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Structural aspects of elastic deformation of a metallic glass
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We report the use of high-energy x-ray scattering to measure strain in a Zrs;TisCu,gNigAl;, bulk metallic
glass in situ during uniaxial compression in the elastic regime up to stresses of approximately 60% of the yield
stress. The strains extracted in two ways—directly from the normalized scattering data and from the pair
correlation functions—are in good agreement with each other for length scales greater than 4 A. The elastic
modulus calculated on the basis of this strain is in good agreement with that reported for closely related
amorphous alloys based on macroscopic measurements. The strain measured for atoms in the nearest-neighbor
shell, however, is smaller than that for more distant shells, and the effective elastic modulus calculated from the
strain on this scale is therefore larger, comparable to crystalline alloys of similar composition. These observa-
tions are in agreement with previously proposed models in which the nominally elastic deformation of a
metallic glass has a significant anelastic component due to atomic rearrangements in topologically unstable
regions of the structure. We also observe that the distribution of the atomic-level stresses in the glass becomes
more uniform during loading. This implies that the stiffness of metallic glasses may have an entropic contri-
bution, analogous to the entropic contribution in rubber elasticity.
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I. INTRODUCTION

X-ray and neutron diffraction are commonly used to mea-
sure elastic strains in crystalline materials.!> Elastic strain
alters the spacing of atomic planes, which can be measured
by diffraction according to Bragg’s law. By varying the di-
rection of the scattering vector, d spacings in various direc-
tions can be measured and the complete elastic strain tensor
determined. The stress tensor can then be determined by ap-
plication of Hooke’s law if the elastic constants of the mate-
rial are known.

Scattering techniques are also used to study the structure
of amorphous materials, including metallic glasses. The ac-
curacy and precision of scattering measurements from amor-
phous materials, however, are limited by the inherent struc-
tural disorder, by time-consuming data collection, and by
significant challenges in properly analyzing the data once
collected. For these reasons, it has been commonly assumed
that the resolution of scattering techniques is insufficient to
allow accurate measurement of elastic strain in amorphous
materials.

Recently, however, Poulsen and co-workers® have shown
(for a MggCusY ;o bulk metallic glass) that it is possible not
only to measure strain in cylinders under uniaxial compres-
sion, but to map the strain distribution in a plate containing a
through-thickness hole. Remarkably, they also reported that
the measured strain (and thus the elastic constants) depends
strongly on the length scale of the measurement, the material
being much stiffer for measurements on the atomic scale
(23 A) than on longer length scales (4—10 A). Poulsen and
co-workers postulated that this additional compliance results
from structural rearrangements on these longer length scales.

In this work, we report our own strain measurements
using high-energy x-ray scattering on bulk amorphous
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Zrs7Ti5CuygNigAly) loaded in uniaxial compression. We
show that elastic strain can be determined accurately from
the scattering data directly as well as from the resulting pair
correlation function. We also observe that the strain in the
nearest-neighbor atomic environment is somewhat smaller
than the strain measured over longer length scales, but the
effect is much smaller than that reported by Poulsen and
co-workers.> We suggest that the difference in strain between
the nearest neighbors and on longer length scales is due to
anelastic atomic rearrangements in topologically unstable re-
gions of the glass.

II. BACKGROUND

In a scattering experiment on an isotropic amorphous ma-
terial, the elastic scattering intensity I(g) is measured as a
function of the magnitude of the scattering vector g
=4 sin /N, where 6 is half of the scattering angle and A is
the wavelength of the radiation. The total structure factor
S(g) is then

1(q)

S(é])=W,

(1)

where N is the number of atoms, f(g) is the atomic scattering
factor for x rays, and the angular brackets indicate averaging
over the composition of the material.

The real-space structural information available from S(g)
is the pair distribution function p(r), in which r is the dis-
tance from an average atom located at the origin. The pair
distribution function is related to S(g) by a Fourier trans-
form,
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sin gr

qr

1 o]
p(r) = py= Qf 47g*[S(q) - 1] dq, (2)
0

where p, is the average atomic density. It is also common to
write the real-space structural information in terms of the
radial distribution function (RDF), which we define as
4% p(r). With this definition, the coordination number of a
particular atomic shell of interest can be obtained by inte-
grating the RDF over a suitably chosen range of r. In what
follows we shall use both the RDF and pair correlation func-
tion g(r)=p(r)/py. The reader should note, however, that
there is no general agreement in the literature on terminology
for these functions. In particular, Poulsen and co-workers?
refer to g(r) as the radial distribution function (as do some
other authors).

If an amorphous material is subjected to forces that create
a macroscopic stress, both S(¢g) and g(r) will be affected. For
the special case of uniaxial loading, the changes in real space
are easy to anticipate. A tensile stress will tend to move
atoms apart in the loading direction, and hence a peak in g(r)
for that direction will move to larger values of r; the opposite
will be true for a compressive stress. We can define a strain,
analogous to the simple macroscopic definition of engineer-
ing strain, as

, 3)

where d,; is the position of the peak in g(r) under normal
stress o and d,, is the position under zero stress. In the trans-
verse direction, we expect a strain of the opposite sign due to
the Poisson effect. In the more general case of a multiaxial
stress state, the complete strain tensor can be determined
from measurement of the strain € in various directions.'

The situation is not so clear for S(g), even for uniaxial
loading. The reciprocal nature of S(g) and g(r) leads us to
expect that a tensile stress will tend to cause peaks in S(g) to
smaller g. In crystalline materials Bragg’s law applies and an
individual diffraction peak can be used to unambiguously
calculate a particular interplanar spacing. But in amorphous
materials there is no such one-to-one correspondence and it
is not at all obvious that information about atomic spacings
is available directly from the S(g) peak positions. Despite
this, it is possible to measure changes in atomic spacings—
and hence elastic strain—directly from S(g).

To show this, we begin by noting that the scattered inten-
sity from an arbitrary assemblage of atoms averaged over all
orientations is given by the Debye scattering equation

()=3 S fouf, 20, (4)

m n mn

where the sums run over all of the individual atoms and r,,,
is the distance between atoms m and n. For an amorphous
solid, the Debye scattering equation is of limited utility be-
cause it requires knowledge of all of the atomic positions.
Ehrenfest? pointed out, however, that scattering from amor-
phous materials can be treated in an approximate way by
applying Eq. (4) to the case of a diatomic gas, for which
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coherent scattering between molecules can be neglected. If
the atoms are identical, Eq. (4) becomes

sin qd)

1(61)=2f2<1 + (5)
where d is the distance between the two atoms. If f is inde-
pendent of ¢, then the first maximum of this equation (other
than the one at g=0) is at g,x=1.23(27)/d. One might ex-
pect that a similar relation will hold for the case of a con-
densed material (provided that there is a single predominant
interatomic spacing), so we write

27K
=T, 6
qmdx d ( )

where K is a constant that depends on the particular arrange-
ment of the atoms.’

Because K can only be determined with a complete
knowledge of the atomic positions, Eq. (6) cannot be used to
determine the value of d for an amorphous solid directly. But
in the case of strain measurements we are interested in
changes in d. So if we are willing to assume that the overall
change in the structure is sufficiently small that K is inde-
pendent of the macroscopic stress o, we can substitute the
value of d from Eq. (6) into Eq. (3) to obtain

=10y, (7)
4o

where ¢, and ¢ are the positions of the first peak in S(g)
under stress o and zero stress, respectively. Recently, Yavari
and co-workers have used a similar approach to measure
changes in free volume as a function of temperature in a
Pd,Ni;,Cu (P, metallic glass.® While still only approxi-
mate, these considerations suggest that it is possible to ex-
tract strain information directly from changes in S(g). We
note that, in general, the peak positions in I(g) will be dif-
ferent from those in S(g), due to the dependence of f on g.
All of the above discussion assumes that the amorphous
material is, in fact, isotropic. This is often the case for amor-
phous alloys, but counterexamples can be found in thin
films”® and in bulk alloys subjected to processing that ren-
ders them anisotropic.” Even in these cases the departure
from isotropy is usually small and the scattering data are
analyzed using the isotropic assumption. In the present case
we also assume that we can neglect the anisotropy induced
by the small uniaxial elastic strain, but we note that a full
treatment would involve the application of cylindrical distri-

bution functions'? to properly handle the symmetry.
Poulsen and co-workers® provided the first demonstration
that the considerations above are essentially correct by mea-
suring elastic strain and strain distributions in amorphous
MggoCusY o. They showed that the strain measured accord-
ing to both Egs. (3) and (7) increased linearly with uniaxial
stress. The strain measured from the position of the first peak
in I(g) showed good agreement with strain calculated based
on macroscopic measurements of Young’s modulus E. How-
ever, the strain calculated from g(r) showed a pronounced
dependence on r, being the smallest for the first near-
neighbor peak and increasing with peaks at higher r to as-
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ymptotically approach the strain calculated from the I(g)
peak position. The magnitude of the effect was tremendous,
with the strain calculated from the third g(r) peak being 2.7
times as large as that from the first peak. Poulsen and co-
workers attributed this remarkable observation to unspecified
“structural rearrangements on the length scale of 4—10 A.”

In this paper, we report observations that confirm that
Egs. (3) and (7) can be used to measure elastic strain in a
metallic glass (and, presumably, other amorphous solids) ac-
curately. We also observe that the strain in the nearest-
neighbor shell is smaller than that at longer scales, but the
effect is much smaller than that reported by Poulsen and
co-workers. We propose that the difference between the stiff-
ness of the nearest-neighbor atomic environment and that
over longer length scales can be attributed to the effect of
topological rearrangements in the nearest-neighbor environ-
ments of a relatively small fraction of the atoms, without the
need to invoke significant structural rearrangements over
longer length scales.

III. EXPERIMENTAL TECHNIQUES
A. Sample preparation

We produced alloy ingots of nominal composition
Zrs7TisCu,gNigAljy by arc melting the pure elements under
an atmosphere of purified Ar. The ingots were melted several
times to improve homogeneity and then suction cast into
cylindrical rods 3.2 mm diameter and approximately 75 mm
long. The casting procedure is described in more detail
elsewhere.!! After casting, the rods were reduced to a uni-
form diameter of ~3 mm by centerless grinding and cut to a
length:diameter ratio of approximately 2:1 using a low-speed
diamond saw. Finally, the ends of the specimen were pol-
ished in a special jig to ensure parallelism.

B. In situ x-ray scattering experiments

We performed the in sifu x-ray scattering measurements
using monochromatic 80.72-keV (0.0154-nm) x rays at
beamline 1-ID of the Advanced Photon Source at Argonne
National Laboratory. The beam size was 0.1 X 0.1 mm?. We
positioned a digital image plate (MAR 345, with a 150
X 150 um? pixel size) 400 mm downstream from the sample
to record the scattered intensity in transmission through the
cylindrical specimens. A two-dimensional ring pattern was
recorded on the image plate. Scattering patterns (intensity
versus scattering vector magnitude) were extracted by azi-
muthally averaging the ring pattern over an arc of approxi-
mately 5° centered on the vertical (loading) and horizontal
(transverse) directions using the software package FIT2D.!%!3
Data were collected out to a maximum ¢ of approximately
16 AL,

Two specimens of nominally identical composition were
examined and showed substantially similar behavior; here,
we describe the behavior of one specimen in detail. This
specimen was loaded incrementally in uniaxial compression
in a screw-driven load cell. The loading was paused for ap-
proximately 30 min during the x-ray exposures. During each
pause, 15 exposures of approximately 10 s duration were
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collected. The scattering patterns used below were averages
of these 15 exposures.

C. Data analysis

Analysis of x-ray scattering data from amorphous materi-
als requires separation of the coherent, elastic, single-
scattered x-ray intensity from other scattering contributions
and normalization to absolute (electron) scattering units. Al-
though these are standard procedures (see, for instance, Ref.
14), careful attention to them is essential to avoid errors in
the determination of the real-space functions p(r) or g(r)
from the data.

In the present case, there are two circumstances of special
note. First, the digital image plate does not discriminate x
rays by energy, so x rays resulting from inelastic processes
are counted together with the elastically scattered photons.
To account for this, we calculated the expected shape of the
fluorescence contribution, multiplied it by a suitable scaling
factor, and subtracted it from the measured intensity. The
scaling factor was chosen based on the quality of the normal-
ization subsequently achieved (see below). We also calcu-
lated the Compton scattering intensity in absolute units, cor-
rected it for absorption by the specimen, and subtracted it
from the measured intensity as part of the normalization pro-
cedure.

The second important factor is the effect of multiple scat-
tering. Often in x-ray scattering experiments it is assumed
that multiple scattering is unimportant. If the absorption
length is long relative to the sample size, however, double-
and higher-order scattering events can contribute signifi-
cantly to the total measured intensity. This is because the
scattering volume for multiple scattering comprises essen-
tially the entire specimen volume, while the single-scattering
intensity comes only from that part of the specimen illumi-
nated by the incident beam. To account for this, we calcu-
lated the double-scattered x-ray intensity for our cylindrical
specimens using a Monte Carlo algorithm to carry out the
required numerical integration'>'® and applied the appropri-
ate correction to the data.!” Higher-order scattering was ne-
glected.

We applied these corrections, together with the standard
corrections for absorption'® and polarization,'® to the mea-
sured x-ray scattering data. To place the data on an absolute
scale, we employed the integral normalization technique of
Norman?® and Krogh-Moe,?! as well as the large-angle nor-
malization technique of Warren.?> Agreement between these
two techniques, together with the behavior of the resulting
structure factor S(g), was used as the criterion for selecting
the scaling constant on the fluorescence intensity (see
above). Once selected, the same fluorescence scaling con-
stant was used for all of the data sets described here. In all
cases, the two normalization techniques yielded normaliza-
tion constants that differed by less than 0.2%.

IV. RESULTS
A. Reciprocal space

Figure 1 shows the measured structure factor S(g) re-
corded for the loading direction from 11 x-ray scattering pat-
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FIG. 1. Structure factor S(g) parallel to the loading direction
from 11 scattering patterns collected during incremental loading
and unloading. Inset: top of the main peak, showing the shift of the
peak in S(g) to larger ¢ with increasing compressive stress.

terns taken at various stresses during incremental loading
from 0 MPa to 1080 MPa (approximately 60% of the yield
stress for this alloy) and back to zero. As the compressive
stress increases, the largest peak in S(g) shifts to larger ¢ in
the loading direction. The opposite trend is observed for S(g)
in the transverse direction (not shown).

We determined the position of the main peaks in S(g) by
fitting the top of the peak to a Gaussian profile and then
calculated the strain according to Eq. (7). The results are
shown in Fig. 2. The strain increases linearly with increasing
compressive stress. A straight-line fit to the data yields an
elastic modulus of E=87+2 GPa, in good agreement with
values for E determined by macroscopic measurements on
closely related amorphous alloys (Table I). Data for the
transverse direction are also shown in Fig. 2; using the strain
data from both directions we obtain a value for Poisson’s
ratio of ¥=0.34+0.01, also in reasonable agreement with the
macroscopic measurements.

In addition to using the S(g) data, we calculated the strain
from the change in peak positions in I(g) directly (not
shown). We find that the measured strains are equal for both
techniques, indicating that the ¢ dependence of (f(g))? in Eq.
(1) is not significant for the small peak shifts that occur due
to elastic loading.

0.005 — Transverse direction
0.000
£
£ -0.005 —
v
0.010 e from g(r)
Loading direction o from S(g)
-0.015

1T "1 ™71 ™71 ™77
-1000 -800 -600 -400 -200 0
Engineering stress (MPa)

FIG. 2. Strain determined from the structure factor S(g) in re-
ciprocal space and from the pair correlation function g(r) in real
space.
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TABLE I. Elastic modulus (E) and Poisson’s ratio (v) for sev-
eral Zr-based bulk metallic glasses.

Alloy E (GPa) v Reference
Zr5;NbsCu, s 4Nijp 6Al 86.7 0.38 23
Zr5/NbsCu 5 4Nipp 6Al 1o 87.3 0.365 24
Zrs;TisCuqyNigAl 82.0 0.362 24
Zrs0,6Tis 1 Ctyg oNip | 1Al 5 927 0363 25
Zr55TisCuyoNij,Al 87.6 0363 26

B. Real space

The pair correlation functions g(r) for the loading direc-
tion obtained by Fourier transformation of the S(g) data col-
lected during the load-unload cycle are shown in Fig. 3. The
first peak in g(r) shifts to smaller r with increasing load, as
expected, and again the transverse data (not shown) show the
opposite trend. In our experience, peak positions in g(r) are
difficult to determine accurately because the peaks at low r
are asymmetric while those at larger r are rather broad,
which leads to significant scatter in the measured strain. A
more robust technique is to focus not on the tops of the
peaks, but on the places where g(r)=1. These crossing points
are less sensitive to the effects of asymmetry and can be
accurately determined even for peaks at large r.

The strains determined in this way for the loading direc-
tion are shown in Fig. 4 for values of r out to ~20 A at
several levels of stress. The strain is approximately indepen-
dent of r, a point to which we return below. The average
strain at each stress was calculated by taking the average
(over all r out to 20 A) from these data and corresponding
data for the transverse direction; the results are shown in Fig.
2. Linear fits to the g(r) data in Fig. 2 yield values of E
=90+2 GPa and v=0.33+0.01, in good agreement with the
results obtained from the S(g) data.

Although we see no pronounced dependence of strain on r
in Fig. 4, it is interesting that the strain determined from the
lowest value of r at which g(r)=1 is consistently smaller in
magnitude than the strains determined at larger values of r.
To investigate this further, we examined the behavior of the

1080 MPa
glry 2.6 AN
24
T 254 22 N
é 204 20 0 MPa
]
E 154 2.7 28 29 3.0 3.1 32 r
= L.
£
%!:: 1.0 —
o
; 0.5 — Loading
s b e Unloading
0'OI_‘hl'l'l'l‘l'l‘l‘l‘l'l
0 2 4 6 8 10 12 14 16 18 20

Distance from average atom r A)

FIG. 3. Pair correlation functions g(r) calculated from the S(g)
data in Fig. 1 (parallel to the loading direction). Inset: shift in the
first peak in g(r) to smaller r with increasing compressive stress.
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FIG. 4. Strain determined from pair correlation functions g(r) at
several stresses.

first peak in the RDF[47r2p,g(r), as discussed above]. Fig-
ure 5 shows the first peak in the RDF for a representative
data set collected at zero stress. In our five-component alloy,
this first peak actually consists of 15 overlapping partial pair
correlations. The resolution of our experiment does not allow
us to distinguish all of these correlations, but they do make
the peak asymmetric, and we can fit it to a sum of two
Gaussian contributions which we refer to as peak 1 and peak
2. From the fit, the position of peak 1 is 3.133+0.001 A and
the position of peak 2 is 2.661+0.004 A.

We cannot unambiguously identify the atomic pairs con-
tributing to each of these contributions to the first peak in the
RDF, but we can make some reasonable approximations.
First, because the contribution of each atomic pair to the
RDF is weighted by the atomic scattering factors of the ele-
ments and by their concentration, we can neglect the influ-
ence of Ti and Al, both of which have low atomic number
and are present at relatively low concentration. Second, the
separation of the atoms in each pair is related to the sum of
their atomic radii; since Cu and Ni are nearly the same size
(Table II), their contributions are indistinguishable. So we
are left, effectively, with only three pair correlations: Zr-Zr,
Zr-(Cu,Ni), and (Cu,Ni)-(Cu,Ni). The expected pair separa-
tions (from the respective sums of atomic radii from Table II)
along with representative x-ray scattering data from this and
closely related amorphous alloys are given in Table III.

L 12 —

A
=)
L

8 —
6 —
4 -
2 -
0 —

RDF 47r2pog(r) (

I I I I I I I
22 24 2.6 2.8 3.0 32 34

Distance from average atom r (A)

FIG. 5. Radial distribution function 477?pyg(r) measured under
zero stress, together with the results of a fit to a model consisting of
two Gaussian contributions (with no background) over the range of
r shown in the figure. (Larger values of r were not included due to
the overlapping contribution from the second nearest-neighbor
shell.)
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TABLE II. Atomic radii for the various elements in
Zrs7Ti5CuygNigAlyo. These radii are those used by Miracle in Ref.
27 (provided by personal communication).

Cu Ni Al Ti Zr

Radius (A) 1.27 1.28 1.43 1.46 1.58

Based on these results, we conclude that it is reasonable to
interpret our peak 1 (at 7=3.133 A) as being due primarily to
Zr-Zr pairs and our peak 2 (at r=2.661 A) as being due to
overlapping (Cu,Ni)-(Cu,Ni) and Zr-(Cu,Ni) pair correla-
tions. Also, the width of peak 2 is approximately half again
as large as that of peak 1, supporting the idea that peak 2 has
contributions from two distinct types of pair correlations.
Identification of the peaks in this way is by no means abso-
lute, but does provide a useful framework for interpreting
our results.

Figure 6 shows the strain determined from the shift in the
position of these two peaks as a function of stress. The strain
determined from peak 1 yields a value of E=93+1 GPa,
slightly larger than that determined from both g(r) and S(g)
above (Fig. 2). The strain determined from peak 2 increases
much more slowly with stress, yielding a value for E
=149+8 GPa. The difference may related to the inherent
stiffness of the particular atomic bonds or to more fundamen-
tal differences in how the local atomic environments respond
to the stress. This is discussed in more detail below.

In addition to a shift in position, the widths of the two
contributions to the first peak in the RDF change during
loading. Figure 7 shows the fraction change in full width at
half maximum (FWHM) of peaks 1 and 2 in the loading and
transverse directions. Together with the change in width, the
amplitudes of the peaks in g(r) change with increasing stress
(inset to Fig. 3). The changes in width and amplitude offset
each other, so that the coordination number of 11.5+0.1 av-
erage atoms (defined as the integrated area under the first
peak in the RDF for 0<r=<3.5 A) does not change during
loading.

V. DISCUSSION
A. Strain measurement

As shown in Fig. 2, elastic strains in metallic glass can be
measured accurately by high-energy x-ray scattering. This
ability will be useful in the study of metallic-glass-matrix
composites, for which several groups have already used
X-ray or neutron scattering to measure elastic strains in the
crystalline phases.3!=3* It is particularly noteworthy that the
elastic strain in the amorphous component can be determined
easily from the position of the first peak in /(g), because the
presence of strong scattering from the crystalline phase prob-
ably precludes reliable determination of g(r). Furthermore,
this can be done with relatively short data acquisitions, as
there is no need to collect high signal-to-noise-ratio data at
high g where the elastic scattering from the amorphous phase
is weak [as is required for the Fourier transformation of S(g)
to obtain g(r)]. Thus, assuming that there is no crystalline
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TABLE III. Predicted separation of atomic pairs based on the atomic radii in Table II and data from
experiments and simulations for several Zr-based amorphous alloys.

Ficuniy-(cuni) () rze(coni) (B) rzeze (B) Reference
Sum of atomic radii 2.55 2.85 3.16
Zr57Ti5Cu20Ni8A110 —_— 2.68 3.13 28
Zr60A1 1 5N125 —_— 2.67 3 . 17 29
ZreoNiysAly, (simulation) 2.65 2.63 3.30 30

peak that overlaps the top of the first peak in I(g) from the
amorphous component, one should be able to obtain strain
information from both phases simultaneously. Experiments
of this kind will allow better comparisons with computa-
tional models of deformation of metallic-glass-matrix com-
posites.

B. Length-scale dependence of strain

The elastic modulus of a crystalline material reflects the
inherent stiffness of the atomic bonds and, in particular, the
curvature of the atomic potential energy well.* For amor-
phous alloys, Young’s modulus is typically ~30% smaller
than that for crystalline phases of similar composition.3%-3
The difference can be attributed to anelastic relaxation events
and is not due to a fundamental difference in the atomic
bonding, as described in more detail below.

Poulsen and co-workers® reported that the elastic strain
(and hence the elastic modulus) showed a strong dependence
on length scale. In particular, they reported that the strain in
the first near-neighbor atomic environment was smaller by a
factor of 2.7 than that at large r and that the value at large r
was consistent with the strain calculated from macroscopic
measurements of Young’s modulus. But if the value at large
r is consistent with macroscopic measurements and thus
roughly 30% smaller than that for a crystalline phase of simi-
lar composition, then the much smaller strain for the atomic
near neighbors implies that the inherent stiffnesses of the
atomic bonds in the nearest-neighbor shell are several times
greater in the amorphous alloy than they would be in the
corresponding crystalline phases. This seems unlikely.

Our own results (Fig. 4) indicate that the strain as deter-
mined from the first peak in g(r) is only slightly smaller than

0.005 4 Transverse direction
0.000
R=
£ -0.005 —
A
0.010 H_ 7 o Peak 1
Loading direction ® Peak 2
-0.015 -

1T 1Tttt
-1000  -800 -600 -400 -200 0

Engineering stress (MPa)

FIG. 6. Strain determined from the positions of the two overlap-
ping peaks in the RDF (Fig. 5). The dotted lines are the strains
determined from S(g) (Fig. 2).

that at higher r. Significantly, the elastic modulus we deter-
mine from the shift in the two contributions to the first peak
in the RDF (Fig. 6) is quite similar to the macroscopic elastic
moduli of the corresponding crystalline phases. For peak 1,
which we attribute primarily to Zr-Zr pairs, the measured
modulus is 93+ 1 GPa, which compares well with an elastic
modulus of polycrystalline Zr of about 96 GPa (Ref. 38).
Similarly, the modulus of 149+8 GPa measured for peak 2,
due to overlapping Zr-(Cu,Ni) and (Cu,Ni)-(Cu,Ni) pairs, is
on the same order as an average of the elastic moduli of
polycrystalline Cu (115 GPa) and Ni (204 GPa), although it
is significantly larger than the calculated elastic modulus of
tetragonal Zr,Ni (~49 GPa, Ref. 39). (Interestingly, the
shear modulus of evaporated amorphous Ni-Zr thin films as
measured by Rubin and Schwarz*® is approximately twice
that of crystalline Zr,Ni.) These comparisons are only ap-
proximate because the uniaxial elastic modulus is a function
of the atomic environment as well as the specific atom pairs,
but they do suggest that our measurements of the bond stift-
nesses in the nearest-neighbor atomic shell are reasonable.

It is, perhaps, not widely appreciated that the microscopic
basis of the traditional theory of continuum elasticity is lim-
ited to the special case of Bravais lattices, in which every
atom is at a center of symmetry.*! In complex materials this
is an area of active research.*? In granular materials, for in-
stance, it appears that static continuum equations of elasticity
only apply at length scales above ~100 particle diameters.*3
Our observation that strain is essentially independent of r for
r>4 A (Fig. 4) suggests that length-scale effects of this kind
are not significant in metallic glasses beyond the first atomic
shell.

C. Elastic and anelastic deformation

The disordered structure of a metallic glass means that
atoms exist in a range of local atomic environments; as a

0.02 — Transverse direction

0.01 —

0.00 —

-0.01 —

AFWHM/FWHM

© Peak 1

° Loading direction ® Peak 2
T 1T 17T ™71 7T 71T 7T
-1000  -800 -600 -400 -200 0

Engineering stress (MPa)

FIG. 7. Change in the widths (FWHM) of the two overlapping
peaks in the RDF (Fig. 5).
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result, not all atoms (even of the same species) experience
the same displacement in elastic deformation. For some at-
oms, the displacement can be considerably larger than aver-
age, leading to an apparent reduction in the elastic modulus.
For instance, Weaire and co-workers** showed that allowing
atomic relaxation in a model calculation reduced the shear
modulus by ~33% compared to a model in which no relax-
ation was permitted. This result suggested that anelastic pro-
cesses might be occurring during nominally elastic deforma-
tion.

Suzuki and Egami® explored these atomic relaxations in
more detail and showed that they consist of topological re-
arrangements within the atomic near-neighbor environment
in which an atom switches one of its atomic near-neighbors
in preference for another atom (originally in the second
nearest-neighbor shell). Rearrangements of this type are not
possible for most of the atoms in the structure, but can occur
in regions where the local dilatation is large enough to render
the structure topologically unstable.*® Because only a small
fraction of atoms (approximately 1% for a 1% shear
strain*>*%) participate in these rearrangements, the RDF is
not very sensitive to them. Instead, the changes in the first
near-neighbor peak of the RDF reflects the purely elastic
displacements experienced by the vast majority of the atoms.
This explains why the elastic modulus extracted from this
shift of this peak is comparable to that of crystalline materi-
als of similar composition. On the other hand, the entire
structure gets the benefit of the added deformation due to the
atomic rearrangements, so at length scales beyond the first
shell the RDF reflects the macroscopic elastic modulus.

Some additional support for this explanation is provided
by considering the change in the widths of the peaks in g(r)
and the RDF (Figs. 3 and 7) as the macroscopic compressive
stress increases. The width of the peaks decreases in the
loading direction and increases in the transverse direction,
but by a smaller amount. This indicates that the overall effect
(averaging over all orientations with respect to the loading
direction) is a reduction in peak width with increasing load.
Srolovitz and co-workers*’ showed that sharpening of the
peaks in g(r) is associated with a decrease in variance of the
atomic-level hydrostatic stress distribution, <p2>. Thus, with
increasing load the average hydrostatic stress (p) increases,
but overall p becomes more uniform. Presumably a signifi-
cant part of the effect we observe comes from the deforma-
tion of regions of locally large dilatation, which in the un-
loaded state are regions of unusually low p. As the load
increases, these are the regions in which the atomic rear-
rangements described above occur. This brings the local p
for these regions closer to the overall mean (p), thus reduc-
ing (p?) and causing the observed sharpening of the peaks in
g(r) and the RDF.

A reduction in {p), because it corresponds to a more uni-
form distribution of free volume, also implies a reduction in
the entropy of the glass upon loading. This would imply that
the stiffness of metallic glasses (and possibly other amor-
phous materials) has an entropic component, analogous to
the entropic contribution in rubber elasticity.*3

PHYSICAL REVIEW B 73, 064204 (2006)

Finally, we also note that, although we see little length-
scale dependence of strain beyond the nearest-neighbor
atomic shell, in Fig. 4 the strain in the region around r
=13-14 A is consistently larger in magnitude than that at
other values of r. (The effect is small, but it is observed at all
loads and in the second sample we examined, as well.) This
suggests that the compliance of the glass has an additional
contribution from atoms that are, on average, in the fifth or
sixth atomic shell around an average atom, again possibly
due to a redistribution of free volume. It is interesting to note
that this length scale is only slightly larger than the size of
shear transformation zones in metallic glasses, currently es-
timated to be about 10 A in diameter.** This points to a pos-
sible link to plastic deformation, as well. We believe that
continued exploration of the response of the structure of
amorphous alloys under load—closer to the yield stress, for
instance, or under different stress states such as tension or
pure shear—is likely to yield additional insights.

VI. CONCLUSIONS

The strain in a metallic glass measured by x-ray scattering
is in good agreement with macroscopic observations of the
elastic behavior of these alloys. Although we do observe a
small length-scale dependence of the strain, the effect is
much smaller than previously reported and is confined to the
nearest-neighbor atomic shell. The strain in this shell yields a
modulus that is consistent with the inherent stiffness of the
atomic bonds, as measured from crystalline materials of
similar composition. These observations are consistent with
observations in model calculations that the reduced modulus
of metallic glasses (relative to crystalline phases of similar
composition) is due to anelastic atomic rearrangements in the
nearest-neighbor environment around atoms in topologically
unstable regions. We also observe a sharpening of the peaks
in the radial distribution function, indicating that the distri-
bution of atomic-level stresses becomes more uniform upon
loading. This suggests that the elasticity of metallic glasses
may have an entropic component, analogous to the entropic
component of rubber elasticity.
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