PHYSICAL REVIEW B 73, 064112 (2006)
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The many-body expansion V=3, jV(z)(r,-j)+E,-< j<kV(3)(r,-j,r,-k,rjk)+ .-+, in terms of interaction potentials
between rare-gas atoms converges fast at distances r> ryg, with ryg being the hard-sphere radius at the start of
the repulsive wall of the interaction potential. Hence, for the solid state where the minimum distance is always
above rgg, a reasonable accuracy is already obtained for the lattice parameters and cohesive energies of the
rare-gas elements using precise two-body terms. All tested two-body potentials show a preference of the hcp
over the fcc structure. We demonstrate that this is always the case for the Lennard-Jones potential. We extend
the Lennard-Jones potential to obtain analytical expressions for the lattice parameters, cohesive energy, and
bulk modulus using the solid-state parameters of Lennard-Jones and Ingham [Proc. R. Soc. London, Ser. A
107, 636 (1925)], which we evaluate up to computer precision for the cubic lattices and hcp. The inclusion of
three-body terms does not change the preference of hcp over fcc, and zero-point vibrational effects are
responsible for the transition from hep to fcc as shown recently by Rosciszewski et al. [Phys. Rev. B 62, 5482
(2000)]. More precisely, we show that it is the coupling between the harmonic modes which leads to the
preference of fcc over hep, as the simple Einstein approximation of moving an atom in the static field of all
other atoms fails to describe this difference accurately. Anharmonicity corrections to the crystal stability are
found to be small for argon and krypton. We show that at pressures higher than 15 GPa three-body effects
become very important for argon and good agreement is reached with experimental high-pressure density
measurements up to 30 GPa, where higher than three-body effects become important. At high pressures we find
that fcc is preferred over the hcp structure. Zero-point vibrational effects for the solid can be successfully
estimated from an extrapolation of the cluster zero-point vibrational energies with increasing cluster size N. For
He, the harmonic zero-point vibrational energy is predicted to be always above the potential energy contribu-
tion for all cluster sizes up to the solid state at structures obtained from the two-body force. Here anharmonicity

effects are very large which is typical for a quantum solid.
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I. INTRODUCTION

Elemental rare-gas clusters are known to be as typical
examples of Lennard-Jones (LJ) systems.!~” However, when
considering the solid, the periodic LJ crystal is predicted to
have a hexagonal close-packed (hcp) structure,®® while the
experimentally determined structures for the Ne, Ar, and Kr
crystals are all face centered cubic (fcc).!” That discrepancy,
known as the rare-gas solid (RGS) problem,11 has led to an
intense debate about the growth process of such clusters, as
well as on the effects accounting for the difference in the
predicted energies of the fcc and hep lattices.'? Although this
difference is actually much smaller than originally
anticipated,'®'# it is decisive and has stimulated much theo-
retical research on the interactions between rare-gas atoms.”

The most accurate computational quantum methods avail-
able are required for describing weak interactions between
rare-gas atoms, either in the cluster or in the solid, which
currently is a formidable task. Even for the simple diatomic
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system both electron correlation and relativistic effects for
the heavier elements have to be taken into account. Density
functional theory is currently not capable of accurately de-
scribing van der Waals—type clusters,'> even though im-
provements are underway.'¢~'° For the solid similar problems
remain and it is not straightforward to describe electron cor-
relation for van der Waals solids.

In order to perform global structure optimizations for
larger rare-gas clusters and to establish property trends with
increasing cluster size N, we need an affordable but accurate
approach. Relativistic ab initio electronic structure calcula-
tions including electron correlation are possible only for the
smallest clusters. Furthermore, the number of local minima
for clusters increases exponentially with N and it is nontrivial
to find the global minimum.? A useful strategy to study the
most stable structures of rare-gas clusters and the conver-
gence towards the bulk could use a truncated expansion of
the many-body interaction potential energy derived from ac-
curate ab initio theory,
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Once the structures are obtained, single-point relativistic ab
initio or density functional calculations can be used to deter-
mine certain electronic properties. For the total electronic
energy, expansions like Eq. (1) converge smoothly only in
the long range—that is for van der Waals clusters—and the
short-range behavior for systems under high pressure is not
accurately known.?!

Concerning the solid state of Ne through Xe, recent
ab initio coupled-cluster calculations by Rosciszewski
et al.'#?>2 of cohesive energies point towards the zero-point
vibrational energy (ZPVE) as the main reason responsible for
the stabilization of the fcc over the hep structure, followed
by a much smaller contribution from short-range three-body
terms, as already suggested in 1955 by Barron and Domb?*
and later by Niebel and Venables.?® Jansen,!32¢ Richardson
and Mahanty,?” and more recently Lotrich and Szalewicz'?
argued, however, that already the three-body forces lead to
fcc being preferred over hcp. These three-body effects are
important as two-body potentials significantly overestimate
the cohesive energies of rare-gas crystals—i.e., between 32%
and 40% for Ne to about 12%-13% for Xe.'3?? In compari-
son, ZPVE corrections amount to 28% of the cohesive en-
ergy for Ne and only 3% for Xe.'* We mention that (quartic)
anharmonicity corrections were also used to explain the sta-
bility of the fcc over the hep phase.”®

Further insight into the stability of the two-phase problem
can be gained by studying the nucleation process of rare-gas
clusters. Valuable clues about the structural trends or the
crystal growth process are obtained by combining informa-
tion from experiments and prototype cluster simulations.
Mass spectra in free-jet expansions of neutral rare-gas clus-
ters have provided the magic numbers?®*'—i.e., specific
sizes related to prominent stabilities (see, e.g., review by
Kumar® and references cited therein). For the small-N range
those numbers are in closer agreement with the Mackay
icosahedral shell clusters than with other structural types
(like fcc). Therefore, icosahedral packing seems to be the
basic growth pattern for small cluster sizes, with strong ex-
perimental support for the cases of xenon and argon.-3!
Furthermore, global minima for the LJ clusters, which are
known for nearly all sizes below N~ 560,233 follow the
icosahedral growth pattern with few exceptions, a trend that
may continue for much bigger sizes.® However, the periodic
solid cannot contain a fivefold symmetry axis characteristic
of icosahedral clusters. Another problem is that with the
simple LJ potential one may not get the expected fcc struc-
ture at medium to large cluster size,”3* so that the LJ model
may become a rather poor approximation for rare-gas clus-
ters when we are interested in structural trends towards the
bulk limit.

Different hypotheses about the cluster growth have been
proposed. For example, it was suggested that one or more
transitions may lead from the icosahedral to fcc structures at
high-N ranges.?! However, research on diffraction patterns of
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argon clusters has shown that such a noncrystalline to crys-
talline transition is elusive and that large-size clusters
(10°<N<10% contain in fact a mixture of hcp, fcc, and
random close-packed (rcp) regions, with no preference or
trend towards the bulk structure,’* contradicting the evolu-
tion of observed diffraction patterns for small-size clusters
(50<N<70)3" At the same time, other diffraction
studies’>3¢ for medium-size clusters (N~ 2000) of argon and
krypton are taken as evidence of the hypotheses of the coa-
lescence of icosahedral clusters, which results in the forma-
tion of fcc regions with lattice defects, promoters of rapid fcc
crystal growth.3”3% Some alternative ideas could as well
serve as a basis for a better understanding of this complex
situation: the fcc crystal growth could be completely discon-
nected from the icosahedral cluster growth, or the structural
trends and transitions could be temperature dependent.’*40
Moreover, factors other than the precise form of the interac-
tion potential could be crucial for the structural transitions of
these clusters.>*

Helium clusters and the solid state are often considered
apart from the mentioned rare-gas studies because of their
particular delocalized nature. Ground-state calculations for
the nuclear Hamiltonian of small elemental rare-gas clusters'
illustrate that, unlike in the cases of neon and argon, prob-
ability distribution functions for the bond lengths, bond
angles, and dihedral angles of helium clusters are so broad,
without the multiple peaks found in the classical clusters,
that the helium clusters cannot be said to be arranged in any
type of rigid geometry. The ZPVE energy for helium clusters
is predicted to be comparable to the potential depth, and the
average kinetic energy should be of the same order as the
potential energy.' As a consequence, helium becomes solid at
low temperatures only at pressures of greater than 2.5 kPa.*!
However, from recent diffraction studies there is some evi-
dence for magic numbers in helium clusters.*> We mention
that quantum delocalization effects are not small in rare-gas
clusters of elements other than helium.*3#*

Considering that pair interactions account for most of the
binding energy of the rare-gas clusters and subsequently for
the cohesive energy of the RGS, the use of two-body poten-
tials more accurate than the LJ appears as an important at-
tempt towards the improvement of structure calculations of
rare-gas clusters and the solid state. This is one of the main
aspects studied in this paper for clusters Ry (R=Ne, Ar, and
Kr; N<150), along with the analysis of structural trends
with the increasing size towards the bulk structure.

II. COMPUTATIONAL DETAILS

The potential energy for the clusters as well as for the
lattices is expressed as a sum of two-body interatomic poten-
tials V®(r), which come from accurate pointwise ab initio
calculations for the systems He,,* Ne,,*® Ar,,* and Kr,.*
The data points for those potential curves were fitted to an
extended LI-type (ELJ) potential

6
V<52131(" ) = 2 Coppar 2 (2)
i=1

by a linear least-squares procedure, so that the fitting param-
eters ¢,;,4 for every dimer are given in Table I. Note that for
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TABLE I. Fitting parameters for the two-body potentials of the rare gases from He to Kr according to Eq. (2). The parameters c; are given
in a.u. Equilibrium distance r,,;,, and hard-sphere radius ryg are in A, and minimum energy V,,;, in cm™" of the potential energy curve. The

data for the fit procedure are taken from Refs. 45-47.

He Ne Ar Kr
Cq 0.51935577676634 —10.5097942564988 —123.635101619510 —227.476410584751
Ccg —313.906518089779 989.725135614556 21262.8963716972 50281.6033768459
Cro 11045.2101976432 -101383.865938807 —3239750.64086661 -9549691.98083359
cp —88571.2026084401 3018846.12841668 189367623.844691 658170535.750904
Clq 88684.2761441023 —56234083.4334278 —4304257347.72069 —17524714507.3525
Ci6 946830.190858721 288738837.441765 35315085074.3605 166980981478.238
i 3.0503 3.0985 3.7782 4.0505
T'HS 2.7022 2.7700 3.3730 3.6161
Vonin =7.430 -28.62 -96.97 -135.4

the last coefficient we require that c;s>0 in order to obtain
the correct repulsive behavior at small internuclear distances.
We also carefully checked the roots of potential (2), which,
beside the hard-sphere radius ryg where the potential curve
becomes repulsive, has no other physical solutions. Note that
the coefficients c,;,4 do not correspond to the well-known
van der Waals coefficients describing the long-range behav-
ior of two interacting systems as the repulsive wall is auto-
matically built in. Figure 1 shows the individual " contribu-
tions for Ar. It clearly demonstrates that all powers in Eq. (2)
contribute significantly to the potential, from the short- to the
long-range region. The rather divergent behavior at short
range is probably the reason why such an expansion is not
applied for the repulsive region; however, the usefulness of
this ansatz will become apparent for solid-state properties.

We briefly discuss ansatz (2), which avoids artificially
large interaction terms at long distances, leading to divergen-
cies for the solid state. In order to make this point more
transparent we assume the more general ansatz

M'max

G = 2 cp 3)

i= =Nmin

We define this new potential as ELJ(71,,,,,, ¢, An1) Where the
numbers in parentheses denote the minimum #,,, and maxi-
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FIG. 1. Individual contributions for the ELJ(6,16,2) potential
Vaira(r)=cai0ar™2* to the total interaction potential for Ar.

mum #,,,, exponent in " and the last number the increment
An for the exponent. Here we use a ELJ(6,16,2) potential
according to Eq. (1). This ansatz includes both the Lennard-
Jones (6-12) potential,*® ELJ(6,12,6), and the (more histori-
cal) Kratzer potential ELJ(1,2,1).#° Consider the interaction
of an atom sitting at the origin with an infinite number of
equally spaced (by Ar) atoms along a single line on the posi-
tive x axis. We then get, for the total interaction energy per
atom (which translates to the cohesive energy for the solid
state) according to Eq. (3),

E V(ELJ(r on)

= lim
l
Vin Nosoe 20

rop=nir Imax

= lim - E E(nAr)’

N~>oc

Umax

=—26Ar’11m2ni. (4)

N—o© -1

We know that E _ =0 (N—) and r! terms in Eq. (3)
should therefore not be used. Moreover, as shown in the
Appendix, for a three-dimensional lattice, ™" terms with n
=<3 lead to a divergent series for the cohesive energy. Hence
we conclude that one has to take great care of the correct
long-range behavior in solid-state calculations or when deal-
ing with larger clusters.

The minimum distances and energies obtained from the
parameter fit in Eq. (2) agree with the original data to high
accuracy. For example, for Ne, the data given by Cybulski
and Toczylowski* of r,=3.0988 A and E,,,=28.604 cm™
are in perfect agreement with the data given in Table I. Glo-
bal geometry optimizations were performed for all the clus-
ters up to N=150 using a simulated annealing approach>®
together with a conjugate gradient local optimization routine
to refine the optimization’® as incorporated in our cluster
structure program MAMBO.’! The optimized geometries for
the elemental rare-gas clusters were all true minima, estab-
lished through a vibrational analysis. Symmetry groups of
the optimal configurations corresponded with few exceptions
to those of the typical LJ clusters. As He is a quantum liquid
(solid), dynamic effects have to be included. Nevertheless,
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we chose to include He for comparison here with the other
rare-gas systems.

The adjusted potentials were tested in solid-state calcula-
tions together with other known two-body potentials using
our program system SAMBA.>? Optimization of the lattice pa-
rameters and calculation of the cohesive energies for homo-
atomic arrangements corresponding to sections of fcc, hep,
and bcc crystals were performed using numerical gradient
procedures. Two different ways of calculating the cohesive
energy are implemented in SAMBA, the first through a fast
convergency expansion which makes use of the translational
symmetry (7) of the Bravais lattice and does not contain the
high-energy surface terms,

1 1
Vﬂt(N) = EE VO (ry;) + 52 V(S)(VOi’rOj’rij) +, (5)

i<j

where r; is the distance between the inner most (central
atom) and atom i, and the second by explicit evaluation of
the many-body expansion (1). Both formulas (1) and (5) are
identical in the limit of the solid state; that is, the cohesive
energy is

Eop=— lim Vo (M=~ lim V™). (6
N—® N—x N
For all the rare-gas elements considered in this work, the
two expansions (1) and (5) were truncated at the two-body
term. The initial values of the lattice parameters for the op-
timizations were taken from experimental reference data,>3
and the number of atoms N in the lattices was chosen to be
N~100 000 atoms for the SAMBA program which gives an
accuracy of <107'cm™' in the cohesive energy and
<10™* A in the lattice parameters for Ar; see Fig. 2. Even
with 10 000 atoms the lattice parameters are converged to
four significant figures. The difference between the fcc and
hep structures is however, very small for the rare gases—i.e.,
<107! cm~'—and therefore is below the converged cohesive
energy at this cluster size. For this purpose, ansatz (2) will
become very useful. Nevertheless, in taking care of using
approximately the same number of atoms, N, for one specific
atom for all crystal structures, this difference can be calcu-
lated to much higher accuracy.
For the zero-point vibrational energy of the solid we con-
sidered two-body forces only. From Eq. (1) we obtain the
following force field for the two-body potential only:

PV PVI0) PV FV(ry)
) 0 RV %) (UMD OF) SRR (Y0 ¢

for k # j,

[l

™)

where X, and Y; stand for the three Cartesian coordinates of
atoms k and j. We chose N,;,=5000 atoms spherically em-
bedded in more than 200 000 atoms and diagonalized the
mass-weighted force field F; to obtain harmonic phonons in
r space for the bec, fce, and hep structures. For the numerical
determination of the force field a step size of 1073 a.u. was
chosen for the atom displacements. For the (3,3)-block-
diagonal elements in Fj;, translational symmetry was strictly
applied to avoid surface effects. The most expensive part of
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FIG. 2. Convergence of the cohesive energy E.,;, (in cm™') and
the lattice constant a (in A) for fec Ar using the Lennard-Jones
potential of Ref. 79, shown on a logarithmic scale.
AE, ,=—[E.op(N)=E,;,(©)], where E,,() is obtained directly
from Eq. (13). Similarily we have Aa=a(N)—a(x).

these calculations is the diagonalization of the symmetric
force field matrices of the size (3N,;;,,3N,;;,). A Householder
transformation was used, which is ~N°;, in CPU time. Di-
agonalization of the (3,3)-block-diagonal matrix gives di-
rectly the Einstein frequency. We mention that the hcp lattice
consists of two hexagonal Bravais lattices and there are
therefore two nonidentical atoms in the lattice. However, the
Einstein frequencies for both type of atoms are identical.

Anharmonicity effects are only considered within the Ein-
stein approximation by first-order perturbation theory—that
is, by moving one atom in the field of all other atoms in the
solid. Here only the even powers in Cartesian derivatives for
the anharmonic force constants need to be included—
namely, Fy; and Fj;;;, where i and j stands for the Cartesian
coordinates X, Y, and Z of one atom in the solid. This only
gives a rough estimate of anharmonicity effects as higher-
order perturbation theory in a fully coupled mode analysis
would be necessary to obtain accurate results, which cur-
rently is a nontrivial task. We note, however, that the F i
quartic force constants are as important as the corresponding
F;;; terms and cannot be neglected as done, for example, in a
recent analysis of anharmonicity effects.'?

For Ar we also considered three-body interactions by us-
ing the three-body ansatz of Lotrich and Szalewicz as de-
scribed in detail in Ref. 12. Here we restrict the calculations
for the three-body part to N~ 50000 atoms, because these
calculations scale like N? in computer time. For this solid the
influence of the zero-point vibrational energy on the fcc and
hep lattice parameters and cohesive energies was also con-
sidered in more detail.

For the n-body decomposition of the rare-gas hexamers
Heg, Neg, and Arg we carried out scalar relativistic coupled-
cluster [CCSD(T)] calculations using the Douglas-Kroll
operator.>*> For the heaviest system in this series, Krg,
coupled-cluster calculations became too consuming in com-
puter time and we used second-order many-body perturba-
tion theory instead (MBPT2). The basis sets used are cc-
pVQZ-DK-Dunning sets**% with the ¢ and % functions
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FIG. 3. Total n-body contributions to the rare-gas octahedron Ry
according to Eq. (1) as a function of the nearest-neighbor distance r.
The total value is the sum of all n-body contributions.

removed. The two-body term is corrected for the basis-set
superposition error using the method of Boys and Bernardi.>®

III. RESULTS AND DISCUSSION
A. Convergence of the n-body interaction potential expansion

In order to discuss the convergence of the n-body expan-
sion with increasing expansion parameter n of Eq. (1) we
carried out CCSD(T) calculations for the octahedral arrange-
ment Ry from He up to Kr at different next-neighbor dis-
tances . The second larger distance ' >r in the octahedron
is given by ' =\2r. The results are shown in Fig. 3 for He to
Kr.

Since the equilibrium bond distances do not alter much
from the smallest cluster to the solid state for rare-gas sys-
tems (compare r,,, in Table I with the solid-state distances
733 given in Table II), a reasonable description of the inter-
action potential under normal conditions is already obtained
by using two-body potentials only.%%®! This is very much a
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special feature of the rare-gas atoms,%” as other closed-shell

systems like mercury®® or the alkaline-earth metals®> show
very large many-body effects becoming important already at
small cluster sizes at distances close to the equilibrium dis-
tance, and for such systems the solid state cannot be de-
scribed accurately anymore by restricting the interaction to a
two-body potential only. However, it is evident that higher
than two order terms in Eq. (1) become important close to
the point where the repulsive region of the potential curve
starts. Here the convergence of the n-body expansion be-
comes worse, and the use of the two-body term only may not
be sufficient anymore for studies of rare-gas systems under
high pressure. There is already experimental evidence for the
importance of higher-body corrections from high-pressure
studies of argon.®* For intermolecular interactions between
hydrogen molecules the importance of three-body forces was
pointed out much earlier.® Figure 4 describes this situation
nicely by showing the sum of three- to six-body terms in
energy units of the binding energy E, for scaled distances
r/r,. We also see that in the long-range region the sum of
higher-order effects (n>2) is repulsive, while it becomes
attractive at shorter distances. These repulsive long-range ef-
fects are well known from Axilrod-Teller type of interactions
and lead to equilibrium bond distances, for example, for ar-
gon of r,(Ar;)=3.7812 A>r,(Ar,)=3.7782 A using the
Cybulski-Toczylowski two-body potential*® and the Lotrich-
Szalewicz three-body potential.'?

B. Two-body interaction potential and the solid state

Since we are not interested in the repulsive region of the
potential surface, we restrict our study mainly to accurate
two-body interactions as described in the computational sec-
tion. We used the functional form of the two-body interaction
potential as defined in Eq. (2). The parameters are listed in
Table I, and the solid-state results are shown in Table II. We
also used other two-body potentials published for He,%¢7
Ne,%7! Ar,”>7> and Kr,”%7® for comparison, including the
well-known Lennard-Jones potential.”’ Helium is used only
for comparison, as solid helium does not exist at normal
pressure. There are a few potentials available for Xe which
are included in our analysis. Table III shows the bulk moduli
for the experimentally observed fcc lattice where we used the
expression

5 I Vin ®)
9crsS (ars)? ’f;f,:n’
where 755 is the smallest minimum distance in the solid and

¢ is a constant for the volume determination, V=c(rfn‘§n 3,

depending on the symmetry of the lattice. B is obtained nu-
merically by changing the lattice parameters using a step size
of 1073 a.u.

Not surprisingly,? all calculations predict the fcc lattice to
be very close in energy to the hcp one, with the hcp structure
to be the global minimum for two-body potentials neglecting
the ZPVE contribution. For comparison we also include the
bee structures, which are much higher in energy. With a few
exceptions, all two-body potentials give similar results for
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TABLE II. Minimum solid-state distance rfrﬁn’ lattice parameters a, b, and ¢, and cohesive energies E.,;, (not corrected for zero-point

vibrational effects) for various two-body potentials obtained from a numerical optimization procedure.?

Element Potential Ref. Structure rifin a=b c E .,
He SFRP 45 hcp 2.9787 2.9791 4.8638 56.030
fce 2.9789 4.2128 4.2128 56.022
bce 2.9143 3.3652 3.3652 53.737
PD 66 hep 2.9662 2.9664 4.8435 53.571
fcc 2.9663 4.1950 4.1950 53.565
bce 2.9034 3.3525 3.3525 51.293
JA 67 hep 2.8956 2.8959 4.7282 61.412
fcc 2.8958 4.0953 4.0953 61.404
bce 2.8340 3.2725 3.2725 58.626
LJ 79 hep 2.8670 2.8673 4.6816 64.634
fcc 2.8672 4.0548 4.0548 64.627
bce 2.8100 3.2447 3.2447 61.830
Ne CTb 46 hep 3.0336 3.0339 4.9535 226.728
fcc 3.0338 4.2904 4.2904 226.706
bce 2.9715 3.4312 3.4312 215.551
G 69 hep 3.0312 3.0316 4.9497 228.254
fce 3.0314 4.2870 4.2870 228.231
bce 2.9690 3.4283 3.4283 217.021
LD 70 hcp 3.0751 3.0756 5.0213 225.703
fce 3.0753 4.3492 4.3492 225.728
bee 3.0095 3.4751 3.4751 214.452
AS 68 hcp 3.0244 3.0248 4.9386 230.810
fcc 3.0247 4.2775 4.2775 230.785
bce 2.9620 3.4203 3.4203 219.838
E 71 hep 3.1077 3.1081 5.0746 187.902
fcc 3.1080 4.3953 4.3953 187.863
bece 3.0444 3.5153 3.5153 178.553
L] 79 hep 3.0401 3.0404 4.9642 213.647
fcc 3.0402 4.2996 4.2996 213.632
bce 2.9796 3.4406 3.4406 204.381

RPFS¢ 14 fcc 3.024 4271 4271 218.0
Ar CTb 46 hcp 3.7002 3.7006 6.0420 761.596
fce 3.7004 5.2332 5.2332 761.508
bee 3.6226 4.1830 4.1830 724711
LD 70 hcp 3.6820 3.6824 6.0122 718.267
fcc 3.6822 5.2075 5.2075 718.182
bce 3.6036 4.1611 4.1611 686.430
A 72 hep 3.6806 3.6810 6.0100 768.847
fcc 3.6809 5.2055 5.2055 768.753
bce 3.6022 7.8602 7.8602 731.862
SKB 73 hep 3.6951 3.6954 6.0338 765.033
fcc 3.6954 5.2260 5.2260 764.942
bce 3.6165 4.1760 4.1760 727.567
MS 74 hep 3.6789 3.6793 6.0073 786.352
fcc 3.6791 5.2030 5.2030 786.216
bce 3.6293 4.1907 4.1907 744.906
BP 75 hep 3.6843 3.6849 6.0160 775.680
fcc 3.6046 5.2109 5.2109 775.569
bce 3.6020 4.1592 4.1592 739.848
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TABLE II. (Continued.)
Element Potential Ref. Structure " a=b c E.on
LJ 79 hep 3.7260 3.7264 6.0843 742.087
fec 3.7262 5.2697 5.2697 742.026
bee 3.6519 4.2169 4.2169 709.896
RPFS® 14 fce 3.686 5.213 5.213 760.30
Kr T® 47 hep 3.9730 3.9735 6.4874 1036.320
fee 3.9733 5.6191 5.6191 1036.190
bee 3.8890 4.4907 4.4907 985.320
HC 76 hep 3.9384 3.9389 6.4310 1092.131
fce 3.9387 5.5701 5.5701 1092.004
bee 3.8531 4.4491 4.4491 1040.448
MS 77 hep 3.9263 3.9264 6.4115 1079.928
fce 3.9264 5.5528 5.5528 1079.850
bee 3.8413 4.4355 4.4355 1025.268
ASY 78 hep 3.9276 3.9280 6.4133 1064.662
fce 3.9278 5.5548 5.5548 1064.535
bee 7.2668 4.4403 4.4403 1013.846
AS*® 78 hep 3.9252 3.9257 6.4095 1080.309
fec 3.9255 5.5515 5.5515 1080.179
bee 3.8408 4.4350 4.4350 1029.780
SKB 73 hep 3.9562 3.9567 6.4600 1041.706
fee 3.9565 5.5953 5.5953 1041.564
bee 3.8725 4.4715 4.4715 991.078
LJ 79 hep 3.9354 3.9357 6.4262 1137.071
fee 3.9356 5.5658 5.5658 1136.978
bee 3.8571 4.4538 4.4538 1087.761
RPFS¢ 14 fec 3.928 5.556 5.556 1062.4
Xe MS 77 hep 4.2680 4.2683 6.9693 1515.595
fce 4.2681 6.0361 6.0361 1515.469
bee 4.1788 4.8253 4.8253 1442.049
AS 78 hep 42774 4.2780 6.9846 1503.577
fec 4.2778 6.0497 6.0497 1503.391
bee 4.1865 4.8342 4.8342 1429.096
SKB 73 hep 4.3357 4.3362 7.0797 1395.832
fce 4.3360 6.1320 6.1320 1395.658
bee 4.2432 4.8996 4.8996 1326.864
LJ 79 hep 4.4204 4.4208 7.2182 1370.458
fec 4.4207 6.2517 6.2517 1370.345
bee 4.3325 5.0027 5.0027 1311.021
RPFS¢ 14 fec 4.320 6.110 6.110 1492.2

min

aAll distances and lattice parameters in A and cohesive energies in cm

hep structure 755 =a if ¢/a= \8/3. This relation is not exactly fulfilled, and the

SS

min

min

-1, For the bec structure 755 = \e’ma, and for fcc

=\2a/2. For the
listed differ slightly from the a value. The abbreviation

in the Potential column uses the first letters of the authors given in the reference list.

bUsing Eq. (2) to fit the potential.

“The RPFS results of Rosciszewski er al. (Ref. 14) are two-body contributions from CCSD(T) results.
9HFD-C potential refitted to give Eq. (2).

°*HFD-B potential.

(MBPT4) to produce the potential curves. It is obvious that
MBPT4 underestimates the cohesive energy by ca. 14% for
Ne, 6% for Ar, and 2.5% for Kr. The minimum bond dis-
tances of the solid rare gases are all slightly below the dis-
tances of the corresponding rare-gas dimer, but well above

lattice constants and cohesive energies, and for the fcc struc-
ture these agree nicely with the two-body coupled-cluster
results of Rosciszewski et al.,?> the exception being the re-
sults of Ermakova et al.,”! Leonhard and Deiters,’® and Tao"’
who used fourth-order many-body perturbation theory

064112-7



SCHWERDTFEGER et al.

0.2

-0.0+

-0.29

-0.44

(Vint - V(2))/Vb

fe

FIG. 4. Sum of three- and higher-order n-body contributions in
units of the potential depth V), as a function of the reduced distance
rlr,. r, denotes the equilibrium distance.

the hard-sphere radius. This is easily explained by using a
simple Lennard-Jones potential as discussed in the follow-
ing.

For the case of the Lennard-Jones potential, properties
like the lattice constants, cohesive energy, and bulk modulus
for the Bravais lattices can be derived analytically.® We ex-
tend this scheme to our more general ansatz (5). If we rewrite
Eq. (3) in a form that the distance r is expressed as a dimen-
sionless number a(R) depending on the Bravais lattice vec-
tor R times the solid-state minimum distance rf“n, we obtain,
for the two-body cohesive energy (a minus sign is intro-
duced),

(c%))h - _E L; iCi (rmln (9)
where
Li=2 aR)” (10)
R#0

are the Lennard-Jones-Ingham lattice coefficients,’! which
are tabulated by Kane and Goeppert-Mayer for the three cu-
bic Bravais and hcp lattices up to relatively high order in 7.8
In Table VII in the Appendix we list these coefficients to
computer accuracy for four different lattices. Equation (9)
implies that the cohesive energy can be calculated analyti-
cally. For a simple Lennard-Jones (6—12) potential this sim-

plifies to
6 12
Tmin 1 "min
EE%))h =Emin|:L6( }"SS ) L12< VSS ) :| 5 (11)

where E,,;, is the dissociation energy (E,,;,==V,.;,) and r;,
the equilibrium distance of the gas-phase dimer. From mini-
mization of the potential (11) with respect to the solid-state
distance 5 we obtain

le 1/6
rgfinz(L_é> T'min> (12)

where r,,;,, is the minimum distance of the two-body poten-
tial. This gives the Lennard-Jones ratio of nearest-neighbor

PHYSICAL REVIEW B 73, 064112 (2006)

distances of ,,;,/r>5 =(Lg/Ly,)""® between the solid state and
the rare-gas dimer in the gas phase. For an fcc lattice we get
Find 755 =1.0296. This ratio is exactly obtained from our
solid-state calculations as shown in Table III. Moreover, the
ratio rmm/rmm changes only little for all potentials and rare-
gas elements applied. From the well-known relation
Fonind Trs=2"° we get rpg<rSs <r,... Using Egs. (11) and

(12) we get, for the two-body cohesive energy,
(13)

For an fcc lattice we get Eg)h/ E,;,=8.6093. Here all poten-
tials are below the ideal Lennard-Jones value which implies
that the Lennard-Jones potential overestimates cohesive en-
ergies (if E,,;, corresponds to the exact dissociation energy of
the gas-phase dimer). The bulk modulus for the fcc and hep

lattices can also be obtained from Eq. (8),%

2L 5/2E
B= L12< 6) ;nm, (14)
Lia/ 1
which gives, for example, By, =3.1283X 10°E,,,;,,/

ro. [kbar], where E,,;, and r,,;, are given in atomic units. For
the Lennard-Jones system of He we derive 6.16 kbar, in per-
fect agreement with our numerical value derived from Eq.
(8), Table III.

More accurate two-body cohesive energies, lattice con-
stant, and bulk modulus for the lattices can now be obtained
by minimizing Eq. (9) with respect to 5. The results are
given in Table IV and can be compared to the numerical
results in Tables II and III, which demonstrates that
N~ 100 000 atoms in our simulations is of sufficient numeri-
cal accuracy. Moreover, compared to the results of Stoll and
co-workers'*?? we see that the performance of the more ac-
curate two-body potentials is excellent. We mention that the
tiny distortion in the hep structure resulting in a not ideal ¢/a
ratio of y8/3 in the lattice constants leads to an insignificant
change in the cohesive energy and can be neglected. We see
rather small deviations between the analytical and simulated
results for the lattice constants, cohesive energies, and bulk
moduli (compare values in Tables II-IV), which, however,
do influence the small differences in energy between the hcp
and fcc structures (compare the AE),,x. values in Tables III
and IV). Hence, for discussing such small energy differences,
the extended Lennard-Jones potential (2) becomes quite use-
ful.

The question arises whether or not a physically relevant
two-body potential can stabilize the fcc over hcp structure,
which was discussed intensively in the 1960s.>® The results
in Table II clearly demonstrate that all potentials favor hcp
over fce (if we neglect the ZPVE). Hence it seems that the
original suggestion by Kihara and Koba®? that hcp is favored
over fcc for all relevant two-body potentials is correct. For
the LJ potential this is easy to prove.®?* The difference in the
Lennard-Jones-Ingham coefficients for fcc and hep is shown
in Table VII. If we subtract the cohesive energies of both
structures according to Eq. (11), we obtain the condition for
fcc and hep being energetically degenerate as a function of
the nearest-neighbor distance,?*
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TABLE III. Bulk moduli B (in kbar), minimum solid state distance r>5

PHYSICAL REVIEW B 73, 064112 (2006)

(from Table II), two-body equilibrium bond distance r,,;,,

min

hard-sphere radius ryg (in A), and ratio between the cohesive energy E.,, (Table II) and the two-body dissociation energy E,,;, for the fcc
lattice using various two-body potentials. The difference in cohesive energy between the fcc and hep lattices AE . pcp=Ejee—Ejep s also

shown (in cm™).

Element Potential Ref. B rrsnsin Tmin rus Pomin’ rfnsin E.ou/ E in AEfccinep
He SFRP 45 4.61 2.979 3.050 2.702 1.0240 7.540 —-0.0076
PD 66 4.56 2.966 3.032 2.687 1.0222 7.212 —-0.0056
JA 67 5.82 2.896 2.965 2.639 1.0238 7.987 —-0.0080
LJ 79 6.16 2.867 2.952 2.630 1.0296 8.610 —-0.0071
Ne CTb 46 19.94 3.034 3.099 2.770 1.0213 7.920 -0.022
G 69 20.09 3.031 3.096 2.767 1.0213 7.908 —-0.022
LD 70 19.83 3.075 3.140 2.808 1.0210 8.217 -0.015
AS 68 20.02 3.025 3.091 2.759 1.0219 7.859 -0.025
E 71 15.44 3.108 3.174 2.838 1.0214 7.897 -0.039
LJ 79 17.11 3.040 3.130 2.789 1.0296 8.610 -0.015
RPFS? 14 and 22 19.9 3.039 3.105 — 1.022 7.823 -0.029
Ar CTb 46 36.36 3.700 3.778 3.373 1.0210 7.853 -0.088
LD 70 32.86 3.682 3.768 3.354 1.0234 7.897 -0.085
A 72 37.02 3.681 3.757 3.350 1.0207 7.722 -0.093
SKB 73 36.72 3.695 3.771 3.365 1.0206 7.732 -0.091
MS 74 46.18 3.679 3.761 3.405 1.0223 7.961 -0.136
BP 75 36.34 3.685 3.757 3.341 1.0195 7.555 -0.121
LJ 79 32.26 3.726 3.837 3.418 1.0296 8.610 -0.061
RPFS?* 14 and 22 37.5 3.686 3.795 — 1.021 7.753 -0.094
Kr T 47 40.48 3.973 4.051 3.616 1.0194 7.653 -0.130
HC 76 42.17 3.939 4.023 3.582 1.0214 7.784 -0.128
MS 74 43.32 3.926 4.007 3.573 1.0204 7.692 -0.078
ASP 78 42.15 3.928 4.011 3.579 1.0213 7.792 -0.127
AS 78 42.25 3.926 4.008 3.571 1.0210 7.724 -0.130
SKB 73 40.60 3.957 4.038 3.602 1.0206 7.623 -0.142
LJ 79 41.95 3.936 4.052 3.610 1.0296 8.610 -0.093
RPFS? 14 and 22 41.7 3.982 4.065 — 1.021 7.730 —-0.134
Xe MS 47 46.51 4.268 4.362 3.890 1.0220 7.751 -0.127
AS 78 46.80 4.278 4.363 3.892 1.0199 7.663 -0.186
SKB 73 41.85 4.336 4.421 3.944 1.0195 7.623 -0.174
LJ 79 35.67 4.421 4.552 4.055 1.0296 8.610 -0.113
RPFS? 14 and 22 46.2 4.320 4.409 — 1.021 7.688 -0.187

aThe RPFS results of Rosciszewski er al. (Ref. 14) are two-body contributions from CCSD(T) results.

"Using Eq. (2) to fit the potential.

12 6
p (rmi“> —D(rmin) =0 with D, =L/" - L}
2 12 rSS 6 rSS n n n

(15)

which gives the critical distance rfs,
ss_ (D 1/6 B LJéCCDlz 1/6 o o
rc - D6 Vmin = D6L)1‘¢2¢ rmin' ( )

This gives r°=0.8923//¢  This distance is below the
nearest-neighbor distance of the solid. Moreover, for

5> rf the hep structure is lower in energy, completing our

proof. Koba and Kihara demonstrated that potentials revers-
ing this trend are unphysical.®?

The cohesive energy difference between the hcp and fec
structures is shown as a function of the nearest-neighbor dis-
tance in the solid in Fig. 5, which qualitatively is identical to
what is predicted from a LJ potential. The distances where
the hep structure is lowest in energy compared to the fcc
structure is 2.691 A for He, 2.606 A for Ne, 3.184 A for Ar,
and 3.414 A for Kr, Fig. 5. For Ne, Ar, and Kr these dis-
tances are significantly below the equilibrium solid-state val-
ues as expected. It is therefore interesting to ask if at certain
pressures a phase transition from fcc to hep can be achieved.
However, even at these small distances we get rather small
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TABLE 1V. Analytically derived lattice constants a (in A), cohesive energies E,,;,, bulk moduli B (in kbar), and differences in energy

between the fcc and hep structures, AEf.q/nep=Efee=Epep (in cm™!), using the two-body potential (2) for three different lattices obtained from
Eq. (9). For the lattices we have a=b, and for hcp we fixed the ratio a/c=v8/3. The references for the potentials are given in Table IIL

Element Potential Structure a=b c E.. B AEfeeinep
He SFR hep 2.9789 4.8645 56.029 4.611 -0.0077
fce 4.2128 4.2128 56.021 4.609
bee 3.3652 3.3652 53.736 4.327
Ne CT hep 3.0338 4.9541 226.746 19.921 -0.0293
fce 4.2904 4.2904 226.716 19.918
bee 3.4311 3.4311 215.560 18.361
Ar CT hep 3.7004 6.0427 761.660 36.343 —-0.1031
fce 5.2332 5.2332 761.557 36.338
bce 4.1830 4.1830 724.750 33.517
Kr T hep 3.9732 6.4882 1036.398 40.462 —-0.1483
fce 5.6190 5.6190 1036.249 40.455
bee 4.4907 4.4907 985.354 37.270

energy differences for AEy.. ., (in cm™): 0.0098 for He,
0.052 for Ne, 0.185 for Ar, and 0.271 for Kr. These values
are below the difference in zero-point vibrational energies
between both structures, which favors fcc as we shall see.
Moreover, at rather short distances (high pressures) AEj, /.,
changes sign as expected (Fig. 5); that is, fcc becomes the
preferred arrangement. Hence, it is clear that it will be almost
impossible to achieve a phase transition from fcc to hep, and
there is no experimental evidence of any phase transition
under high pressure except for He and Xe.®* However, a
previous linear muffin-tin orbital study by McMahan sug-
gested a phase transition from fcc to hcp at pressures of
<230 GPa.®> We will discuss this in more detail for Ar since

at such high pressures three-body interactions become im-
portant. For He, however, the situation is entirely different.
Here we have only very small energy differences between
fcc and hep at distances down to 2.39 A. In the low-pressure
range He prefers the hep structure.*!

We finally note that the nearest-neighbor distance r

. in
min
the bee structure is smaller compared to fcc or hep; the latter
2T T
IR —_
1638 L e e
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FIG. 5. Difference between fcc and hep cohesive energies for

He, Ne, Ar, and Kr as a function of the nearest-neighbor distance in
the solid.

ones show almost equal distances. Hence the ratio in the
volume between both structures is much smaller than ex-
pected; i.e., for Ar we have V;../V,..=1.0215 (the ideal ratio
is V¥32/27=1.0887). There is also a small bcc phase which
appears in the (P, T) phase diagram of He.® It is evident that
under higher pressure a phase transition occurs from bcc to
the more compact hcp or fcc phase.

C. Three-body corrections for Ar

It was already pointed out by Lombardi and Jansen®” that
the three-body contributions to the interaction potential are
important. In the following, we only consider argon for the
discussion of three-body effects. We mention, however, that
we also looked at the Ne three-body potential of Ermakova
et al.”' However, this potential is attractive in the long-range
region and the fcc lattice constant therefore decreases from
4395 A to 4365 A in contradiction of the more accurate
solid-state results of Rosciszewski et al.,'* where the lattice
constant increases by 0.019 A. In Table VI below, we have
the optimized lattice constants for both the fcc and hep struc-
tures. Our results clearly support the conclusion of Roscisze-
wski et al.'* that three-body effects will not stabilize the fcc
over the hcp structure.

The solid-state interaction curve including the three-body
potential is shown in Fig. 6, and the corresponding density-
pressure relationship is shown in Fig. 7. Here the pressure is
obtained numerically using as a change of the internal energy
with respect to the volume of the unit cell. At low pressure
both curves obtained from two- and two-plus-three body in-
teractions are very close to the experimental curve.®* The
small but systematic error in this low-pressure region comes
from the density at zero temperature and pressure. From ex-
periment we have 1.7710+0.0001 g/cm?. Our two-body po-
tential at the minimum distance gives 1.8514 g/cm?’. Taking
three-body effects into account we get 1.8123 g/cm?, in

much better agreement with experiment. The remaining error
is due to inaccuracies in the two- and three body potentials,
the neglect of higher than three-body interactions, and zero-
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FIG. 6. Two- and three-body contributions for the interaction
potential of solid Ar.

point vibrational effects. If we correct for these by shifting
the curve to the experimental density, we get almost perfect
agreement with experiment.

More interesting is the high-pressure region.®® Under high
pressure (small distances) three- and higher-body terms be-
come more important as discussed above. It is perhaps useful
to give a rough estimate when such interactions cannot be
neglected anymore. For the Lennard-Jones solid we can es-
timate when the repulsive region starts by using E.,;,=0 in
Eq. (11). This gives the solid-state hard-sphere radius

s ﬂ 1/6 |
rHS_ 2L(, Fmin» (7)

and not surprisingly, there is only a factor of 2!/ difference
between ryg and 75, . This gives rys=0.86537,, and ac-
cording to Fig. 3 three-body contributions from Ne to Kr
contribute to roughly 10% to the total energy. If we take this
as the onset of the importance of three-body interactions, we
can estimate the pressure required to reduce the nearest-
neighbor solid-state distance to ry,

52
‘?Vim ~ 2”2Ecah _ EminL6
v (rif?)3 L?/Zz rmin)3

P=-

where v is the volume per particle for a fcc lattice. This gives
about 6 GPa for Ne, 15 GPa for Ar, and 20 GPa for both Kr
and Xe using experimental values for the bulk moduli.?-*?
Figure 7(a) nicely shows that three-body effects start to be-
come important at around 15 GPa, the point where the two-
body curve starts to deviate from the experimental values.
Even more interestingly, we see deviations between the two-
plus-three body curve and the experimental line at 30 GPa,
the region where higher than three-body effects start to be-
come important. However, in this region all known two-body
curves deviate substantially, often by a factor of 2. Our po-
tential was fitted to distances down to about 3 A, giving
accurate values only up to 30 GPa. The Aziz two-body po-
tential which gets the repulsive wall from Hartree-Fock and
experimental data is also shown in Fig. 7(a). This potential
lies slightly above the experimental curve, but follows the
line closely up to 100 GPa. The Lennard-Jones curve is
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FIG. 7. (a) Top: Density of solid argon versus pressure for two-
and two-plus-three-body interaction potentials. Experimental curve
from Ref. 64. (b) Bottom: Energy change for solid argon with in-
creasing pressure.

clearly not designed for the repulsive region as Fig. 7(a)
shows. Figure 7(b) also shows the difference in energy be-
tween fcc and hep up to 80 GPa including three-body effects.
At higher pressures the hep energy curve is always above the
fce curve as found for the two-body case (Fig. 5); thus, up to
this pressure range there seems to be no phase transition
taking place. Of course, this analysis neglects vibrational and
higher than three-body effects. We argue that more accurate
two-body potentials for the short range are needed to discuss
the high-pressure range.

D. Clusters

The rather tiny energy differences between the fcc and
hcp structures do not explain why experimentally only the
fcc structure is observed for Ne and all other heavier rare-gas
elements, even though inclusion of the zero-point vibrational
energy finally brings the solid to the fcc structure. We there-
fore looked at growth patterns of rare-gas clusters. Figure 8
shows a comparison of dissociation energies (per atom) for
the global minimum cluster structures (“icosahedral” growth
pattern) as well as fcc and hep structures using our two-body
potentials as shown in Eq. (2) with the parameters in Table I.
Here we take the exact two-body summation for finite sys-
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FIG. 8. Cluster dissociation energies per atom as a function of
the number of atoms N. For comparison the corresponding opti-
mized clusters kept in fcc and hep solid-state symmetry and zero-
point vibrational energies are also shown. The corresponding calcu-
lated cohesive energy is shown as a dashed line at the top of the
graph. For Ar we include the energies obtained from Eq. (5) which
does not include surface effects and converges much faster towards
the exact two-body cohesive energy (curve closest to the cohesive
energy line).

tems including the high-energy surface effects. To keep these
surface effects as small as possible, however, the cluster
growth for the hep and fec structures is in form of shells with
equal nearest-neighbor distances, such that the overall struc-
ture is relatively compact and almost spherical, and close to
the Lennard-Jones type global minimum structures; see Fig.
9.

The per-atom dissociation energies of the optimized rare-
gas clusters all follow similar qualitative trends, Fig. 8. There

PHYSICAL REVIEW B 73, 064112 (2006)

FIG. 9. The (a) fcc, (b) hep, and (c) global minimum LIJ-type
structures of Ar;9 for comparison.

is a rapidly increasing stabilization range for the smallest
cluster sizes followed by a very slow but monotonous trend
towards the asymptotic cohesive energy. For argon we show
for comparison the energies calculated from Eq. (5) which
gives a much faster convergence towards the solid state as
surface effects are not included, Fig. 8. We mention that
at a size of 5000 particles we obtain a much reduced
E,,;,=685.0 cm™' and B=32.7 kbar for the fcc lattice of Ar
using Eq. (1) for the two-body potential. This demonstrates
that surface effects are still large at this size.

The atomic binding energies AE(N)=E(N)-E(N-1) also
follow a trend which is qualitatively similar for all the rare
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FIG. 10. Atomic binding energies AE(N)=E(N)-E(N-1) for
Ar as a function of the cluster size N.

gases, but show some deviations from the corresponding
trend for the LJ clusters as can be seen in Fig. 10 for Ar. For
instance, there are few differences in some of the magic
numbers predicted using the LJ potential and the LJ-
modified potentials for this work; at sizes like 116, we find a
minimum (particularly pronounced for the cases of argon and
krypton) that does not occur for the LJ clusters, while at
N=135 we do not find the magic structure that is so con-
spicuous for LJ clusters. The trends of the AE(N) are also
slightly different in the qualitative behavior in a few other N
ranges. When comparing the AE(N) trend for our argon clus-
ters with that from the calculations by Naumkin and Wales®
performed for the same clusters but using the Aziz
potential,”> we see a complete correspondence of the trends
for all cluster sizes for which data are available (N<55).

On the energy scale shown in Fig. 8 the fcc and hcp
per-atom dissociation energies are very close to the energies
of the global minimum structures. Figure 11 clearly shows
that the differences between the global minima (GM) clusters
and the fcc or hep structures are quite small with increasing
cluster size. In fact, in this range (N< 150) the smallest en-
ergy difference is obtained for R;y; for example, for Ar;9 we
have Ep.—Egy=1.9 cm™!, whereas for hcp the smallest
value in this range is obtained for Ar;s and for Aryy; with
Epp—Egy=94 and 10.4 cm™!, respectively. These values
will get smaller for larger cluster sizes to a point where we
have possible transitions to the fcc solid-state structure. To
simulate this transition is a challenge for future work. Figure
12 shows fcc versus hep for clusters up to 5000 atoms. At
this large cluster size the convergence towards the more
stable hcp structure (neglecting zero-point vibrational and
higher many-body effects) is not evident. There are cluster
size regions where the fcc structure is the most stable one.
This is clearly a surface effect, but also demonstrates that at
a certain cluster size the transition to the fcc structure is
energetically preferred.

We mention that the largest distance from an atom to the
center of mass increases with N in steps, which is related to
building a shell structure of the cluster. The formation of a
new step for the maximal distance occurs at the next higher
cluster size after the occurrence of a magic number in most
of the cases. On the other hand, the minimal radius (nearest-
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FIG. 11. Difference between the global minimum structures and
fcc and hep structures for He, Ne, Ar, and Kr as a function of the
cluster size.

neighbor distance) follows a complex trend with no clear
relationship to the shell formation.

From plotting the dissociation energy per atom against
N~'73 we obtain from an extrapolation to N— o, the cohesive
energies of 55.2 cm™!, for He, 219 cm™" for Ne, 735 cm™!
for Ar, and 1003 cm™! for Kr, Fig. 13. This is in rather good
agreement with the exact two-body energies shown in Table
IV, which demonstrates that the N~'/3 law is rather well ful-
filled for cohesive energies.

E. Zero-point vibrational energy from the bulk

Considering the harmonic ZPVE’s, the classical cluster
description could be considered a good approximation for
the argon and krypton clusters, but less appropriate in the
case of neon for which the ratio of the ZPVE to the binding
energy goes from 1/2 to about 1/3 when N increases to-
wards the bulk. This behavior agrees with the results of the
studies already mentioned about the quantum delocalization
in rare-gas clusters. The cluster and solid-state calculations
of helium clusters performed for the sake of comparison®
also support this view, as the harmonic ZPVE’s were found

104

Encp — Etec {cm-T)

T T T T
Y] 1000 2000 3000 4000 N 5000

FIG. 12. Difference between fcc versus hcp interaction energies
as a function of cluster size N.
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FIG. 13. The cohesive energy and zero-point vibrational energy
as a function of N™!/3. The linear fit AE=aN~'"3+b shows the ex-
trapolation towards N — . For details see text.
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to be above the corresponding dissociation energies regard-
less of the cluster size and up to the bulk. Here anharmonic-
ity effects lead to an increase of the ZPVE by as much as
23%, Table V. Hence at the optimized two-body lattice con-
stant solid He remains on the repulsive part of the potential
energy surface, and a geometry optimization including both
harmonic and anharmonic vibrational effects leads to a large
expansion of the bulk up to a point where the diagonal force
constants become zero (at 4.9 A). At this point the perturba-
tive treatment of anharmonicity effects completely fails and
the position of the He atom in the fixed bulk lattice environ-
ment becomes unstable; that is, the system breaks symmetry.
These results are consistent with the findings of Glyde.*!
This explains why high pressure is needed to solidify He. For
Ne the situation changes and stable lattice parameters are
obtained. For example, using the Cybulski-Toczylowski two-
body potential*® we obtain a change in the fcc lattice con-
stant of Aa=0.179 A, due to harmonic ZPVE contributions
within the Einstein approximation, and Aa=-0.012 A from
additional anharmonicity effects. Although all calculated
ZPVE values are to be corrected by more precise anharmo-
nicity and additional nonadditive terms, the predicted mag-
nitudes of the delocalization effects decrease with atomic
number and cluster size in accordance with the outcomes of
previous studies. We mention that He, is well known to just
accommodate one vibrational level.”” Therefore anharmonic
corrections together with other well-known contributions
(relativistic effects, non-Born-Oppenheimer effects, etc.) are
crucial for the correct description of these systems.

Table V compares both frequencies obtained from the
simple Einstein approximation and the more accurate
coupled harmonic treatment taking the full two-body force

TABLE V. Zero-point vibrational energy (in cm™') calculated by using the Einstein model from moving the central atom in the field of
all other fixed atoms (E). Anharmonic value from a numerical solution of the vibrational Schrodinger equation for case (E). Fully coupled
harmonic solution from a harmonic frequency analysis (C). The cluster values are obtained from an extrapolation as shown in Fig. 14.
AE;. i denotes the energy difference between the fcc and the other solid state structures (hep or bec). wp,, is the maximum phonon
frequency. Debye frequencies are from Refs. 2 and 80. For helium the isotope is chosen; otherwise, standard mean atomic masses are used.
The frequencies are calculated at the crystal structures obtained from two-body forces as shown in Table IV.

Atom E-harm. E-anharm. C-harm. Debye Ref. 14 AEfeerss Wax
He hep 77.35 17.9 74.27 0.79 74.50
fcc 77.34 17.9 73.48 74.62
bce 76.65 17.8 70.75 26.5 -2.73 74.77

cluster 76.2
Ne hep 71.76 3.90 68.98 0.69 68.82
fcc 71.76 3.90 68.29 52.1 46.7 68.90
bce 70.72 3.85 65.15 -3.14 69.02

cluster 70.1
Ar hcp 76.10 1.22 73.15 0.74 72.98
fcc 76.09 1.22 72.41 72.7 63.3 73.09
bee 74.97 1.19 69.08 -3.33 73.15

cluster 74.1
Kr hep 57.38 0.55 55.17 0.50 54.99
fcc 57.38 0.48 54.62 56.0 47.1 55.09
bee 56.49 0.47 52.04 -2.69 55.12

cluster 56.2
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field into account. The Einstein approximation leads to
ZPVE’s (E pyp=3wg/2 where wy is the Einstein frequency)
which are overestimated by 2—4 cm™! as one expects.”® In-
terestingly, the extrapolated ZPVE’s from cluster calcula-
tions are in very good agreement with our more accurate
solid-state results. We also list the maximum phonon fre-
quency w,,,, and anharmonicity effects in Table V. As one
expects, anharmonicity effects become smaller with increas-
ing mass of the rare-gas atoms, and already for argon such
effects become relatively small and may therefore be ne-
glected. Moreover, anharmonicity effects will not contribute
significantly towards the energy difference between the fcc
and hcp structures, in agreement with the results obtained for
Ar by Lotrich and Szalewicz.'> We mention that for better
comparison with our cluster results, the values in Table V are
obtained at the lattice structures optimized by using two-
body potentials only. The ZPVE corrections are therefore
larger compared to the results of Rosciszewski et al.'* Nev-
ertheless, our results show that for all rare gases the coupling
between the harmonic modes is responsible for fcc being
more stable than hcp, as the Einstein approximation leads to
insignificant energy differences. Hence, one cannot simply
multiply the Einstein frequencies by the factor of
C=115/16 derived from Domb and Salter” to obtain reli-
able energy differences for the ZPVE between fcc and hcp,
which explains the small differences in ZPVE’s obtained by
Lotrich and Szalewicz.'? Our analysis, of course, neglects
three-body effects for the cohesive energy, which we analyze
for argon in more detail. The question also arises if
N,;»=5000 atoms for the vibrational analysis is sufficiently
large. Figure 14 shows a relatively slow convergence of the
ZPVE with the dimension of the force field matrix chosen
for Ar. An N~'/3 extrapolation®’ leads to a ZPVE contribution
of 63.5cm™!, in excellent agreement with Rosciszewski
et al. (63.3 cm™!).!* This compares to 63.8 cm™! for N,
=5000. In comparison, the Debye frequency 72.7 cm™!
(Table V) is overestimated.> Another interesting result
from the coupled-harmonic calculations is that we have
wp=2w,,,/3 for all rare-gas elements.

For argon accurate experimental values for the fcc lattice
constant a (5.311 A), cohesive energy E., (646.1 cm™),
bulk modulus B (26.7 kbar), and maximum phonon energy
(67.1+0.05 cm™" at 10 K) (Ref. 98) are available. These
compare well with our results for the (2+3+C) case as
shown in Table VI—i.e., a=5.331 A, E_,=645.0 cm™', B
=27.7 kbar, and ®,,,,=61.8 cm™'—and are also close to the
theoretical results of Rosciszewski et al.'* We also mention
that the anharmonicity effects obtained for argon by Lotrich
and Szalewicz!> at the experimental lattice constant
(1.0 cm™") are comparable to our value (1.2 cm™'). Taking
this into account we obtain a cohesive energy of 643.8 cm™!,
2.3 cm™! below the experimental value. Most of this devia-
tion originates from the two-body potential we used which
gives a potential depth of 97.0 cm™! (Table I) compared to
the estimated value of 99.6 cm™!.68.7299

The extrapolated cluster zero-point vibrational energies
are a few cm™! above the coupled phonon solid-state treat-
ment. This could suggest that vibrational effects cannot be
neglected in the discussion of a phase change from icosahe-
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FIG. 14. The zero-point vibrational energy (ZPVE) and maxi-
mum phonon frequency w,,,, for fcc argon in the harmonic approxi-
mation as a function of cluster size N. The N atoms used for the
vibrational analysis are embedded in a cluster of ca. 130 000 atoms
kept in fcc symmetry. The dashed line shows the linear fit
Aw=aN~"3+b with extrapolation towards N—o for the ZPVE.
Calculations are done at the experimental structure (see Table VI).

dral to fcc with increasing cluster size, but this has to be
investigated in more detail.

Finally, we can address the problem of the fcc versus hcp
packing for realistic two-body potentials. A N~'3 extrapola-
tion for the fcc and hcp lattices at the experimental lattice
parameters (using the same minimal distances for hcp com-
pared to fcc) gives a difference of 0.67 cm™! for the ZPVE
and 0.35 cm™' for w,,,. Hence, the results by Rosciszewski
et al. are now confirmed,'* and the original argument by
Jansen that three-body effects are responsible for the phase
change?® is incorrect. A (2+3)-body optimization (Table VI)
for argon including the ZPVE from the Einstein approxima-
tion does not lead to a preference for the fcc structure. We
note that the lattice parameters are significantly influenced
by ZPVE effects even for a heavy element like argon, while
anharmonicity effects only lead to minor changes. In any
case, the Einstein approximation leads to lattice parameters
which are only slightly overestimated. As vibrational effects
become less important with the increasing mass of the atom,
the energy difference between fcc and hep becomes smaller
as well; see Table V.
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TABLE VI. fcc and hep lattice constants a (in A), cohesive energies E,,;, (in cm™) bulk moduli B (in
kbar), and differences in energy, AE.nep=Efec—Epep (in cm™), for Ar, using the analytical form of the
Cybulski-Toczylowski two-body potential and the Lotrich-Szalewicz three-body contributions from a simu-
lation of 50 000 atoms. 2+E denotes the use of a two-body potential including the harmonic zero-point
vibrational energy (ZPVE) correction applying the Einstein approximation. A denotes that anharmonicity
effects are included. 243+ C denotes two- and three-body potentials including the harmonic ZPVE from a
simulation of moving 5000 atoms in the field of over 200 000 atoms.

Struct. Method a=b E.op B* AEfeeinep
hep 2 3.7006 6.0419 761.635 36.3
2+E 3.7433 6.1115 689.136 28.5
2+AE 3.7427 6.1107 687.857 28.6
2+C 3.7408 6.1086 691.763 30.8
2+3 3.7273 6.0867 709.914 34.8
2+3+EP 3.7724 6.1603 642.093 28.0
2+3+CP 3.7702 6.1567 644.463 27.6
fee 2 5.2332 5.2332 761.534 36.3 -0.101
2+E 5.2936 5.2936 689.040 28.5 -0.096
2+AE 5.2929 5.2929 687.761 28.5 -0.096
2+C 5.2798 5.2798 692.272 30.9 +0.509
2+3 5.2712 5.2712 709.903 34.8 -0.011
2+3+E 5.3350 5.3350 642.072 27.8 -0.021
2+3+C 5.3305 5.3305 644.964 27.7 +0.501
2+3¢ 5.249 5.249 714.7 33.6 -0.070
2+3+C° 5.311 5.311 645.9 27.9 +0.62
Expt.d 5.311 5311 646.1 26.7

#The last digit of the bulk modulus may vary with the degree of the polynomial applied in the numerical fit
procedure, that is the numerical accuracy of the three-body interaction and the phonon branches are not
accurate enough to the third digit. Both contributions show very large gradients with a very small curvature

with respect to the lattice constants.
balc=8/3 is used.

“Results from Rosciszewski ef al. (Ref. 14).
dExperimental values from Refs. 100 and 101.

IV. CONCLUSION

Much work has still to be done for constructing accurate
two- and three-body interaction potentials for the rare gases.
Solid-state calculations will be of great use in the future de-
termination of the accuracy of such potentials, which can be
further used in cluster simulations. It is also clear that more
work is needed in correctly describing the repulsive region
from first-principles quantum theoretical methods. Moreover,
for the heaviest rare-gas systems Kr and beyond currently
available two-body potentials are not very accurate, often
missing important effects like spin-orbit coupling. We dem-
onstrated that the extended Lennard-Jones ansatz is very use-
ful for obtaining analytic values for solid-state properties.
The rare-gas problem has now been solved for the many-
body expansion, and the previous conclusions drawn by Bar-
ron and Domb,?* and more recently by Rosciszewski et al.,'*
can be confirmed. For Xe we expect much lower zero-point
vibrational energy contributions and it is therefore of no sur-
prise that an intermediate pressure range is found for a fcc to
hep phase transition.3* To correctly describe the phase dia-
grams by theoretical methods for such systems remains a
challenge in computational physics.
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APPENDIX

The Lennard-Jones-Ingham lattice coefficients L,
are listed in Table VII from m=4 to m=30 (note that L,
= for m<3) to computer accuracy for the simple cubic
(sc), body-centered-cubic (bcc), face-centered-cubic (fcc),
and hexagonal closed-packed (hcp) lattices. The following
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TABLE VII. The dimensionless Lennard-Jones-Ingham lattice coefficients L,, from m=4 to m=30 for the simple cubic (sc), body-
centered-cubic (bcc), face-centered-cubic (fcc), and hexagonal-closed-packed (hep) lattices.

sc bee fcc hep Lhev_pfec
L, 1.6531489(+1) 2.2637791(+1) 2.5337110(+1) 2.5337926(+1) 8.1160(—4)
Ls 1.037752479070(+1) 1.475850933310(+1) 1.696751839999(+1) 1.696843628985(+1) 9.17889865(—4)
Lg 8.40192397482537(+0)  1.22536678672899(+1)  1.44539210437416(+1) 1.44548972778391(+1)  9.76234097517903(—4)
L,  7.46705778091867(+0) 1.10542434792442(+1)  1.33593877007417(+1) 1.33603467761953(+1)  9.59075453534908(—4)
Lg  6.94580792722634(+0) 1.03551979084025(+1)  1.28019372313780(+1) 1.28028218528098(+1)  8.84621431787025(-4)
Ly  6.62885919888677(+0) 9.89458965632110(+0)  1.24925467021375(+1) 1.24933217250017(+1)  7.75022864223374(—4)
Ly 6.42611910253308(+0) 9.56440061535995(+0)  1.23112456654774(+1) 1.23118962338190(+1)  6.50568341587388(-4)
Ly 6.29229449923457(+0)  9.31326253739910(+0)  1.22009203512771(+1) 1.22014470998319(+1)  5.26748554824152(—4)
L, 6.20214904504752(+0)  9.11418326807536(+0) 1.21318801965446(+1)  1.21322937690989(+1)  4.13572554348818(—4)
Lz 6.14059958002169(+0) 8.95180731857472(+0)  1.20877263213521(+1) 1.20880425502984(+1)  3.16228946392272(—4)
L;y 6.09818412571215(+0)  8.81677022848592(+0)  1.20589919443509(+1)  1.20592282550682(+1) 2.36310717385280(—4)
L;s  6.06876429503889(+0)  8.70298455998093(+0)  1.20400240550991(+1) 1.20401971443472(+1)  1.73089248132641(-4)
Lis  6.04826346958584(+0)  8.60625404754453(+0)  1.20273548440186(+1) 1.20274794193038(+1)  1.24575285282091(—4)
L;;  6.03392931636721(+0)  8.52353125043930(+0)  1.20188094367105(+1) 1.20188977196229(+1)  8.82829124062567(-5)
L;g  6.02388170786671(+0) 8.45250316860838(+0)  1.20129983096660(+1) 1.20130600231774(+1)  6.17135114513445(-5)
Lo 6.01682545633174(+0)  8.39135079141312(+0)  1.20090196044393(+1) 1.20090622241112(+1)  4.26196718859018(-5)
Lyy 6.01186283088995(+0) 8.33860400567956(+0)  1.20062800413263(+1) 1.20063091581147(+1)  2.91167883172960(-5)
Ly;  6.00836875754668(+0)  8.29305037041529(+0)  1.20043848093623(+1) 1.20044045100848(+1)  1.97007224667089(-5)
Ly,  6.00590652613429(+0) 8.25367521808478(+0)  1.20030685693229(+1) 1.20030817842333(+1)  1.32149103748702(-5)
Ly;  6.00417024007075(+0)  8.21962053488365(+0)  1.20021514909747(+1)  1.20021602867393(+1)  8.79576460555143(-6)
Lyy  6.00294520818413(+0) 8.19015547548316(+0)  1.20015108249397(+1) 1.20015166385770(+1)  5.81363733509477(-6)
Lys  6.00208052037491(+0)  8.16465435192733(+0) 1.20010622787093(+1)  1.20010660971420(+1)  3.81843278418614(—6)
Lys  6.00146997249609(+0) 8.14257961592080(+0)  1.20007476748977(+1) 1.20007501686245(+1)  2.49372675575898(—6)
Ly,  6.00103875223831(+0)  8.12346831587279(+0)  1.20005266902122(+1)  1.20005283104285(+1)  1.62021633975939(-6)
Ly 6.00073412107079(+0)  8.10692107103872(+0)  1.20003712775531(+1) 1.20003723253224(+1)  1.04776932907669(—6)
Ly  6.00051887921221(+0)  8.09259293837612(+0)  1.20002618714474(+1) 1.20002625461501(+1)  6.74702711478403(-7)
L3y  6.00036677489718(+0) 8.08018574990617(+0)  1.20001847900598(+1) 1.20001852228518(+1)  4.32791969373625(-7)
L., ©6 8 12 12 0

formulas were used, which are often incorrectly given in the
literature:2

L= X

8 —m/2 1 2
(i2+j2+ij+—k2) + (i+—)
i.jke 21(0,0,0) 3 ijkeZ 3

b)) sl T

L= X (P42, (A1)
i,j.k e 21(0,0,0) (A4)
~\m ) ) Here Z denotes all positive and negative integers and
bec V3 s ! 1 Z\(0,0,0) denotes that the case i=j=k=0 is excluded. The
L, - L, + E i+- | +|j+=2 L T
2 ijkez 2 2 formulas may be further simplified taking into account the
i symmetry of positive and negative integers. m=4 is a special
ks l) (A2) case, and the sums for the cubic cases can be rewritten in a
2 ’ more practical form using generalized { functions.*® For the

m<3 the series L) is, however, divergent.®! We present a
more straightforward proof. It is sufficient to show that the
first series in L) is divergent. Using the Cauchy integral
criterion it is sufficient to show that the following integral is
divergent:

Le=3 X
i.j.k e 2\(0,0,0)

(212 +j2 + k2)—m/2 _ 21—m/2Lx" (A3)
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f f J (2 +y2+ 22 dr = 47'rf 2 dr.
[1,0) [V3,0)

(AS)

It is clear that the integral diverges for m=3. Hence, the
Lennard-Jones-Ingham lattice coefficients are listed only

PHYSICAL REVIEW B 73, 064112 (2006)

from m=4 onwards as indeed pointed out by Lennard-Jones
in 1924.* We also note the work of Zucker'’> on Madelung
constants for invariant cubic lattice complexes. A compari-
son to his coefficients shows that for the smaller m values
our L coefficients are not converged out to the accuracy
given in the Table, especially for m=8. This will be ad-

dressed in a subsequent paper.

*Electronic address: p.a.schwerdtfeger@massey.ac.nz
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