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The structural origin of intermediate-range order in two archetypal network-forming liquids, GeSe2 and
ZnCl2, is investigated via molecular dynamics computer simulation. Relatively simple ionic models, in which
a proper description of ion polarization effectively controls the network connectivity, are shown to be capable
of showing a first-sharp diffraction peak in the Bhatia-Thornton concentration-concentration structure factor.
This feature is shown to arise from the presence of percolating edge-sharing polyhedral units which act to
disrupt a corner-sharing network and introduce addition cation density fluctuations on both short- and
intermediate-range length scales.
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Many network-forming amorphous systems display a
first-sharp diffraction peak �FSDP� in the total structure fac-
tor, indicative of the presence of intermediate-ranged order
�IRO�, that is, structural ordering beyond that imposed by
�short-range� atom packing arrangements.1,2 The structural
origins of this order remains a topic of debate with theories
based on underlying crystalline order3 and the presence of an
ordered void network4,5 both advanced. In addition, simula-
tion studies indicate that this length scale dominates the sys-
tem dynamics around the glass transition temperature6 with
potential ramifications for glass-formation theories.7 In the
MX2 stoichiometry, GeSe2 and ZnCl2 represent an archetypal
pair of materials having IRO with a network structure which
can be considered as constructed from a mix of corner-
sharing and edge-sharing MX4 tetrahedra �M =metal cation,
X=anion�. Both systems show a FSDP at scattering angles
corresponding to kFSDP�1 Å−1 �compared with the principal
peak at kPP�2 Å−1� in their structure factors.8–10 Further-
more, the existence of suitable isotopes allows the partial
structure factors to be experimentally resolved for both
systems8,10,11 rendering these systems excellent targets for
simulation models. Neutron scattering studies8,10 indicate
that the respective FSDPs are dominated by the cation sub-
lattice �although this view has been questioned12�. Both sys-
tems display complex morphology changes �on both short
and intermediate length scales� as a function of tempera-
ture10,13 and pressure.14,15 Despite their clear similarities,
these systems also show distinct differences often assigned to
a fundamental difference in their inherent bonding. GeSe2,
for example, shows a small fraction of homopolar bonds16,17

not present in ZnCl2, which may have implications for
network-dependent properties.

The difference in structure is naturally expressed in the
Bhatia-Thornton structure factors, which separate structural
�network� ordering from that imposed by the underlying
chemistry �chemical ordering�,18,19 with GeSe2 showing a
significantly stronger FSDP in the concentration-concentra-
tion function SCC�k�, indicative of chemical ordering on an
intermediate length scale. Simulation work has tended to fo-
cus on the individual systems. For GeSe2, ab initio electronic
structure calculations have reproduced a large number of
static and dynamic properties.16,17 However, the emergence
of a FSDP in SCC�k� is found to be heavily dependent upon
the details of the calculation. Furthermore, pair-potential

based models augmented with explicit three-body terms,
which constrain specific bond angles, fail to reproduce such
a feature.20 An understanding of the structural origin of this
FSDP in SCC�k� is, however, lacking. Massobrio et al.16 de-
fine three classes of IRO in which structural disorder is cor-
related with the FSDP intensity. Class I encompasses near-
perfect networks and have no FSDP in SCC�k�. In class II,
significant structural disorder leads to an FSDP, while in
class III the degree of this disorder is such as to remove the
FSDP.

In this Rapid Communication “simple” potential energy
models are applied �using molecular dynamics� in order to
focus on the factors controlling the IRO in these two sys-
tems. The simulation models are based on pair potentials in
which the ions interact through their formal �valence�
charges and through short-range repulsive functions, mod-
eled as a Born-Mayer potential. In addition to the standard
Born-Mayer potential parameters �a ,B ,C�, which control the
short-range and dispersion interactions, a description of the
�many-body� polarization effects �the polarizable-ion
model21 �PIM�� is incorporated requiring an additional three
parameters; � �the ion polarizability� and �b ,c� �the short-
range damping parameters22�. Full details of these models
are given in Refs. 21 and 22. Potential parameter sets �Table
I� are derived so as to reproduce a range of structural prop-
erties with the polarization terms restricted to the anions.23

The polarization effects in network-forming systems effec-
tively act to control the bond angles for the polyhedral link-
ages �the M-X-M bond angles�. Dipoles induced on the
bridging anions act to introduce negative charge in between
two neighboring cations and, as a result, screen the cation-
cation repulsive coulombic interaction21 and hence narrow
the M-X-M bond angle. In extreme cases �small cations
and/or highly polarizable anions� this effect can be so great
as to stabilize edge-sharing units in which a cation pair
shares two anion bridges.24 For systems such as ZnCl2 and
GeSe2 the polarization effects are balanced such that the sys-
tems can be considered as a dynamic mix of corner-sharing
and edge-sharing units. The relative flexibility of the PIM
lies in the ability to readily stabilize both corner-sharing and
edge-sharing polyhedral links as a function of the anion en-
vironment, rather than relying on more restrictive explicit
bond-angle constraints.

Figure 1�a� shows the partial Faber-Ziman �FZ� structure
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factors25 for the ZnCl2 and GeSe2 models calculated at T
=800 K and 2400 K, respectively �in the liquid regimes for
both systems� and at zero pressure. The strongest FSDPs are
observed in the respective metal-metal functions, with sig-
nificant features in the corresponding metal-anion functions.
The major difference between these systems lies in the rela-
tive intensities of the FSDP in SMM�kFSDP� compared with
the principal peak �SMM�kPP��. The feature in GeSe2 is sig-
nificantly more intense than in ZnCl2 ��90% and �55% of
the principal peak heights, respectively� consistent with
experiment8,10,11 and ab initio simulation.16

The Bhatia-Thornton �BT� partial structure factors
�SCC�k�, SNN�k�, and SNC�k�� may be expressed in terms of
the Faber-Ziman functions as

SCC�k� = cMcX�1 + cMcX��SMM�k� − SMX�k��

+ �SXX�k� − SMX�k���� ,

SNN�k� = cM
2 SMM�k� + cX

2SXX�k� + 2cMcXSMX�k� ,

SNC�k� = cMcX�cM�SMM�k� − SMX�k�� − cX�SXX�k� − SMX�k��� .

�1�

Figure 1�b� shows the BT structure factors for the simulated
GeSe2 and ZnCl2 systems. Clear FSDPs are observed in both
SNN�k� functions �again, consistent with experiment10�. Sig-
nificantly, an FSDP appears in SCC�k� for the GeSe2 model,
but not for the ZnCl2. Although recent scattering experiments
suggest the appearance of an FSDP in SCC�k� in both
systems,11 the signature for ZnCl2 appears significantly
weaker than for GeSe2. As a result, we envisage the two
models considered here may represent extrema in terms of
their IRO and its relation to SCC�k�. Figure 2 shows the
breakdown of SCC�k� into the weighted contributions from
the FZ functions �Eq. �1��. At k�kPP SCC�k� is a simple
superposition of the three FZ functions, with the two like-
like functions �SMM�k� and SXX�k�� equally weighted and
SMX�k� weighted double �Eq. �1��. At k�kPP, however,
SXX�kFSDP��0 and so SCC�k� approximates to a simple com-
bination of SMM�k� and SMX�k� �SCC�k��cMcX�1
+cMcX�SMM�k�−2SMX�k����. For the ZnCl2 model these two
functions effectively cancel out on the length scale associ-
ated with the FSDP. It appears, therefore, that the greater
intensity of SGeGe�k� �compared with SZnZn�k� in ZnCl2� leads
to an incomplete cancellation from the respective anion-
cation function and hence to the significant FSDP in SCC�k�.

In order to understand the structural origins of this differ-
ence in SCC�kFSDP�, SMM�k� and SMX�k� are decomposed into
additional partial structure factors generated by “coloring”
each cation in terms of the local environment. A cation at the
center of a tetrahedron which only corner shares with neigh-
boring polyhedra is labeled “0,” while those structural units

TABLE I. Potential parameters used in the present work. The
ion-ion interactions are modeled using a Born-Mayer potential
in which the short-range interaction is given by U�rij�
=Bij exp�−aijrij�−Cij

6 /rij
6 . The damping parameters, b and c, and

dipole polarizability, �, are required for the polarizable-ion model.

ij Bij �a.u.� aij �a.u.� Cij
6 �a.u.�

GeSe 199.34 1.556 380

SeSe 98.56 1.556 1001

ZnCl 43.72 1.600 44

ClCl 87.00 1.556 183

i �i �a.u.� b �a.u.� c �a.u.�

Se2− 50.0 1.65 2.20

Cl− 20.0 1.65 1.40

FIG. 1. �Color online� Partial structure factors for the GeSe2 and
ZnCl2 models obtained at 800 and 2400 K, respectively. �a� Faber-
Ziman functions. Key: solid dark line, metal-metal; solid light line,
metal-anion; dashed line, anion-anion. �b� Bhatia-Thornton func-
tions. Key: solid lines, GeSe2; dashed lines, ZnCl2. The SCC�k� and
SNC�k� functions have been shifted along the y axis as indicated for
clarity.

FIG. 2. �Color online� Breakdown of the Bhatia-Thornton
concentration-concentration structure factors, SCC�k�, into
�weighted� Faber-Ziman functions for then GeSe2 �solid lines� and
ZnCl2 �dashed lines� models. The GeSe2 model shows a clear FSDP
�indicated by an arrow� which is absent for ZnCl2. The inset shows
the low-k functions in order to emphasize the dominant role of
SMM�k� �highlighted with an arrow� in forming the FSDP in SCC�k�.
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containing one and two edge-sharing units are labeled “1”
and “2,” respectively.16 Table II lists the fractions of each
cation type for the two systems averaged over �500 ps of
molecular dynamics. The GeSe2 model contains a signifi-
cantly greater proportion of edge-sharing units. An additional
six MM and three MX structure factors can be defined as

SMM
ab �k� = 	AM

a*
�k� · AM

b �k�
 , SMX
aX �k� = 	AM

a*
�k� · AX�k�
 , �2�

where �a ,b�= �0,1 ,2�.26 Figure 3 shows the breakdown of
the respective SMM�k� and SMX�k� structure factors into the
�weighted� partial functions defined above. For GeSe2, the
strongest contributions to the FSDP in SMM�k� arise from
SMM

11 �k�, SMM
12 �k�, and SMM

02 �k�, with SMM
12 �k� and SMM

02 �k� both
having an FSDP intensity greater than that of the principal
peak �SMM�kFSDP� /SMM�kPP�=1.13 and 1.79, respectively�.
For ZnCl2 the six functions appear similar in terms of the
SMM�kFSDP� /SMM�kPP� ratio �in the range 0.6 to 0.9�, with
each appearing to contribute significantly to the FSDP in
SZnZn�k� with their relative contributions dictated by the con-
centration weightings in Ref. 26. In addition, the GeSe2 func-
tion FSDPs differ in position, with kFSDP=0.97, 1.08, 1.02,
and 1.03 Å−1 for SMM

01 �k�, SMM
02 �k�, SMM

11 �k�, and SMM
12 �k�, re-

spectively. These differences indicate that the presence of a
significant proportion of edge-sharing units in the GeSe2
model exerts a major influence on the static structure by
effectively breaking up the corner-sharing network and intro-
ducing subtle variations in the IRO. Further clues as to the
nature of this network disruption are afforded by considering

the widths of the FSDPs in Fig. 3. The SMM
11 �k�, SMM

12 �k�, and
SMM

02 �k� functions show widths �at half the peak height� of
0.35, 0.39, and 0.67 Å−1, respectively. The significantly
greater width of SMM

02 �k� at kFSDP results from the pseudo-
one-dimensional nature of the percolating edge-sharing
chains. These chains are effectively charge neutral and so are
only weakly bound to the network perpendicular to the chain
major axis. This weak bonding results in the formation of an
ordered intermediate-ranged length scale in addition to that
imposed by the corner-sharing network. Unlike SMM�k�, the
SMX�k� functions appear to effectively map onto each other
when the concentration weightings are accounted for. The
difference in the two systems, therefore, lies in the relative
intensities of SMM�k� which is directly correlated to the dif-
fering proportions of edge-sharing units.

Two further differences between the MM functions are
noteworthy. First, both SGeGe

00 �k� and SGeGe
22 �k� are increasing

as k→0 indicative of an effective “phase separation” or clus-
tering of these colored cation sites. Secondly, the long-k os-
cillations appear quite different in the two sets of functions.
For the ZnCl2 model the six functions appear to contain os-
cillations �at k�kPP� at approximately the same frequency.
In the GeSe2 model, however, both the oscillation frequen-
cies and their intensities appear to differ significantly be-
tween the six functions. To further understand these differ-
ences the six functions defined in Eq. �2� are Fourier trans-
formed to produce the corresponding real space partial pair
distribution functions �pdfs�, gMM

ab �r�. Figure 4 �upper panel�
shows the six partial pdfs for the two systems. As predicted
from the high-k oscillations displayed by the functions in
Fig. 3, the ZnCl2 functions exhibit a single peak at �3.75 Å.
The GeSe2 functions, however, display peaks on three length
scales; gGeGe

00 �r� and gGeGe
01 �r� show a peak at �3.86 Å,

TABLE II. Percentage of cation-centered units colored accord-
ing to their network connectivity.

GeSe2 ZnCl2

0 17 45

1 57 36

2 26 19

FIG. 3. Breakdown of the metal-metal �upper panel� and metal-
anion �lower panel� Faber-Ziman structure factors in terms of cation
environment. The functions are weighted by the respective concen-
trations of the colored cations.

FIG. 4. �Color online� �a� Fourier transforms of the metal-metal
functions shown in Fig. 3. �b� Real space Bhatia-Thornton
concentration-concentration pair distribution function for the two
systems along with the three Faber-Ziman contributions. The arrow
highlights the extra feature apparent for GeSe2 resulting from the
presence of chains of edge-sharing tetrahedra. Key: solid dark line,
gCC�r�; solid light line, metal-metal; light dashed line, metal-anion;
dark dashed line, anion-anion. �Right panel� Molecular graphics
snapshots showing cations only for �top� GeSe2 and �bottom�
ZnCl2. Key: dark circles, labeled 2; medium circles, labeled 1; light
circles, labeled 0. Cations labeled 2 are joined by bonds to highlight
the formation of significant chain structure in the GeSe2 model.
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gGeGe
11 �r� at �3.60 Å, and gGeGe

12 �r� and gGeGe
22 �r� at �3.35 Å.

The resolution of the different cation length scales supports
the existence of relatively long-lived species built around
corner-sharing and edge-sharing in the molten state. Figure 4
shows two molecular graphics snapshots of the respective
cation distributions with the different polyhedral linkages
highlighted. For the GeSe2 system a significant number of
the edge-sharing units form into chains. This percolation of
the edge-sharing units leads to an effective clustering of
these units with the resulting phase separation between the
sites labeled 0 and 2 �as detected in the structure factors in
Fig. 3�. The presence of a cation labeled 2 precludes nearest-
neighbors labeled 0 �since these neighbors must have at least
one edge-sharing linkage�. The percolation of edge-sharing
units �equivalent to chains of “2” cations� results in an addi-
tional ordering of the cation sublattice beyond that imposed
by a simple corner-sharing polyhedral network. The perco-
lated edge-sharing units introduce a short cation-cation
length scale �across an edge-sharing anion double bridge�
resulting in a region of relatively high cation density.

Figure 4 �lower panel� shows the effect of the additional
cation-cation length scales on the real space concentration-
concentration Bhatia-Thornton functions, gCC�r�. The GeSe2

system shows a significant feature at r /r+−�1.33 attributable
to the existence of a significant number of the percolating
edge-sharing units. The presence of the percolating edge-

sharing units, therefore, creates fluctuations in the cation
subdensity on both short and intermediate length scales. The
pseudo-one-dimensional nature of these units leads to fluc-
tuations in the cation charge density over the intermediate
length scale and hence causes the FSDP in SCC�k�. For
ZnCl2, the chain percolation is strictly limited and so these
additional length scales are only transient.

In this paper the difference in the intermediate-range or-
der observed in two specific systems �ZnCl2 and GeSe2� has
been investigated. The variations in the IRO have been at-
tributed to the difference in the number of edge-sharing tet-
rahedral units present in the two systems. For GeSe2, these
edge-sharing polyhedral units are found to percolate into per-
sistent charge-neutral �one-dimensional� chain structures
which act to break up the �three-dimensional� corner-sharing
network �predominant in ZnCl2�. These chains act to intro-
duce an additional intermediate-ranged length scale leading
to an excess intensity in SMM�kFSDP� which is not counterbal-
anced by the corresponding SMX�k� function and hence leads
to the FSDP in SCC�k�.
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