the literature the melting values of I" for 2D Coulomb
crystals vary significantly, ranging from 2.8 (Platzman and
Fukukawa, phonon theory), 78.71 (Thouless, defect theory)
to 20 700 (Thomas et al., plasma dust experiment).”>-?7 In
the late 1970s and early 1980s consistent results were found
from a number of experiments and simulations. In the ex-
periment by Grimes and Adams®® a 2D crystal was devel-
oped in a sheet of electrons on a liquid He surface, which

064205-4



MELTING BEHAVIOR OF SINGLE TWO-DIMENSIONAL...

1.00

0.10

0.01

FIG. 8. Bond orientational order correlation function gg in loga-
rithm scale, where the distance (r, in pixels) is also in logarithm
scale. At each temperature the 50 CCD images give 50 g¢ curves,
which are averaged to give the curves in black (solid, T’
=50,40,33), gray (hexatic, '=32,28,24), and dashed gray (liquid,
I'=23,18, 14). The smooth gray line is a plot of 1.15/r"*. Note that
the incremental step in I" is chosen to be small when phase transi-
tion takes place to show the rather drastic change in gg.

melts at ['=137+15.28 In the Monte Carlo simulation by
Gann et al. melting takes place at ['=125+15.% In the mo-
lecular dynamics simulation by Morf*® and Kalia et al.’!
melting takes place when 125<<I'<<132 and 118 <I"<130,
respectively. These simulations are designed to imitate the
experiment in Ref. 28 closely with respect to for example the
effect of viscosity.

It appears that the melting temperature of a 2D Coulomb
crystal is related to the experimental condition. In an early
simulation by Hockney and Brown, which was performed
before the experiment in Ref. 28, the melting value of I" was
found to be 95+2.% In the molecular dynamics simulation
by Schweigert et al. a 2D plasma dust crystal melts at T’
=135,33 which is consistent with the results in Refs. 28—-31.
However, when two such crystals are stacked to form a bi-
layer, melting takes place at I'=23,% which is close to our
result. In our experiment the substrate can be seen as a mir-
ror, in which each ball has an “image” with opposite charge,
in order to neutralize the substrate (grounded in the experi-
ment). Do we actually have a bilayer crystal in our experi-
ment? It will be interesting to find out.

VII. HEXATIC STATE

When 23 <I'<33 the ball ensemble in our experiment is
in the so-called hexatic state, which is neither ordered as a
solid nor isotropic as a liquid. We see from the middle row of
Fig. 7 that the scattering pattern is still featured with a hex-
agonal array of discrete bright spots, similar to that in the
solid state. On the other hand, some of the bright spots have
deteriorated into filaments and started to join together to be-
come circular rings, which is most apparent in the second
and third shells of the spot array, typical for a liquid state.
This feature is also apparent in the pattern of electron dif-
fraction from a liquid-crystal film, which is identified to be in
the hexatic state.?*

It is also apparent from the middle row of Fig. 7 that, in
the pattern of light scattering, deterioration of the bright
spots becomes more severe the larger the distance from the
center. This is reflected in Fig. 8 that in the hexatic state
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FIG. 9. Topological entropy (in kg). Melting point indicated by
the block arrow.

values of g4 start to drop algebraically when its argument
increases. We see that, at I'=32, the curve of g, is well
enveloped by the gray curve proportional to 1/r"4 which,
according to the KTHNY theory, marks the onset of the
hexatic state.

We find that in the hexatic state properties of the ball
ensemble vary continuously, in accordance with the KTHNY
scenario. These include the number of defects, the local dis-
placement of the balls, and the shear modula, which can be
detected by the diagnostics at our disposal. Details will be
discussed in the following sections.

VIII. DEFECTS

When the temperature increases, the number of defects
(non-six-sided cells) increases continuously in the Voronoi
diagram. In order to quantify this trend, we define

S=—ks> pplnp,, (6)
n

where kp is the Boltzmann constant and p,=N, /N, N, being
the number of n-sided cells and N total number of cells.
Equation (6) measures the order of the ball ensemble and is
analogues to the expression for entropy per particle. We will
refer to S as the topological entropy in the following text. We
see from Fig. 9 that the 2D solid melts when S=0.78kg.

In Fig. 10 we show a Voronoi diagram for an ensemble of
the balls in the solid state. We do not draw cells around the
balls on the edge of the 2D lattice (or edge balls for short).
Non-six-sided cells are shaded as defects. Inside the diagram
defects cluster into a dipole and a quadripole to allow Burg-
er’s vectors to form closed circuits. These arise probably
because the number of balls does not equal the exact number
requested by a perfect hexagonal 2D crystal; see Sec. II. The
single defect on the east corner of the diagram, however, is
probably due to thermal agitation.

In Fig. 10 we also show a density map of the defects,
which are collected from 50 CCD images at I'=50. The
shade of the density map is in a gray scale proportional to the
overlapping frequency of the defects. It is not difficult to
recognize that the quadripoles wander over the interior of the
ball ensemble rather freely, with a tendency to be close to the
north side. On the other hand, a single defect tends to appear
on the east corner, indicating that our experimental system is
slightly asymmetric topologically or dynamically.
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FIG. 10. Defect aggregation at I'=50. Top: Voronoi diagram of
the ball ensemble, defects shaded. Bottom: density map of all de-
fects in 50 CCD frames, which are collected in ~10 s when the
substrate is driven ~35 cycles by the motor.

To quantify our visual impression, we calculate the prob-
ability for a pixel to be covered by a defect in 50 sequential
CCD images at the same temperature. We average this prob-
ability over a series of concentric hexagonal shells with an
increasing distance to the crystal boundary (shrinking cir-
cumference). One such shell is illustrated as a dashed hexa-
gon in the density map in Fig. 10. Our results are shown in
Fig. 11 for I'=18 (liquid), 28 (hexatic), and 33 and 50
(solid).

In Fig. 11 the probability curve for defect coverage at I’
=50 has two peaks at ~26 and 51 pixels inside the edge of
the 2D crystal. The first peak is narrower, apparently due to
the narrow strip of single defects on the east corner of the
density map in Fig. 10. The second peak is broader, appar-
ently due to the quadripoles which tend to gather near the
north side of the density map but do not reach the very edge.
At I'=33 the probability becomes higher for a pixel to be
covered by a defect. The probability curve peaks at
~27 pixels inside the crystal edge, which is still in a strip in
contact with the edge of the 2D crystal. This peak becomes
broader and probably has absorbed the peak due to the quad-
ripoles. However, the trend is unmistakable: defects are most
likely to emerge from the edge of the crystal.

We also see from Fig. 11 that, in the hexatic and liquid
states, the probability is more or less equal for a pixel to be
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FIG. 11. Probability of defect coverage against distance to the
edge of 2D crystal. Upper: solid (black), hexatic (gray), and liquid
(dashed gray) states in the same scale. Lower: the scale is changed
to show details of the two solid states.

covered by a defect in the density map. The seemingly ap-
parent trend of a higher coverage probability towards the
center of the ball ensemble is in fact an illusion. It is easy to
understand from the density map in Fig. 10 that, when the
dashed hexagon shrinks, it tends to exaggerate the probabil-
ity of defect coverage, which is the number of defect cover-
age divided by the number of pixels on the dashed hexagon.
This may have also contributed to the rising defect coverage
probability towards the center when the ball ensemble is in
the solid state.

In Fig. 12 we show density maps of defects in an almost
continuous range of temperatures when the ball ensemble is
in the solid state. We see that the defects always aggregate
near the edge of the 2D crystal and are particularly numerous
on the north side of the crystal, probably due to some slight
system asymmetry. When ['=48 and 46, a number of defects
form a straight line, along one of the lattice vectors, to in-
vade the interior of the crystal from the southeast corner,
reminiscent of a fault line in a crystal. When I'=42 we also
see a straight line of defects, along another lattice vector, to
link the interior of the crystal to the west corner, although it
does not actually reach that corner, probably out of the ne-
cessity to form a closed circuit of Burger’s vectors.

IX. LINDEMANN CRITERION

The Lindemann criterion states that a solid melts when on
average the displacement of its particles exceeds ~10% of
the distance between the particles.** Bedanov and Gadiyak
found through simulation that a 2D solid melts when the
displacement of the particles against one of its neighbors
exceeds ~30% of the interparticle distance.*> Zheng and
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FIG. 12. Density map of defects at various temperatures in the
solid state. At each I" the defects are collected from 50 CCD images
in ~10 s when the substrate is driven ~34 cycles by the motor.

Earnshaw found through simulation that, if the displacement
is measured in local coordinates, then a 2D solid melts when
on average this displacement exceeds ~10% of the interpar-
ticle distance.®® They also used the cooperative motion
model®’ to explain the similarity between the melting criteria
in 2D and 3D.

Zahn and Maret®® used a colloidal system to verify the
theoretical and simulation results of Zheng and Earnshaw.3¢
Now we use our experimental system to verify these results.
We define local displacement as the ensemble average of
r;(1)—(r;)s, where i=1,2,...,604 identifies balls, r;(r) marks
the instantaneous coordinates of the ith ball, and (r;), the
average value of the coordinates of the six or so balls in the
first shell surrounding the ith ball.’® Since this definition of
local displacement does not apply to balls on the edge, we
exclude the edge balls when we evaluate the local rms dis-
placement over the ball ensemble. Figure 13 shows that the
2D crystal melts when on average the local displacement
reaches ~13% of the bond length, which is close to the
Lindemann criterion for a bec lattice in 3D (12.1% of bond
length), consistent with the prediction in Ref. 36.

We also find that in defects the local displacement is par-
ticularly strong and is in an interesting pattern of develop-
ment. We see from Fig. 13 that, in the bulk of the ball en-
semble, the local displacement is small at low temperatures
and grows steadily and quickly when the temperature in-
creases. On the other hand, in the defects, the local displace-
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FIG. 13. Values of the rms local displacement of balls (in bond
length). The melting point is indicated by the arrow.

ment is always close to the Lindemann criterion even when
the temperature is low. It grows steadily but slowly when the
temperature increases. At the melting point the Lindemann
criterion is exceeded in both the bulk and defects simulta-
neously. There is little difference between the bulk and de-
fects with respect to the local displacement at higher tem-
peratures. Apparently, judged with the Lindemann criterion,
particles in defects are always close to the liquid state.

According to the cooperative motion model a particle in a
2D solid is in the grip of the shell of its six neighbors.3” The
solid melts because the particle can slip through that shell
when the grip of the shell is loosened by thermal agitation.
Now we know that, in our experimental system, the move-
ment of a ball is indeed less restricted in a defect, which is a
clear indication that the grip the hexagonal lattice is loos-
ened. This justifies the view that particles in defects are close
to the liquid state.

We wish to apply the Lindemann criterion to detect the
melting sites of the 2D lattice. We identify a Lindemann
particle if the local displacement of a ball exceeds 80% of
the Lindemann criterion. This definition of Lindemann par-
ticle is slightly different from the definition given by Jin
et al. who identify a Lindemann particle in their 3D simula-
tion if its instantaneous displacement exceeds the Lindemann
criterion.®® However, since the displacement of a particle
varies in time, on average the displacement of the Linde-
mann particle of Jin et al. is likely less than the Lindemann
criterion; that is, their definition of a Lindemann particle may
not be very different from ours. In Fig. 14 we show the traces
of the Lindemann particles in our definition when the ball
ensemble is in the solid state, which can be compared with
the density map of defects in Fig. 12. Apparently there is
close correlation in locations between the Lindemann par-
ticles and defects. This correlation appears to be worth fur-
ther exploring from the point of view that melting in 2D may
help us to understand melting in 3D: defects play a pivoting
role in the KTHNY theory of 2D melting, whereas the Lin-
demann criterion is applicable in both 2D and 3D.

X. ELASTIC CONSTANT

We derive elastic constants from the statistics of strain
fluctuations of the ball ensemble.*’ Strain by definition is
associated with a continuum. However, microscopic models
for 2D melting are discrete, where strain is not well defined.
In the so-called block analysis a series of particle groups
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FIG. 14. Traces of Lindemann particles, collected from 50 CCD
images at each I, which can be compared with the defect maps in
Fig. 12.

(blocks), with well-defined free energy, is isolated. Particles
in these blocks are sufficiently numerous, so that a relation in
the continuum mechanics can be used to relate the free en-
ergy with strain. This strain fluctuates when the size of the
block varies, giving the elastic constants.”>*!4> We use a
different method of analysis considering the rather limited
number of balls in the ensemble. We treat these balls as
visible marks on an invisible elastic membrane, where strain
is well defined and fluctuates, also giving the elastic con-
stants.

We define r; (i=1,2,...,604), which are coordinates of
the balls averaged over the 50 CCD images (Fig. 2), as the
reference coordinates; see Sec. V. We define u,=r,(¢)-r; as
the displacement of the ith ball, where r;(r) represents the
instantaneous coordinates of that ball; see Sec. IX. We link
the balls with their nearest neighbors and find an array of
triangles; one of them is shown in Fig. 15. In linear approxi-
mation we have

u(r) =Ar +u,, (7)

where r and u are reference coordinates and displacement in
a triangle (Fig. 15), A a 2X2 matrix, and u, a constant
vector with two components. Knowing the values of u on the
tips of the triangle, we can determine both A and u,.
By definition €;,=du;/dr|, €n=7duy/dry, €,=(u;/r,
+du,/ dry) /2, and €; are strains, so that
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r3+U3

Iy+Uy

FIG. 15. Reference (dashed line) and instantaneous (solid line)
triangles; r; and u;, i=1,2,3, are reference coordinates and dis-
placement of balls. In the triangle r is also displaced by u.

€1=Ay, €n=Ay, €,=(Ap+Ay)/2, (8)
which are constant in the triangles, but fluctuate over the ball

ensemble. We have

Syy= kBT—/QO 9)
(AeppAery)

as one of the elastic constants, which measures the ability of

the material to resist shear, where Ae€;,=€;,—(€;,), the angu-

lar brackets denote ensemble average, and () is the area of

the 2D ensemble. Other elastic constants have similar ex-

pressions; see Ref. 41.

We use Eq. (9) to find 50 values of Ss; from the 50 CCD
images at each temperature, which are averaged and plotted
in Fig 16. Although the result fluctuates, particularly when
the ball ensemble is in the hexatic state, the trend is clear that
S33 drops continuously when the temperature increases. It is
also clear that, when the ensemble is melted into the liquid
state, S35 drops to a low value and ripples around that low
value afterwards, in accordance with the Born criterion that a
liquid offers no shear resistivity.'?

Now we let the angular brackets in Eq. (9) denote the
average over the defects instead of the ball ensemble. We
compare the resultant S3; with its value in the bulk. We see
from Fig. 16 that the shear resistivity in defects is always
lower than that in the bulk. Apparently the defects are me-
chanically weaker, compared with the bulk, which is a sign
of early melting. Here again the correlation between defects
and low shear resistivity is worth further exploring: defects
are important in 2D melting, whereas the Born criterion is
applicable in both 2D and 3D.

a
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2 o e®
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g 20 i 00 Son ®
@ o CPO o
2 10 Qe
@ °2°°°o°° 0000°
00 — = 5=t
0.01 0.03 0.05 0.07

r

FIG. 16. Shear resistivity measured by Ss; (in the unit of
kgT18y). The melting point is indicated by the arrow.
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XI. CONCLUSIONS

In 1934 Herzfeld and Mayer argued that in a crystal fu-
sion should occur in channels communicating with the out-
side; otherwise, the melting crystal cannot be in equilibrium,
as the expanded volume of the melt stresses the interior of
the lattice locally.* If this argument is applicable in 2D, then
we should be able to see defects emerge first from the edge
of a melting crystal, when particles in the defects are in the
liquid state. Conversely we should be able to prove that par-
ticles in defects are in the liquid state, when the defects
emerge first from the edge of a melting 2D crystal.

In this communication we show that in a single 2D crys-
tal, where measures have been taken to avoid formation of a
grain boundary or boundaries, defects do emerge preferably
from the edge of the crystal at the early stage of melting. On
the other hand, we show that, according to the Lindemann
criterion, particles in the defects are always close to be
melted even at low temperatures. We also show that, accord-
ing to the Born criterion, particles in defects behave more
like a liquid compared with particles in the bulk as a whole.

In this communication we also show that the single 2D
crystal does melt according to the KTHNY scenario. We
show through a range of diagnostics that, between the solid
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and liquid states, the 2D ensemble is in the hexatic state,
which is neither ordered as a solid nor isotropic as a liquid.
In particular we show that both the population of defects and
shear resistivity vary continuously in the hexatic state.

In our experiment the single 2D crystal develops in a
system which imitates a 2D atomic lattice in a vacuum both
topologically and dynamically. In this system particles inter-
act with each other through the Coulomb interaction, which
also imitate charged particles in a vacuum. When analyzing
this system, we have adopted a simple model that particles in
our experiment are point charges in a vacuum and find a
relatively low value of I" when the 2D ensemble melts into a
liquid. Further effort appears to be necessary to study the
effect of the metal substrate on the repelling interaction.

Sheng, Lu, and Ma demonstrated that the melting and
freezing behaviors of In, Sn, Bi, Cd, and Pb are modified
significantly when these metals are milled into nanosized
particles and then embedded in an environment of a metal
(Al).** There have been recent attempts to modify the melt-
ing behavior of 2D colloidal crystals by using optical twee-
zers to pin the particles.*=#" In the future we will also ob-
serve if the melting and freezing behavior of the single 2D
crystal in our experiment would be modified when, for ex-
ample, the edge balls are pinned to the substrate.

*Electronic address: xhz@qub.ac.uk
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