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Oscillations of induced magnetization in superconductor-ferromagnet heterostructures
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We study a change in the spin magnetization of a superconductor-ferromagnet (SF) heterostructure, when
temperature is lowered below the superconducting transition temperature. It is assumed that the SF interface is
smooth on the atomic scale and the mean free path is not too short. Solving the Eilenberger equation we show
that the spin magnetic moment induced in the superconductor is an oscillating sign-changing function of the
product hd of the exchange field /2 and the thickness d of the ferromagnet. Therefore the total spin magnetic
moment of the system in the superconducting state can be not only smaller (screening) but also greater
(antiscreening) than that in the normal state, in contrast with the case of highly disordered (diffusive) systems,
where only screening is possible. This surprising effect is due to peculiar periodic properties of localized
Andreev states in the system. It is most pronounced in systems with ideal ballistic transport (no bulk disorder
in the samples, smooth ideally transparent interface), however these ideal conditions are not crucial for the very
existence of the effect. We show that oscillations exist (although suppressed) even for arbitrary low interface
transparency and in the presence of bulk disorder, provided that A7>1 (7 is the mean free path). At low
interface transparency we solve the problem for arbitrary strength of disorder and obtain oscillating magneti-
zation in ballistic regime (27> 1) and nonoscillating magnetization in diffusive one (h7<<1) as limiting cases

of one formula.
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I. INTRODUCTION

Spin structures of the microscopic states of s-wave super-
conductors and ferromagnets are opposite to each other.!?
Superconducting pairing interaction leads to formation of
electron Cooper pairs with opposite projections of spins,
whereas the exchange field tends to align electron spins in
the same direction. This counteraction on the microscopic
level results in a competition between macroscopic super-
conducting and magnetic states. The suppression of the su-
perconducting order parameter and the transition temperature
by the exchange field>® and the reduction of the magnetic
spin susceptibility in the superconductors®> are well-known
examples of this competition.

Among suitable experimental systems for studying the in-
terplay of the superconductivity and spin magnetism are
superconductor-ferromagnet (SF) heterostructures (for re-
views see Refs. 6-8). Above the superconducting transition
temperature 7', the superconductor is in its normal state, and
the total magnetic moment M, of such system is given by
the intrinsic magnetic moment of the ferromagnet Mp,. Be-
low T, a magnetic moment M (k) induced by the presence of
superconductivity appears, and the total spin magnetic mo-
ment of the SF system in the superconducting state is M
=M py+M(h). The induced magnetization may be caused by
both the Meissner currents (orbital effect) and the spin po-
larization (spin effect). If the sizes of the ferromagnet and the
superconductor are small compared to the London penetra-
tion length, then the orbital effect is small compared to the
spin effect.? In this work we assume this situation, since we
want to study the effect related to the spin polarization.
Therefore M(h) is the induced spin magnetic moment
throughout the paper.
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What direction of M(h) relative to My, one would ex-
pect? The abovementioned competing behavior of supercon-
ducting and magnetic phenomena suggests that M(h) is
opposite [M(h) <0] to My, and thus reduces M,,. In other
words, the induced magnetization screens the intrinsic mag-
netization of the ferromagnet. The idea of spin screening of
the ferromagnet’s magnetization by the superconductor in SF
systems was first brought forward in Ref. 9. In these publi-
cations the cases of a ferromagnetic planar film and spherical
grain were considered and it was shown that indeed M(h)
<0.

Experiments carried out on various SF' structures confirm
indirectly the idea of the screening proposed in Ref. 9. In
Ref. 10 a V-Pd,_,Fe, SF bilayered structure was studied by a
magnetic resonance technique and a 50% decrease in M,
was discovered as the temperature was lowered from 7=T,
~4 K to T=1.5 K. In Ref. 11 the neutron reflectometry was
performed on multilayered SF structures consisting of ferro-
magnetic La,;Ca;;3MnO5 and superconducting YBa,Cu;0,
layers. The obtained reflectometry spectra were discussed in
context of the screening effect predicted in Ref. 9. In a recent
work (Ref. 12), the measurements of magnetization were
performed on an SF system consisting of magnetic layers
La,Ca;_MnOj; and the superconductor Nb. The experimen-
tal data were analyzed in terms of magnetic properties ac-
quired by the superconductor due to proximity effect.

In Ref. 9 the screening effect was studied under the fol-
lowing assumptions: (i) “diffusive” limit (the mean free path
of electrons / is much smaller than both the size of the fer-
romagnet d and the superconducting coherence length &)
and (ii) the exchange field of the ferromagnet h is small
compared to the Thouless energy Eq,=D/d” (D is the diffu-
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sion coefficient in the ferromagnet, throughout the paper we
employ units, in which the Planck constant A=1):

h<ETh’ (1)

and the ferromagnetic film is thin (d<&;). Condition (i) al-
lowed us to use Usadel equation and condition (ii) to treat
the effect of ferromanget’s exchange field % as a pertubation
in this equation. For the induced spin magnetic moment
M(h) the following result was obtained:

M(h) = =[xy = xs(T)]hd, (2)

where xs(7) is the magnetic susceptibility of a bulk super-
conductor and yy is the magnetic susceptibility of the super-
conductor in the normal state [ xs(T.)=yxy]. [For exact ex-
pression for ys(7), see Eq. (15)]. The result (2) is quite
universal,?® since it is independent of the strength of poten-
tial disorder and interface transparency.

The following questions arise. First, how robust is this
perturbative result (2) to the type of orbital electron dynam-
ics, in particular, what result would be obtained in the oppo-
site case of a clean ballistic system. Second and more inter-
estingly, how does induced magnetization M(h) behave for
sufficiently large exchange field, when its effect cannot be
considered as a perturbation anymore and how the type of
electron dynamics affects this behavior. The theory presented
below shows that the behavior of induced magnetization
M(h) in ballistic SF systems in nonperturbative regime can
be very remarkable.

First, let us define more precisely what we mean by “per-
turbative” and “nonperturbative” regimes for an SF system
in general case. For a generic SF system with arbitrary bulk
disorder in S and F regions and arbitrary interface transpar-
ency an important energy scale is € =1/7, where 7 is the
characteristic time spent by electron in the ferromagnet. (Fer-
romagnet is assumed to be of finite size d at least in one
dimension.) In a ballistic system without or with relatively
weak bulk disorder (the mean free path /=d) and with not
too small interface transparency (z~ 1) this energy scale is
the Andreev energy € =€ =vy/d (v is the Fermi velocity).
In the case of low interface transparency ¢<<1 the time 7 is
enhanced due to the fact that electron has to hit the interface
~ 1/t times before it escapes from the ferromagnet, therefore
it stays in the ferromagnet ~1/¢ times longer compared to
the case of good transparency. Thus, for the case of low
interface transparency (1<<1) one gets € =¢,¢ for ballistic
system. In the diffusive system (/<<d) with not too small
interface transparency (1>1/d) € =Eq,=D/d” is the Thou-
less energy.

Comparison of & with € determines how strongly the
exchange field h affects the spectrum of SF system compared
to the spectrum of the corresponding superconductor-
normal-metal (SN) system with 2=0. If

hle <1, (3)

then the effect of exchange field is small and consequently
physical quantities, such as the induced magnetization M(h),
can be studied perturbatively. We refer to the regime (3) as
perturbative. On the contrary, when
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FIG. 1. (a) Oscillations of induced magnetic moment M(h) of a
clean SF system as a function of h/ey=2hd/vp [the solid line
shows —M (h)]. The graph is plotted for the case of zero temperature
T=0 and thin F-layer d<&s. At hd<vyp we have M(h)=-xyhd,
indicating complete screening in the case itinerant ferromagnet.
Dashed graph shows the function Z_(h/€4) [see Eq. (13)]. (b) The
geometry of the system and spatial distribution of the density
M(h,x) of the induced magnetization (h=h;: screening, h=h,:
antiscreening).

h=¢€, 4)

the spectrum of the SF system is significantly altered by the
presence of exchange field /2, and we refer to the regime (4)
as nonperturbative.

A very interesting property of Andreev spectrum of SF
system in nonperturbative regime is its periodicity as a func-
tion of parameter /€ with the period of the order of unity.'?
[The physical reasons beyond this phenomenon and the ori-
gin of the conditions (3) and (4) are given in Sec. IL.] This
periodicity is known to reveal itself in the oscillations of the
Josephson critical current I,(h) in SFS junctions.'>!® One
could expect to find these periodic features of Andreev spec-
trum in other macroscopic quantities, such as the induced
magnetization M(h). In this paper we extended the analysis
of Ref. 9 of induced magnetization in SF' structures to non-
pertubative case and found that in ballistic systems this is
indeed the case.

Namely, we considered an SF bilayered system with the
ferromagnet of the thickness d and the superconductor of the
size much greater than its coherence length & [Fig. 1(b)].
Solving the Eilenberger equation we find that in a system
without or with relatively weak bulk (I>d) or surface disor-
der and with perfect SF interface transparency (¢=1) the in-
duced spin magnetic moment M(h) is an oscillating sign-
changing function [Fig. 1(a)] of parameter h/e =2hd/vp
with the quasiperiod approximately equal to 7. Therefore,
the total magnetic moment

Mo = Mpy+ M(h) (5)

can be either smaller [M(h)<O0] or larger [M(h)>0] than
that in the normal state M i\(],[:M ro depending on the value of
the product hd. The oscillations of M(h) are most pro-
nounced for the system with ideal transport properties: bal-
listic electron motion and perfect interface transparency.
However, these ideal conditions are not crucial for the very

existence of oscillations. To verify this we have considered
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the case of low SF interface transparency (r<<1) and arbi-
trary disorder in the ferromagnet, described by the scattering
time 7. The limit of low SF interface transparency (r<<1) is
useful from a methodological standpoint, since it allows to
solve the Eilenberger equation for the system with arbitrary
strength of disorder. This allows one to study not only the
limiting diffusive and ballistic cases, but also the crossover
between them. It appears that the influence of disorder on the
behavior of induced magnetization M(h) is governed by pa-
rameter h7. In the limit h7> 1 sign-changing oscillations of
M(h) exist (the quasiperiod is still 1"~ 1re,), although their
magnitude is suppressed in 7 as ~#> and exponentially in d/1.
On the contrary, in the opposite case h7<< 1 we get that M (h)
does not exhibit oscillations, being negative [M(h)<0] for
all h<<1/7. The condition h7<<1 (together with /<<d) corre-
sponds to the “diffusive” limit of the Usadel equation and the
results obtained in this case from the Eilenberger equation
can be recovered from the Usadel equation.

We mention that nonoscillatory result for M() in the dif-
fusive limit is in contrast with the behavior of the Josephson
critical current I.(h) in SFS junctions. Oscillations of I.(h)
are not destroyed by disorder and persist (although exponen-
tially suppressed in i/Eq,) even in the “diffusive” limit A7
< 1. The period of these oscillations is 4"~ € =Eqy,. These
oscillations were observed experimentally in Refs. 17-21,
for further references see review articles.®’ Thus, oscillations
of the induced magnetization M(h) turn out to be more sen-
sitive to disorder than those of the Josephson critical current
I.(h).

Our analysis shows that for moderate bulk disorder (I
=d, [ may also qualitatively include surface disorder of the
interface) and not too small interface transparency (1~ 1) the
magnitude of oscillations is still quite noticeable, thus giving
hope for experimental check of our predictions. Since for
hr>1 oscillations of M(h) are sustained, oscillatory behav-
ior of M(h) should be attainable even in the presence of
disorder in the case of sufficiently strong ferromagnets. Since
the exchange field 4 is hardly variable in the experiment, one
may hope to observe the oscillations of M(h) performing
measurements on samples with different thickness d. We also
note that the case of thin ferromagnetic films d<<&g is the
most interesting for experiment: experimentally relevant ex-
change fields are 7> T,, one needs h ~ €, to observe oscilla-
tions, thus d/és~T./ex~T, /h<1.

As a limiting case of our analysis we obtain that in the
clean case for small exchange fields (h<<re4) and a thin fer-
romagnetic film (d<<&) the induced magnetization M(h) is
given by the universal result Eq. (2). This complements the
analysis of Ref. 9 and suggests that this result holds in per-
turbative regime (3) in SF systems with arbitrary strength of
potential disorder.

The paper is organized as follows. In Sec. II we provide
qualitative quasiclassical description of Andreev spectrum in
SF systems and show how the conditions (3) and (4) and the
periodicity of the spectrum arise. In Sec. III we consider the
limit of clean sample and perfect interface transparency,
when the oscillatory behavior of induced magnetization is
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FIG. 2. Semiclassical description of Andreev spectrum of an SF
system. Each classical trajectory that starts and terminates at SF
interface corresponds to a set of discrete Andreev energy levels,
which are obtained from the Bohr-Sommerfeld rule (7).

most pronounced. We present the system and formalism of
the Eilenberger equation used to derive the expression for the
induced magnetization and analyze this expression in detail.
The connection between the predicted effect and the proper-
ties of Andreev spectrum is discussed. In Sec. IV we show
that our assumptions about ideal transport properties (perfect
interface transparency, ballistic electron motion) of the sys-
tem are not crucial for the existence of oscillations. We
present the results for the case of low SF interface transpar-
ency and disordered ferromagnet and show that oscillations
exist in such limit provided some conditions on parameters
are met. Finally, we conclude with Sec. V. In the Appendix
the general formulas for the case of arbitrary interface trans-
parency and clean samples are given.

II. QUALITATIVE PHYSICS OF ANDREEV SPECTRUM
IN SF SYSTEMS

The spectrum of a superconductor-ferromagnet (SF) (or
superconductor-normal-metal (SN)) system is given by An-
dreev states, which are the states of electron-hole pairs local-
ized in the F(N) region due to Andreev reflection at SF(SN)
interface. A qualitative understanding of the properties of
Andreev spectrum in SF systems can be obtained from the
following semiclassical picture (Fig. 2). We assume the case
of ideal SF interface transparency here for simplicity. (Quali-
tative analysis of the present section generalizes the discus-
sion of Andreev spectrum of SN systems done in Sec. II of
Ref. 22 to SF systems.)

First, consider an SN system without exchange field. Sup-
pose an electron with an energy e relative to the Fermi level
€p inside the superconducting energy gap A (|| <A) is trav-
elling along some classical path in the N region. If the elec-
tron hits the SN interface, it is reflected as a hole with the
energy —e. A peculiar property of Andreev reflection is that
the momentum of reflected hole is opposite (apart from a
small angular mismatch ~ €/ €p) to that of the incident elec-
tron. Therefore the reflected hole will travel along the same
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path as the incident electron but in the opposite direction. If
this path hits the interface again, the hole is reflected back as
the electron. Within the quasiclassical Bohr-Sommerfeld
(BS) approach if the total action of such process is an integer
multiple of 277, then such electron-hole pairs forms a bound
state.

Thus, each classical path that starts and terminates at SN
interface corresponds to a set of discrete Andreev levels, en-
ergies of which can be obtained from the BS rule. For each
such path 7y of the length L, the action of the electron tra-
versing this path is S(e)=p(e)L,, where p(e)=\2m(ep+e)
~pr+e€/vp is the absolute value of electron’s momentum.
The action takes the form

S(e)=ppL,+ €Ty,

where 7,=L /v is the time of traversal of path . The action
of the hole (a missing electron) is —S(—€) and the contribu-
tions from Fermi length scales cancel each other. The BS

rule gives
S(e) = S(— €) —2¢(€) =2€1,— 2p(€) =2,

where ¢(e)=arccos(e/A) is the phase of Andreev reflection
and n is integer, and thus discrete Andreev levels e= ey(n)
corresponding to path y are determined from the equation

er,=mn+ P(e). (6)

Generalization to SF systems is straightforward (Fig. 2).
In SF system one should distinguish between Andreev states
with electron spins directed along (1) and opposite to (]) the
exchange field h. “Up” states € acquire a shift -4 and
“down” states € acquire a shift +4 in the F region. The BS
rule reads (+ and — correspond to T and |, respectively):

S(e, =h) = S[- (€ £h)]-2¢(e ) =2mn.

Note that the argument of ¢(e; ) does not acquire the shift
+h due to exchange field, since exchange field is absent in
the superconductor and therefore does not affect the process
of Andreev reflection. Thus, the equation for Andreev levels
in SF system reads

(éT,lih)Ty= Wn+¢(6T»l)' (7)

The time 7 defined in Sec. I as a time spent by electron in
the F region is the characteristic time for 7. If h7'<1, then
Andreev levels of the SF system obtained from Eq. (7) are
only slightly different from those of the corresponding SN
system with 2=0 obtained from Eq. (6). This condition cor-
responds to perturbative regime (3). If 17 =1, then Eq. (7)
is significantly different from Eq. (6) and this condition cor-
responds to nonperturbative regime (4). Further, one sees
that Eq. (7) is invariant under the periodic translation (h7,
—ht,+m). Thus the solutions of Eq. (7) are periodic

ET»l(h) = éT’l(h + ’7T/’Ty).

This periodicity of Andreev spectrum should reveal itself in
the behavior of macroscopic quantities of SF system as a
function of parameter A7 . This is indeed the case for Joseph-
son critical current in SF'S junctions and, as we show in this
paper, for the induced magnetization.
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III. BALLISTIC CASE, IDEAL SF INTERFACE
TRANSPARENCY

A. System and method

We start our analysis with the case of ideal ballistic elec-
tron transport: absence of bulk disorder and perfect interface
transparency 7=1. In this case the oscillations of induced
magnetization are most pronounced.

We consider an SF bilayered system pictured in Fig. 1(b):
the superconductor occupies the half space x> d and the fer-
romagnetic layer of the thickness d is located in the region
0<x<d. We assume that there is no bulk disorder neither in
the F layer nor in the superconductor and that the interfaces
are ideal, namely, the superconductor-ferromagnet interface
(x=d) is perfectly transparent and the ferromagnet-vacuum
(FV) interface (x=0) is specular.

We study the problem solving the Eilenberger equation®?
for the quasiclassical Green’s function g(w,n,r). Here o
=7T(2m+1) is the fermionic Matsubara frequency (7 is the
temperature and m is an integer), n is the unit vector repre-
senting the direction of the electron momentum on the Fermi
surface, and r is the radius vector. Due to the geometry con-
sidered g(w,n,r)=g(w,n,,x), where n, is the projection of n
on the x direction, —1=<n,<1. The Green’s function
g(w,n,,x) is a matrix in the tensor product of Gor’kov-
Nambu and spin spaces:

A

8=81°T1+82°Tr+83°73,

gi=gll+go.. (8)
Here 7, i=1,2,3 are the Pauli matrices in the Gorkov-

Nambu space and i, 6, are the unity and Pauli matrices in
the spin space (z denotes the direction of the exchange field
in the spin space). Diagonal representation (8) in the spin
space is possible in the case of homogeneous magnetization,
which is assumed here.

The quasiclassical approach implies that the following
conditions are satisfied: h << €z, ppd> 1, where €, pp are the
Fermi energy and momentum. However, we stress that these
conditions are required only for the applicability of the
method used, but not for the very existence of the oscilla-
tions. The results are still valid qualitatively in the case of
strong ferromagnet of atomic thickness (h=< e, ppd= 1), al-
though the effect is reduced. The same concerns possible
mismatch of electronic properties (such as density of states
vp and Fermi velocity vy) in the ferromagnet and supercon-
ductor. It is assumed here that they are the same.

The density of the induced spin magnetization can be ex-
pressed in terms of the quasiclassical Green’s function in the
following way:

M(h,x) = pp(( () (X)) = (Y] (0) ¢ (x))

27T ! .
= TMBVFTE f dn.g5(w,n,,x),
w 0

where wp is the Bohr magneton and v is the electron density
of states at Fermi level per single spin projection. The total
induced magnetic moment of the system (per unit square in
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the plane parallel to SF interface) is obtained by the integra-
tion of M(h,x) with respect to x:

M(h) = f“" dxM(h,x). 9)
0

The relation between the intrinsic magnetic moment of
the ferromagnet M, and the exchange field & acting on the
electrons depends on the model of the ferromagnet.'* Usu-
ally Mpo=Mpg,+Mpy,. is combined of the contribution
M o= xnyhd produced by free electrons and the contribution
M poj00= xyhd produced by localized magnetic moments («
is some phenomenological constant and y, is the normal
metal spin susceptibility). In the case of itinerant ferromag-
net the localized magnetic moments are absent (a@=0) and
M po=M poo1= Xnhd.

We emphasize that magnetic moment M(h) Eq. (9) ex-
pressed in terms of the quasiclassical Green’s function is the
magnetic moment induced by the presence of superconduc-
tivity in the system. It is determined by the properties of the
energy spectrum on the scale ~7,. near the Fermi level. It
does not include the part M gq,;=xyhd of the intrinsic mag-
netic moment My, of the ferromagnet produced by free elec-
trons that originates from the energy shift of the entire elec-
tron band. The latter cannot be taken into account within the
quasiclassical approach and should be added separately. The
total magnetic moment of the system is given by Eq. (5).

The Eilenberger equation for the system without disorder
reads

v dyg + [(l = ih(x)6,) o 73+ A(x)1 0 75,8]1=0, (10)

where h(x) is the exchange field in energy units, A(x) is the
superconducting order parameter, and square brackets stand
for the commutator. The exchange field is contained in the F

sin 2H
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layer only and assumed to be constant within the layer:
h(x)=h, if 0<x<d, and h(x)=0, if x>d. We assume there is
no BCS interaction between electrons in the F layer and
therefore we always have A(x)=0 for 0 <x<d.

In principle, the exact order parameter A(x) has to be
found self-consistently from the solution of the Eilenberger
equation (10) supplemented by the self-consistency equation
for the superconducting order parameter. The order param-
eter A(x) approaches a bulk BCS value A at large distances
from the F-layer x> &g, but is partially suppressed near the F'
layer. Computation of A(x) self-consistently is a hard ana-
Iytical problem. Fortunately, our main result about the oscil-
latory sign-changing behavior of M(h) is not sensitive to the
exact shape of A(x). Therefore, we assume that A(x)=A for
all x>d and perform calculations under this assumption.

Equation (10) must be supplied by proper boundary con-
ditions at SF and FV interfaces.>* The limit of the ideal trans-
parency of SF (x=d) interface implies that the Green’s func-
tion is continuous:

g/(wﬂ/lxa-x:d_o) =g(w’nx7-x=d+0)'

At the FV (x=0) interface the specular reflection condition
reads

glw,n,x=0)=g(w,—n,x=0).
At x> & the solution approaches the BCS bulk result

i_ 00 0 fo= A 0o_  _ w
8§i=81=Y, &= S—V,m» gz—gs—wm~
B. Analysis

Under the made assumptions the solution of Eq. (10) is
straightforward and we obtain

gi(w,n,x) =

Here Q=|w|/(esln,|), H=h/(€n,|) and e,=v;/(2d) is the
Andreev energy: #i/€, is the time the electron travels from
the SF interface and back within the F layer with the velocity
perpendicular to the interface.

Inserting Eq. (11) into Eq. (9) and integrating over x one
obtains M(h). The key point of our analysis is that
ig5(w,n,,x) is a periodic sign changing [note sin 2H in the
numerator in Eq. (11)] function of H=h/(€,|n,|) and depends
on the exchange field solely via this parameter.

General properties of M(h) can be summarized as fol-
lows: (1) M(h) depends on the strength of exchange field
solely via the combination h/e,=2hd/v, (2) for any tem-

o
ZfS[cosh Q +|gg|sinh Q]* cos? H + [sinh Q + |gg|cosh Q]* sin® H | exp

1, 0<x<d,
2, A2
lw™+ A" x/d -1
(w_ ) i
€4 |nx|

(11)

perature 7<<T,. and any ratio d/ &g the induced magnetic mo-
ment M(h) is an oscillating sign-changing function of /€,
with a quasiperiod "/ €,~ 1, the amplitude of the oscilla-
tions decays monotonically as &/e€, increases, (3) hence,
M(h) can either have the same [M(h)>0] or opposite
[M(h)<O0] direction as My, depending on h/e,, (4) at
hleys<1 we get M(h)<0, which indicates the screening of
M gy, and (5) the magnitude of oscillations of M(h) is largest
at T=0 and decreases as T increases; M(h)=0 at T=T..
The spatial dependence of M(h,x) shown in Fig. 1(b) is
governed by g5(w,n,,x): M(h,x) is constant within the F
layer and decays exponentially over the distance &g into the
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superconductor. If d ~ &, then parts of M(h) located in the F
layer

d
MF(h) = f dxM(h,x)
0
and in the superconductor
400
MS(h) = f d)CM(l’l,.x)
d

are of the same order. If d> &, then the induced magnetic
moment is located predominantly in the F layer and M(h)
~Mp, M¢/Mp~&/d<<1. In the opposite limit d<<§g the
induced magnetization is located mainly in the region of the
superconductor of the size & near the F layer and M(h)
~Mg, Mp/Mg~dlEg<1.

Below we concentrate on the experimentally more rel-
evant situation of a thin F layer d<<§g and illustrate the
announced properties of M(h) explicitly for this particular
case. In this regime, the expression for M(h) = M(h) can be
reduced to the form

AZ
M(h)=-d VGWTEI—
MBVE€s ol 1+ A2

sin 2H

(12)

1
X J dnn,
0

First, we consider the zero temperature limit 7=0. Re-

o’ +A%cos’ H'

placing the sum over ® by the integral 7=,
=[" dw/(2m7): -+, we obtain
“dt_(h
M(h):—zd/.LBVFfA _3Z7T —t], (13)
1! €4

where Z,_(x)=x, if —/2<x< /2, and periodically contin-
ued to all x (linear “zigzag-type” function with a period ).
The integral with respect to n, can easily be calculated and
we obtain the function shown in Fig. 1(a).

Close to superconducting transition point [(7.—T)/T,
< 1] we obtain

A ("7 dr h
M(h) = d,u,BvFeA'n'TE 5 sin<2—t).
€A

w|1

We see that M (h) is again an oscillating sign-changing func-
tion of i/ €, with quasiperiod /"/ €, = , although the ampli-
tude of oscillations is parametrically smaller than that at T
=0 by [A(D)/T.~(T.-T)/T.<1.

C. Perturbative regime (h<€tey)
In the limit 2 <¢, from Eq. (12) we get

A2
M(h) = - xymT2

(w2+ AZ)S/Zhd (14)

where yy=2ugvr is the bulk spin susceptibility of the nor-
mal metal. Since
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A2)3/2) (15)
is the bulk spin susceptibility of the superconductor, Eq. (14)
can be rewritten in the form Eq. (2). From the formulas given
in Appendix one obtains the same result in the case of clean
samples and low SF interface transparency (1<<1), provided
that 1 <<te,. The total magnetic moment produced by free
electrons is Mpg,+M(h)=xs(T)hd. At zero temperature
xs(T=0)=0 and M(h)=—M py,;= xyhd, i.c., the induced mag-
netic moment M(h) totally screens the part Mg, of the in-
trinsic moment My, produced by free electrons. An interest-
ing feature is that M, is located in the ferromagnet,
whereas M (h) is spread over the distance & from the F layer
in the superconductor. Since for 1 <€, and d <& the exact
order parameter A(x) is only slightly suppressed due to the
ferromagnetic proximity effect, this result is justified even if
the self-consistency condition for A(x) is taken into account.

As the same result Eq. (2) was obtained in the opposite
diffusive limit for & << Eyy,, we make a conjecture that Eq. (2)
holds for arbitrary strength of potential disorder, provided the
general condition Eq. (3) is met. The universality of result
(2) is reminiscent of the properties of the bulk linear spin
susceptibility of the superconductor x4(7) [Eq. (15)]. Tt is
also independent of the strength of potential disorder.’

xs(T) = XN( wTE

D. Andreev states

The oscillations of induced magnetization are closely re-
lated to the properties of the energy spectrum of localized
Andreev states in the system.'3 The equation for Andreev
energy levels € | with the electron’s spin having the same
(T) and opposite (|) direction as the exchange field (corre-
sponding to + and — signs, respectively) reads

+h
L L (16)
EA|nx| A

where n is an integer. Note that in the case of ballistic system
this equation exactly coincides with Eq. (7) used for qualita-
tive considerations. Equation (16) is invariant under the pe-
riodic translation i/ (€4|n,|) — h/(€4|n,])+ 7k (k is integer) in
the same fashion as the Green’s function (11) is periodic in
H. In the limit d <& there exists only one level for a given
n, and projection of spin®’

€ (H)=+AcosH, Hel0,7], (17)

and periodically continued to all H. The states with H
€[0,7/2]+7n (€,>0, €, <0) contribute to the screening of
Mgy [sin2H>0, see Eq. (12)], whereas the states with H
e[n/2,m]+mn (e, <0, €, >0) give rise to the antiscreening
of Mgy (sin 2H<0). Due to the property

€ (/2 + mn + 6H) = € |(7/2 + mn — 6H),

S6H € [0, /2], such “up” and “down” states interchange in
the energy space but since the spin direction is “attached” to
them explicitly, this results in the opposite signs of contribu-
tions to M(h).
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E. Self-consistency of order parameter A(x)

As it has been mentioned, the oscillating behavior of
M(h) is insensitive to the exact shape of A(x) and therefore
persists if the self-consistency of A(x) is taken into account.
This is the case, because the periodic functions of H in Eq.
(11) arise from the solution of Eq. (10) in the F layer, where
A(x)=0 and the general solution can always be found explic-
itly. Due to this fact igg is a periodic sign-changing function
of H and, hence, M(h) is a quasiperiodic sign-changing func-
tion of i/ €4, independently of the exact shape of A(x). Since
for arbitrary T the proof is cumbersome, we illustrate it here
in the simplest case, when T is close to 7. In this limit one
can obtain the solution to Eq. (10) as an expansion in A(x).
In the lowest (quadratic) order we find for x>d:

] h 1 1
glon,x)=- 2%52 sin(2 )—

elnl) ?

Xf A(x’)e‘xvgdx’f Aly)e™dy,
X d

where é=vg|n,|/2|w|. This yields the form

M(h)=- f dt sin<2£t>F(t,h),
1 €A
where F(t,h) is a positive monotonically decreasing with
respect to ¢ envelope function. The above integral can be
both positive and negative depending on the value of h/¢€,.
This is especially clear for #/€,>1 when one can integrate
by parts to obtain

cos(2h/ey)

M(h) ~
*) 2hle,

F(1,h).
Therefore the induced magnetization is an oscillating func-
tion of the parameter 2h/ €, regardless of the exact form of

A(x).

IV. LOW SF INTERFACE TRANSPARENCY

Our assumptions about ideal transport properties of the
system (perfect SF interface transparency, ballistic electron
motion in the samples) are not crucial for the existence of
oscillations of induced magnetization. The oscillations of
M (h) exist for arbitrarily low SF-interface transparency (see
the Appendix). Moreover, they can exist in the presence of
bulk disorder in the sample.

To illustrate that we turn to the case of low SF interface
transparency t=t(n,) <1 (#(n,) is a transmittance coefficient,
see the Appendix). In this limit the proximity effect is weak
and one can take the effect of disorder into account by lin-
earizing the Eilenberger equation with collision term.>>26 We
assumed that superconductor is clean and ferromagnet is dis-
ordered and described by the mean free path / and scattering
time 7=1/vp.

The Eilenberger equation in the F region (0<x<d) for
the “up” component ¢;=¢ reads (we omit the index T here
for brevity):
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1
Vpn, o, 8 + (w—ih)7'3+2—<§>,§ =0, (18)
T

where (§)=1/2" dn,g(n,,x) is the angular averaging. In the
S region (x>d):

Uané’Xg/'i'[(J)TS‘FATz,g]:O. (19)

In the zeroth order in interface transparency [#(n,)=0] the
superconductor and ferromagnet are not linked and the solu-
tion is:

5(0)
F

g 0<x<d,

=sgn w3,
50 = >d
8s =[fsTa+8sT3 X .
Next, we present the Green’s function in the ferromagnet in
the form

§=g0 + 88,6¢ = 8g,m + g,y + SgsTs

and, leaving only linear in 8¢ terms in Eq. (18), arrive at the
following equation for &g:

Uanax5g+ |:(w— lh+ W)T%ég] + Sgn w[<5g>’7—3] =O'
27 2T

(20)

First we need to obtain a linear in ¢ solution for dg, in the F'
region. From Eq. (18) we get

Pnlddg, — e 08, = — ,(5g), (1)

where «,=1+2(|w|-ih sgn )7. The boundary condition
with vacuum reads

3,08,(x=0)=0. (22)

At the SF interface one must use Zaitsev boundary condi-
tions (Al) for nonideal interface transparency. In the limit
t<<1 one can expand them in ¢. First order in ¢ gives

t
8g1(n,x=d-0)= iz sgn w sgn n,f.

Using the 7, component of Eq. (20)
In,0,08,+ia,sgn wdg,; =0,

we arrive at the boundary condition for g, at the SF inter-
face

t(n,)
21|n,]

&x(ng(x=d_O) = fSaw' (23)
Equation (21) must be solved for x € [0,d] with boundary
conditions (22) and (23). Condition Eq. (22) allows one to
symmetrically continue g, to the [-d,0] interval. We per-
form the Fourier transformation?-26

+00

8g2(x) = X dgy(n)e,

n=—o0

where k,=mn/d (n is integer) and Fourier coefficients are
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d

1 )
0gx(n) =~ 5g2(X)e"""xdx.

2d

Calculating Fourier coefficient of both sides of Eq. (21) and
taking the boundary condition (23) into account, we get

852() = T2 (3a(m) + (= 1'eyin fin)fy).  (24)

where anlzniki+ai. Angular averaging of Eq. (24) gives

(_1)n%fseﬂ<|flet>
-

(0g,(n)) =
—a,\ —
L,
and thus
8g,(n) = (= 1)"8g5(n),
@\ 7
8g,(n) = L_fATfS ”1 +n e |. (25)
" 1-a,\ —
L

n

Next we solve Eq. (19) in the S region and get for 8¢
v (0)
=885

-2 \“‘Cw2+A2(x—d)/vF|nX\

8¢ = c(n,)(sgn n,1y — gsm + fs73)e

(26)

where c¢(n,) is a symmetric (yet unknown) function of n,.

It follows from Egs. (9) and (26) that the induced mag-
netic moment is given by [again we assume the case of a thin
F film (d<<&;) and therefore the induced magnetic moment
M (h) = Mg(h) is located in the superconductor]:

M(h) = ,LLBVF2’7TTEJ n,——= r sImc(n,).

Expanding Zaitsev’s boundary conditions to the second order
in ¢, we obtain

t(n,)
2

Imc(n,)=- Im 8g,(n,,x=d-0)

and therefore

fs8s
M(h) =— ugvpvpnT 2, ———
(h) MBVFUF % \’m
1
X f dnn,t(n,)Im 8g,(x=d).
0

The needed quantity is

2 (- 1)"dgy(n) = 2 dgaln).

n=-—00 n=—o0

9gr(x=d) =

Below we analyze two different limiting cases depending
on the strength of disorder. It appears that the influence of
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disorder on behavior of induced magnetization M(h) is gov-
erned by parameter /7 rather than d/I.

A. Quasiballistic case (h7>1)

If h>1, then a,/L,~1/a,~1/(h7)<1 and one can
neglect the first term in parentheses in Eq. (25) and get

0g,(n) = L_waTfs|”x|t-

n

Summing the series, we get

1
—ih +—
|w| — ih sgn o >

t
8g,(n,,n) = —fs coth
2 €A|nx|
and
1 f38s
M(h) == —ugvvpnT ), ——
LAl

1
|w| —ih sgn o + —
27

1
X J dn,n *(n,)Im coth
0 €aln,
For not too small disorder (d/[=1) [and a thin F layer
(d<&s)] we get

A%l
( 2+A2)2

: ) 2d\ .
X | dnnt (n)exp| — — |sin 2H.
0 nxl

One sees that oscillatory behavior is sustained, although the
magnitude of oscillations is suppressed in #(n,)<<1 and //d.
Extrapolation of this formula to not too small #~ 1 gives that
for moderate disorder /=d the magnitude of oscillations is
quite comparable to the ideal case Eq. (12). We also mention
here, that spin-orbit scattering should also suppress oscilla-
tions of M(h). Spin-orbit scattering is neglegible, if the cor-
responding mean free path Igo>d. This condition is always
satisfied for [=d, because Igo>1.

1
M(h) =~ ZIU“BVFUFWTE

B. Diffusive case (h7<1)

If h7<1 and [<d, then «,(1/L,)— 1 and the main con-
tribution to 8g,(n) comes from the first term in parentheses
in Eq. (25), which has a (diffusion) pole, and the second term
can be neglected:

1
2(|w| - ih sgn w) + DK’

382(n) = exfs(In.r)

where D=vzl/3 is the diffusion coefficient. Summing the
series, we get
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2(|w| - ik sgn w)
coth \| ————
3¢ N En

6gZ(x=d) =fS<|nx|t>2_l \/

2(|w| - ih sgn w)

Em,
and
f3g

M(h) = - pgvpvpmT, 2S > >
» VA" 4+ w

2 —ih sgn

coth (ol 1; gn )
X {|n|t(n,))>— Im Th
21 \/2(|w| —ih sgn w)
Ery

where Ep,=D/d is the Thouless energy. This result is valid,
if t<//d and h>te,. Since the conditions A7<<1 and [<d
correspond to “diffusive” regime, this result could be ob-
tained from the Usadel equation.

Interestingly, Im 8g,(x=d) does not oscillate as a function
of h, even though it contains trigonometric functions. There-
fore, we obtain that in the diffusive limit 27<€1 the induced
magnetization M(h) is not oscillatory and always negative.

V. CONCLUSION

In conclusion, we have shown that in SF systems the total
spin magnetic moment in the superconducting state can be
both smaller and larger than that in the normal state. The
effect is due to peculiar periodic properties of Andreev states
in SF systems that result in oscillatory sign-changing behav-
ior of the superconductivity-induced magnetization of the
system. The predicted effect is expected to be best observ-
able in relatively clean SF systems with good quality of in-
terfaces. Practically this means that the mean free path /
should be larger than the “exchange length” [.,.=vy/h. This
condition can be fulfilled in the case of sufficiently strong
ferromagnets. On the other hand [ should not be much
smaller than the thickness of the ferromagnetic film d. We
ignored a change in the magnetic moment M(h) caused by
the Meissner currents assuming that the thicknesses of the
ferromagnet and superconductor are smaller than the London

sinh(Q — iH)
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penetration length. In this case the contribution of these cur-
rents to M(h) is small. Spontaneous orbital effects in clean
SF structures were studied in Ref. 27.

Note added in proof: Recently, a paper by F. S. Bergeret,
A. L. Yeyati, and A. Martin-Rodero, Phys. Rev. B 72,
064524 (2005) was published, in which a similar problem
was considered. The main results of this work (the depen-
dence of the induced magnetization on the SF interface trans-
mittance) were obtained numerically.
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APPENDIX: CLEAN SAMPLES, ARBITRARY SF
INTERFACE TRANSPARENCY

Boundary conditions for nonideal interface transparency
have been derived by Zaitsev.?* They are expressed in terms
of the antisymmetric

d(”x’x) = [g/(n)ax) - g/(_ nx7x)]/2

and symmetric

S‘/(nx’x) = [g(nx’x) + g(_ nx’x)]/z

parts of Green’s function in the following way:

a[(1 =D, +5)7 + (3, =5 =1(5, - §) G, +50).
(A1)

Here d=d(n,,d), s,=s(n,,d+0), s_=5(n,,d—0). Antisym-
metric part d(n,,d) is continuous at the boundary x=d. The
transmittance coefficient #(n,) can vary from #(n,)=0 for
nontransparent interface (e.g., boundary with vacuum) to
t(n,)=1 for perfectly transparent interface.

In the case of clean samples and arbitrary transparency
t(n,) one must solve Eilenberger equation (10) with bound-
ary conditions (A1). We obtain (w>0)

&lw,n,x) = if§ Im

in the superconductor (x>d) and

\/[gs cosh(Q — iH) + (2/t(n,) — 1)sinh(Q) — iH) ? +f§ ex

Vo + A% x/d -1
p —

(A2)
€A |nx|

ggcosh(Q —iH) + (2/t(n,) — 1)sinh() — iH)

&5(w,n,,x) =2iIm

(A3)

y/[gs cosh(Q — iH) + (2/t(n,) — 1)sinh(Q — iH) ? +f§

in the ferromagnet (0<x<d). (For notation, see Secs. IIl A and III B. One can check that induced magnetization M (%)
following from these formulas is an oscillating sign-changing function for arbitrary #(n,), 0<f(n,) <1. The magnitude of
oscillations of M(h) is greatest at #(n,)=1 and decreases as #(n,) decreases; M(h)=0 at 1(n,)=0.
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