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Stable pairing states of superfluid 3He in aerogel are examined in the case with a global uniaxial anisotropy
which may be created by applying a uniaxial stress to the aerogel. Due to such a global anisotropy, the stability
region of an Anderson-Brinkman-Morel �ABM� pairing state becomes wider. In a uniaxially stretched aerogel,
the pure polar pairing state with a horizontal line node is predicted to occur, as a three-dimensional superfluid
phase, over a measurable width just below the superfluid transition at Tc�P�. A possible relevance of the present
results to the case with no global anisotropy is also discussed.
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In superconductivity and superfluidity, an intrinsic aniso-
tropy has a profound effect on the resulting pairing state. For
instance, one main origin of the dx2−y2 pairing state in high-Tc

cuprates1 is the fourfold symmetry of the Fermi surface re-
sulting from the crystalline anisotropy. Due to such an intrin-
sic and global anisotropy, a specific pairing symmetry with
the highest temperature of Cooper instability is realized in
the case of anisotropic superconductivity with no degeneracy
between different pairing states. In contrast, the bulk liquid
3He has an isotropic Fermi surface, and hence, there is a
degeneracy in the transition point between different pairing
states at least when the fluctuation is neglected.2,3 Recently,
possible pairing states of superfluid 3He in globally isotropic
aerogels were examined by comparing the free energy in the
Ginzburg-Landau �GL� region between different states, and
it was found3 that, after averaging over the quenched disor-
der brought by the aerogel structure, the pairing states to be
realized are unaffected by the locally anisotropic scattering
events due to the aerogel. However, the situation may change
if, as in the superconducting case mentioned above, a global
anisotropy4,5 is introduced externally in the aerogel structure.

Here, we report on our results of theoretical phase dia-
grams of superfluid 3He in an aerogel with global anisotropy.
Throughout this paper, we assume that such an anisotropy
may be induced in quasiparticle scattering events by apply-
ing an uniaxial stress4,5 to aerogels. Based on a conventional
model6 of effects of aerogel on 3He, the anisotropy can be
incorporated in a momentum dependence of the random-
averaged quasiparticle scattering amplitude. When the aero-
gel is uniaxially compressed, the two-dimensional �2D�-like
pairing state is favored, and the region of the Anderson-
Brinkman-Morel �ABM� pairing state becomes wider. In the
stretched case, a 1D-like pairing state is favored at least near
Tc, and actually the pure polar pairing state should be real-
ized accompanied by a second order transition to a deformed
ABM state at a lower temperature. This is a rare situation in
which a new pairing state is expected to occur as a 3D su-
perfluid phase of 3He. This research was preliminarily re-
ported elsewhere.7

Just as in Ref. 3, we start from the BCS Hamiltonian with
an impurity potential term

Himp =� d3r�
�

��
†�r�u�r����r� , �1�

where u�r� denotes an impurity potential for quasiparticles
brought by aerogel structures. As argued in Ref. 3, the scat-
tering amplitude �uk�2 in an aerogel, where uk is the Fourier
transform of u�r�, should have a highly anisotropic and com-
plicated momentum dependence, reflecting local anisotropy
in aerogels. However, as far as the aerogel is globally isotro-
pic, the local anisotropy is not reflected in averaged quanti-
ties such as �uk�2, where the overbar denotes the average over
the impurity configuration due to the aerogel. On the other
hand, in a globally anisotropic aerogel, �uk�2 remains aniso-
tropic. We invoke the model8

�uk�2 = A�1 + �u�k̂ · ẑ�2� , �2�

where �u is a small parameter measuring the global aniso-

tropy, k̂=k /kF, and ẑ denotes the direction of a uniaxial de-
formation. Although the factor A is a function of k2, such an
isotropic k dependence induces no difference between vari-
ous pairing states, and hereafter, A will be treated as a con-
stant factor. Then, within the Born approximation, the quasi-
particle Green’s function G��p�= �i�−�p−�p�−1 satisfies

�p = �
p�

�up−p��
2

i� − �p� − �p�
, �3�

where � is the fermionic Matsubara frequency, and �p�
=�d3p� / �2��3. Below, we will focus on the situations satis-
fying 2��T	1, where �−1=2�N�0�	�uk�2
k̂ is the relaxation
rate. Taking �p to be purely imaginary and performing the p�
integral close to the Fermi surface, we obtain �p=
−i
p sgn �, where


p =
1

2�
�1 + �̃u�p̂ · ẑ�2� , �4�

and �̃u=�u�1+�u /3�−1. The neglect of the real part, Re��p�,
of �p is safely valid as far as 2��T	1: The p̂ dependence in
Re��p� may be absorbed into an anisotropy of density of
states �DOS�, while such a correction to DOS is scaled by
EF

−1. Hence, the neglected correction to Re��� is of the order
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�u / �EF��, which is smaller than the magnitude of the
particle-hole asymmetry Tc /EF. In this manner, focusing on
the imaginary part of � is justified. Then, G��p� becomes

G��p� = �i���� + 
p�sgn � − �p�−1. �5�

Note that, when �u�0 ��0�, the mean free path of nor-
mal quasiparticles running along the z direction is shorter
�longer�. Thus, the case with �u�0 ��0� corresponds to the
uniaxially compressed �stretched� case.

Besides the self-energy part, the vertex part in the
particle-particle channel is also affected by the impurity scat-
tering. If neglecting spatial variations of the pair field A,i,
the bare vertex p̂i is replaced by �i�� ,p�, where

�i��,p� = p̂i + �
p�

�i��,p���G��p���2�up−p��
2. �6�

The solution of Eq. �6� takes the form �i�� ,p�= p̂i

+ �p̂ · ẑ��̄�ẑi, where

�̄� = − 1 + �1 − 2�
k�1

1

2k + 1
� − �̃u�−1

2��� + �−1k�−1

. �7�

The above expressions will be used to derive a GL Hamil-
tonian per volume hGL in the anisotropic case. Up to O��u�,
its quadratic term is expressed by

hGL
�2� = A,i

* A,j�N�0�
3 �ln

T

Tc0
+ T�

�

�

����i,j

− T�
�
�

p
p̂i� j��,p�G��p�G−��− p��

�
N�0�

3
�ln

T

Tc0
+ ��1

2
+

1

4�T�
 − ��1

2


+
�u

4�T�

1

5
��1��1

2
+

1

4�T�
�A,i

* A,i

+
N�0�

3

�u

4�T�

16

15
��1��1

2
+

1

4�T�
A,z

* A,z, �8�

where ��z� is the di-gamma function, and A,i����T��a,i

with a,i�a,i�*=1. The anisotropic term due to the vertex
correction contributes to Eq. �8� with the same sign as that
due to �p.

The quartic term hGL
�4� is also derived in a similar manner

and, up to O��u�, takes the form

hGL
�4� = �1�A,iA,i�2 + �2�A,i

* A,i�2 + �3A,i
* A�,i

* A,jA�,j

+ �4A,i
* A�,iA�,j

* A,j + �5A,i
* A�,iA�,jA,j

*

+ ���1
�1�A,iA,iA�,z

* A�,z
* + �2

�1�A,i
* A,iA�,z

* A�,z

+ �3
�1�A,iA�,iA,z

* A�,z
* + �4

�1�A,i
* A�,iA�,z

* A,z

+ �5
�1�A,i

* A�,iA,z
* A�,z� + c.c.� . �9�

Each of the coefficients �i is the sum of a weak coupling
contribution �i

�0� and a strong coupling one ��i. Regarding
��i, their expressions with �u=0 derived in Ref. 3 will be

used hereafter. This approximation should not affect calcula-
tion results except for extremely large ��u� values. The coef-
ficients �i

�0� and �i
�1� are given by

�3
�0� = − 2�1

�0� = −
�0�T�
7��3� ���2��1

2
+

1

4�T�


+
�u

4�T�

1

7
��3��1

2
+

1

4�T�
� ,

�2
�0� = �4

�0� = − �5
�0� = �3

�0� −
1

4�T�

�0�T�
7��3� �� 5

18
+

�u

54


���3��1

2
+

1

4�T�
 +

�u

4�T�

1

18
��4��1

2
+

1

4�T�
� ,

�3
�1� = − 2�1

�1� = −
�u

4�T�

�0�T�
7��3�

46

63
��3��1

2
+

1

4�T�
 ,

�2
�1� = �4

�1�

= − �5
�1� = �3

�1� −
�u

4�T�

�0�T�
7��3� �1

9
��3��1

2
+ ac14�T�

+
1

4�T�

4

27
��4��1

2
+

1

4�T�
� �10�

up to O��u�, where �0�T�=7��3�N�0� / �240�2T2�.
As seen in Eq. �8�, the inclusion of a global anisotropy

induces a splitting of the Cooper instability point between
different pairing states. Since ��1��y��0 �y�0�, a uniaxial
compression with positive �u makes the instability point of
2D-like pairing states with vanishing a,z higher, implying
that such a state must be realized just below Tc�P�. This
situation is similar to 3He thin films, and thus, this 2D-like
state should be the ABM state. In the same manner, in the
uniaxially stretched case with negative �u, the 1D-like polar

pairing state with a,i= d̂�i,z tends to occur just below Tc.
However, it is unclear at this stage whether or not the state
just below Tc may be a mixture of the ABM and polar pair-
ing states9 so that the pure polar symmetry obtained at Tc
crosses over upon cooling to the ABM one with no transi-
tion.

It should be noted that, in the disordered case, additional
terms are induced in the GL Hamiltonian by the impurity
scattering and its local anisotropy. When the global aniso-
tropy is absent, a combination of one of the such terms and
the gradient term, which was not represented in Eq. �8�, leads
to destruction of superfluid long-ranged order �LRO� in the
ABM state.3,10 However, the contribution to the free energy
of the additional term is well described simply by incorpo-
rating a disorder-induced shift of Tc into the mean field con-
densation energy Ec.

3 In determining phase diagrams below,
we have followed this finding3 and, for brevity, have used the
disorder-induced Tc shift with �u=0. The latter procedure
does not affect our quantitative results unless all transitions
between different pairing symmetries occur in the close vi-
cinity of Tc.

We have numerically examined transitions between differ-
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ent pairing states through Ec by taking account of Tc shifts of
different origins mentioned above. Since fully including 18
real components of the pair field a,i is cumbersome, nonva-
nishing four components, Re a, and Im az,y, were kept in
calculations so that the familiar ABM, Balian-Werthamer
�BW�, planar, and polar states are taken into account. For
instance, in the uniaxially stretched case, the route through
which only Re az,z and Im az,y remain nonzero is found to be
the most favorable upon cooling from the Cooper instability
of the polar state �see Fig. 2�. Typical examples of the result-
ing phase diagrams for �u�0 �compressed case� and �u�0
�stretched case� are given in Figs. 1�a� and 1�b�, respectively,
where the GL Hamiltonian valid up to O��u

2� was used. In
both stretched and compressed cases, there is no polycritical
pressure �PCP�, i.e., there is a nonvanishing P range of the
ABM state even in the low T limit. For the used � value,
there is no mean field stability region in P�30 �bar� of the
ABM state in the isotropic ��u=0� case. It implies that the
main origin inducing the ABM state in the figures is the Tc
shift and not the strong coupling effect. Further, we have
verified that the planar pairing state cannot overcome the
ABM one in free energy at any P and T and it is not realized
as a pairing state in equilibrium.

In the ABM state in the compressed case, the direction of
gap nodes is pinned on average along ẑ just like in thin films
where the ABM or planar state has a wider stability region.4

An origin of the remarkably wide ABM region in Fig. 1�a�
can be attributed to the similarity to the thin film case. Fur-
ther, due to this pinning effect of l-vector, this ABM state has

a true superfluid LRO in contrast to the quasi-LRO in the
isotropic case.3 On the other hand, in the stretched case �or
equivalently, the case compressed in the cylindrically sym-
metric manner�, the direction of gap nodes in the deformed
ABM state �see Fig. 2� is spontaneously chosen within the
x-y plane. This situation is similar to the bulk 3He in a uni-
form magnetic field which also favors the ABM state. Thus,
the ABM stability region becomes wider even in the
stretched case, although this state is a superfluid glass with
no genuine superfluid LRO.3 Further, in both cases, the BW
state with no gap nodes is deformed by the anisotropy �i.e,
ax,x=ay,y �az,z�.11

An intriguing result in the uniaxially stretched case is the
appearance of the pure polar pairing state, with a horizontal
line of gap nodes in the x-y plane, just below the Tc�P� line.
It appears that the temperature width over which the polar
state is stable will be observable experimentally. Needless to
say, this temperature width is, as well as that of the ABM
state, extended with increasing ��u�. This polar state is not a
mixture with other pairing states and, as in Fig. 2, shows a
second order transition to a deformed ABM state with point
nodes in the x-y plane upon cooling. A Tc-shift dependent on
the pairing states resulting from Eq. �8� is essential to obtain-
ing the pure polar state. Since the direction P̂ of the gap
maximum is pinned by ẑ, this polar state has a true superfluid
LRO.

As a measure useful in detecting the polar state with the

order parameter A,i=�d̂P̂i, a pulsed NMR frequency shift

in the polar state will be considered. Here, P̂ points on aver-

ages to the stretched direction ẑ. Fluctuations of P̂ are as-
sumed to be negligibly small. As usual, effects of the dipole
energy on the spin dynamics can be examined in terms of
Leggett’s equations12 as far as the initial configuration is in
equilibrium. In the pure polar state, the so-called dipole
torque RD

2 is given by

RD = −
12gD

5
�d̂ · P̂��d̂ � P̂� , �11�

where gD is a dipole energy strength,2 and hence, P̂� d̂ and

H� d̂ are to be satisfied in equilibrium �see Fig. 3�. Then, a

FIG. 1. �Color� Obtained P-T phase diagrams in a uniaxially
compressed case �a� with �u= +0.04 and a stretched case �b� with
�u=−0.07. For both figures, we have used �2���−1=0.137�mK�.
The solid curves are transition lines in aerogel, while the thin dotted
curves are those of bulk liquid. The ABM state in �a� is a genuine
superfluid with LRO, while in �b� it is a superfluid glass �Refs. 3
and 10�.

FIG. 2. �Color� Variation of a,i at P=22 �bar� around the sec-
ond order transition at TPA between the polar and the deformed
ABM states with �Re az,z�� �Im az,y�. The same material parameters
were used as in 1�b�. A first order transition to the deformed BW
state occurs at TAB.
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frequency shift �� of the free-induction signal due to RD
occurring by tipping the magnetization by an angle � is given
by

�� =
�L

2

2�
��3 cos2 � − 1�cos � +

sin2 �

2
�1 + cos ��� ,

�12�

which depends on the angle � spanning P̂ and H.
Finally, we note that the present result may also be rel-

evant to liquid 3He in globally isotropic aerogels3 if the cor-
relation length �a of the local anisotropy4 is much longer
than the superfluid coherence length �0. Since, as mentioned
earlier, the free energy of each pairing state is roughly deter-
mined by the condensation energy Ec even at length scales of
the order of �0, the results induced by the global anisotropy,

such as the wider ABM region5,8 and an occurrence of the
polar pairing state near Tc, may be valid in the globally iso-
tropic aerogel under the condition �a	�0 which may be sat-
isfied at higher pressures. Then, a polar glass phase with

spatially random P̂ over long distances might be realized in
the equal-spin pairing region near Tc. In contrast, at lower
pressures with longer �0 values, the anisotropy-induced Tc

shift will be negligible, and the approach3 modeling the local
anisotropy as a random field becomes appropriate. Then, a
well-defined PCP is expected at a nonzero temperature.

In conclusion, by introducing a global anisotropy in aero-
gels, the region of the A-like phase should be extended if this
phase has the ABM pairing state. A recent measurement has
shown an extention of the A-like phase region, even on
warming, due to a uniaxial compression.13 In aerogels de-
formed via a uniaxial stretch or a cylindrically symmetric
compression, an appearance of the pure polar pairing state
near Tc and a wider region of ABM superfluid glass3 are
expected. We hope a measurement for the stretched case will
be performed.
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in H-P̂ plane and cos−1�P̂ ·H /H�, respectively.
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