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We consider the spin and charge Josephson current between two nonuniform Fulde-Ferrel-Larkin-
Ovchinnikov superconductors with helimagnetic order. We demonstrate that the presence of the helimagnetic
phase generates a spin Josephson effect and leads to additional contributions to both single-particle and
Josephson charge current. It is shown that for such systems the ac effect differs more radically from the dc
effect than in the case of a Bardeen–Cooper–Schrieffer superconductor with helimagnetic order considered
earlier in the literature �M. L. Kulić and I. M. Kulić, Phys. Rev. B 63, 104503 �2001�� where a spin Josephson
current has also been found. In our system the most interesting effect occurs in the presence of an external
magnetic field and in absence of voltage, where we show that the charge Josephson current can be tuned to
zero while the spin Josephson current is nonvanishing. This provides a well controlled mechanism to generate
a spin supercurrent in absence of charge currents.
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I. INTRODUCTION

Collective spin and charge transport phenomena in or-
dered many-particle systems are of great importance in mod-
ern condensed matter physics. Among them is the dissipa-
tionless, Cooper-pair driven, transport in superconductors
and in the superfluid 3He. One remarkable consequence of
the supercurrent phenomenon is the Josephson effect,1 which
predicts that a superflow exists between two superfluid sys-
tems �charged or not� separated by a weak link, and that its
value is proportional to the sine of the difference between the
phases of the complex order parameter across the link.

Recently, due to the growing interest in spintronics de-
vices, there were a number of works exploring the possibility
for dissipationless spin current.2–6 In singlet superconductors
it cannot occur because the total spin of the Cooper pair is
zero. However, in unconventional triplet superconductors
this may not be the case. Moreover, the B phase of superfluid
3He exhibits both mass and spin-1 supercurrents. The latter
was probed in an experiment where two 3He-B superfluids
were in contact through a weak link.7 This led to the obser-
vation of a spin Josephson effect, thus establishing the exis-
tence of spin supercurrents in the B phase of superfluid 3He.
More recently it was pointed out that a spin Josephson effect
between two triplet ferromagnetic superconductors may
occur.8

In the abovementioned scenarios of phase coherence in
systems with fermionic pairing the order parameter is uni-
form. Superconductivity with nonuniform order parameter
occurs, for example, in the presence of an exchange field.
This class of superconductors is well described by the so-
called Fulde–Ferrel–Larkin–Ovchinnikov �FFLO� state.9,10

Experimentally, it should occur in extremely high-field su-
perconductors, which are obviously of high practical use.

Recently, strong evidence has been found that a FFLO state
might be realized in the quasi-two-dimensional heavy-
fermion superconductor CeCoIn5

11,12 for a magnetic field ap-
plied along the ab plane. In this respect, the coexistence of a
helimagnetic phase induced by the in-plane magnetic field,
or as an intrinsic order parameter, may result in various in-
teresting transport phenomena similar to some of the 3He
features, though the system considered is in a singlet state.

In this paper we analyze the spin and charge tunneling
processes between two FFLO-like helimagnetic supercon-
ductors and find that the spin-flip processes associated to the
helimagnetic phase result in spin and charge tunneling of the
Josephson type, i.e., the phase differences of the supercon-
ducting and helimagnetic orders are involved in the tunnel
process. Previously a similar analysis was undertaken for
helimagnetic superconductors with a uniform superconduct-
ing order parameter.13 In the case of vanishing voltage our
results reduce essentially to the ones obtained in Ref. 13.
However, at nonzero voltages the corresponding ac Joseph-
son effect in nonuniform helimagnetic superconductors
changes the physics more drastically than in the case of
Bardeen–Cooper–Schrieffer superconductors. We will also
study the effect of a nonzero magnetic field in the Josephson
currents at zero voltage. It will be shown that the magnetic
field can be used to tune the charge Josephson current to
zero, while still having a nonzero spin Josephson current. In
this way we provide a mechanism by which a spin supercur-
rent exists in the absence of charge currents.

The plan of the paper is as follows. In Sec. II we briefly
discuss the Josephson effect between two FFLO supercon-
ductors from the Ginzburg–Landau theory for the FFLO
state. Section III introduces our model for a nonuniform he-
limagnetic superconductor. There we derive the Green func-
tions of the theory using mean-field approach. In Sec. IV the
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single-particle and Josephson charge and spin currents are
derived using linear response. The effect of an external mag-
netic field is considered in Sec. V. Our conclusions are pre-
sented in Sec. VI.

II. JOSEPHSON EFFECT BETWEEN TWO NONUNIFORM
SUPERCONDUCTORS

In order to gain some insight into the physics of the Jo-
sephson effect between nonuniform superconductors, let us
consider first a FFLO superconductor, where the exchange
field is uniform. For this situation a Ginzburg–Landau free
energy has been derived in Ref. 14. We can use this result to
obtain the charge supercurrent in the absence of magnetic
field14

j = − i2e�� + �� − 2�����2���* � � − � � �*�

− 4ie����*�2� − ���2�*� , �1�

where �, �, �, and � are phenomenological parameters.
When two such FFLO superconductors are connected
through a tunnel junction, we can consider the charge flow
from the left to the right subsystems with appropriate bound-
ary conditions at the tunnel junction. The procedure is simi-
lar to the case of ordinary uniform superconductors, except
that the above current must be used instead. Let us consider
the x component of the current jL coming from the left side
of the junction, which is given by the expression �1� along
the x direction, with � replaced by �L. At lowest order we
have the boundary conditions �x�L=��R and �x

2�L=��x�R at
the tunnel junction, where �R is the order parameter of the
right subsystem and � is a parameter depending on the de-
tails of the junction. By assuming an order parameter of the
Fulde–Ferrel type, we can approximately write �L�r�
=�0ei�	L+q·r� and �R�r�=�0ei�	R+q·r�, with �0=const. Note that
we are assuming that both sides are made with the same
material, so that the amplitude �0 is the same on either side.
The current flowing through the junction is then

jLx = 4e��0
2�2�qx

2 + � + �� − 2���0
2�sin 
	 , �2�

where 
	�	R−	L. Note that the amplitude of the Josephson
current depends on the FFLO characteristic momentum. The
presence of a Josephson effect between two FFLO supercon-
ductors is in contrast with the situation of a tunnel junction
between a FFLO superconductor and a superconductor hav-
ing a uniform order parameter. In such a case, it can be
shown that the Josephson effect is suppressed, since the uni-
form state is not able to balance the spatial oscillations from
the FFLO state.15

III. NONUNIFORM HELIMAGNETIC
SUPERCONDUCTORS

A. Helimagnetic superconductors

The study of helimagnetic superconductors has a long
story, mainly associated with heavy fermion materials. Par-

ticularly interesting is the following model introduced a long
time ago,16 whose free energy is given by

F = ���− i2eA���2 + a���2 +
b

2
���4 +

1

2
��M�2 +

r

2
M2

+
u

8
�M2�2 +

1

8�
�� � A − 4�M�2 �3�

where M is the macroscopic magnetization. The above free
energy admits a mean-field solution with a helical magneti-
cally ordered state and a uniform superconducting order pa-
rameter. A nonuniform order parameter of the Fulde–Ferrel
type, ��r�=�0eiq·r, does not work in this case, since the
wave-vector q can be gauged away through a gauge trans-
formation A→A+q /2e. Thus, for the above model a pos-
sible nonuniformity of the superconducting order parameter
does not contain any additional physics with respect to the
uniform case, at least not at the macroscopic level.

A mean-field microscopic model having a uniform super-
conducting order parameter and helimagnetic order would
have, in an easy-plane configuration, the Hamiltonian

H =
1

2m
�


� c
†�r� · �c�r� − ��



c
†�r�c�r� + 
0c↑

†�r�c↓
†�r�

+ hqeiq·rc↑
†�r�c↓�r� + h.c. �4�

The transformation c→eiq·r/2c produces a spin current
response, since the Hamiltonian becomes

H =
1

2m
�


� c
†�r� · �c�r� − �� −

q2

8m
	 � �



c
†�r�c�r�

+ 
0c↑
†�r�c↓

†�r� + hqc↑
†�r�c↓�r� + h.c. − q · �j↑ − j↓� , �5�

where

j =
i

4m
�c

† � c − ��c
†�c� �6�

is the current for the spin  fermion. Thus, although in the
above microscopic model there are no charge currents in the
absence of electromagnetic coupling �the momentum of the
Cooper pairs is zero�, there is a spin current. However, if in
the Hamiltonian �4� 
0 is replaced by a Fulde–Ferrel mean-
field order parameter 
peip·r and the transformation c

→ei�p+q·r/2�c is done, we obtain a charge current response
in addition to the spin current one, i.e.,

H =
1

2m
�


� c
†�r� · �c�r� − �



� −

�p + q�2

8m
�

� c
†�r�c�r� + 
pc↑

†�r�c↓
†�r� + hqc↑

†�r�c↓�r� + h.c.

− q · �j↑ − j↓� − p · �j↑ + j↓� . �7�

From the above equation we see that there is an excess ki-
netic energy of amount �p+q�2 / �8m� and �p−q�2 / �8m� for

EREMIN, NOGUEIRA, AND TARENTO PHYSICAL REVIEW B 73, 054507 �2006�

054507-2



the spin up and down electrons, respectively. Setting p=q
has the effect of producing a �charge� current response only
for the up spin electrons while adding no extra kinetic energy
to the down spin electrons. The situation in such a state is the
one similar to injecting fully polarized electrons in a sample.
An important additional property of the p=q state is that the
magnetic order parameter �ck+q/2↑

† ck−q/2↓ can be transformed
in the superconducting one �ck+q/2↑

† c−k+q/2↓
†  through a

particle-hole transformation in the down spin channel, i.e.,
ck−q/2↓→c−k+q/2↓

† . In other words, the corresponding order
parameters can be rotated into one another. The magnetic and
superconducting order parameters with a same helical pattern
are more coherent: a nonuniform Cooper pair breaking is
likely to imply a decay into the helimagnetic state. Due to
these interesting properties, we will consider from now on a
mean-field microscopic model where both superconducting
and magnetic order parameters have the same helical pattern.

Finally, we would like to stress here that there is no con-
tradiction between Eqs. �3� and �7�. As a matter of fact, Eq.
�3� is not suitable to describe a superconductor with a non-
uniform superconducting order parameter. Instead, another
form of the free energy has to be used,14 since in this case
higher order derivatives have to be taken into account.

B. Green’s functions for nonuniform helimagnetic
superconductors

Following the discussion of the previous subsection, let us
consider a FFLO-like superconductor with a helimagnetic
molecular field. The mean-field Hamiltonian is given in mo-
mentum space by

HMF = �
k

�kck
† ck + �

k

q

*c−k+q/2↓ck+q/2↑

+ �
k

hqck+q/2↑
† ck−q/2↓ + h.c., �8�

where �k is the quadratic dispersion of the free electrons. We
are assuming that the oscillation of the superconducting con-
densate is characterized by a single wave vector q, i.e.,
��r��eiq·r;9 hq is a complex mean-field variable describing
the helimagnetic phase characterized by the electron-hole
singlet pairing �ck+q/2↑

† ck−q/2↓. As already discussed, in our
model both the superconducting and helimagnetic order pa-
rameters are modulated by the same wave-vector q. This is
important, since for q=0 no coexistence between magnetic
and superconducting order will be possible within our model.

Generally, helimagnetism can be induced by the external
inhomogeneous magnetic field applied along the x direction
or arising from internal �spiral� magnetic order. In the ab-
sence of superconductivity, our theory reduces to the one
considered in Ref. 4, which corresponds to a magnetic ana-
log of the FFLO state. There the existence of persistent spin
currents was demonstrated.

From the mean-field Hamiltonian we see that in the
present case not only is the gauge symmetry spontaneously
broken, leading to a lack of particle number conservation,

but also the spin conservation symmetry is broken due to the
helimagnetic phase. Both averages are complex and have
therefore an amplitude and a phase, i.e., 
q= �
q�e−i	 and
hq= �hq�e−i�. In a bulk system both phases can be gauged
away through a global gauge transformation. This is of
course not the case when we consider the tunneling pro-
cesses between two superconductors and, as we will show
later, the phase of the helimagnetic order parameter will play
an important role.

The mean-field Hamiltonian �8� can be conveniently re-
written in matrix form as HMF= �1/2��k�k

†Mk�k, where �k
†

= �ck+q/2↑
† ck−q/2↓

† c−k+q/2↓ c−k−q/2↑� and

Mk = �
�k+q/2 �hq�e−i� �
q�e−i	 0

�hq�ei� �k−q/2 0 − �
q�e−i	

�
q�ei	 0 − �−k+q/2 − �hq�e−i�

0 − �
q�ei	 − �hq�e−i� − �−k−q/2

� . �9�

The matrix Mk can be easily diagonalized, which leads to the
following energy spectrum:

Ek
�,� = ���ks

2 + �
q�2 + ���ka
2 + �hq�2 �10�

and � ,�= ±1. Here we introduce �ks= ��k+q/2+�k−q/2� /2 and
�ka= ��k+q/2−�k−q/2� /2 similarly to Refs. 17 and 18. Since
we assume the quadratic dispersion for the free electrons, we
have �ks=�k+q2 /8m and �ka=vFq /2 cos x and x is the angle
between k and q.

The matrix Green’s function is obtained by inverting the
matrix −i�I+Mk, where I is the identity matrix. The inde-
pendent elements of the matrix Green’s function are

G1
↑,↑�i�n,k� � �ck+q/2↑

† �i��ck+q/2↑�i��

=
�uk

++�2

i�n − E1k
+

�uk
−−�2

i�n + E1k

+
�uk

+−�2

i�n − E2k
+

�uk
−+�2

i�n + E2k
, �11�

G2
↑,↓�i�n,k�

� �ck+q/2↑
† �i��ck−q/2↓�i��

= −
hqe−i��E1kE2k + 2�i�n��ks + �i�n�2�

�i�n − E1k��i�n − E2k��i�n + E1k��i�n + E2k�
,

�12�

F1
↑,↓�i�n,k� � �ck+q/2↑

† �i��c−k+q/2↓
† �− i��

= −

qe−i	��i�n�2 − E1kE2k − 2�i�n��ka�

�i�n − E1k��i�n − E2k��i�n + E1k��i�n + E2k�
,

�13�

SPIN AND CHARGE JOSEPHSON EFFECTS BETWEEN¼ PHYSICAL REVIEW B 73, 054507 �2006�

054507-3



F2
↑,↑�i�n,k� � �ck+q/2↑

† �i��c−k−q/2↑
† �− i��

=
2hqe−i�
qe−i	�i�n�

�i�n − E1k��i�n − E2k��i�n + E1k��i�n + E2k�
,

�14�

where we have set E1k�Ek
+,+ and E2k�Ek

+,− and the gener-
alized Bogolyubov coefficients are

uk
�� =

1

2
1 + �2��� − 1�
4�ka�ks

E1k
2 − E2k

2 +
2��ks

E1k + E2k

+
2��ka

E1k − E2k
�1/2

, �15�

where � ,�= ±1.

IV. JOSEPHSON EFFECT BETWEEN TWO NONUNIFORM
HELIMAGNETIC SUPERCONDUCTORS

We will study first the charge single-particle and Cooper-
pair Josephson tunneling processes between two FFLO su-
perconductors. We use the standard tunneling
Hamiltonian19,20 in the form

HT = �
kp

Tk,pck
† cp + h.c., �16�

where k and p label single electron momentum eigenstates in
the left and right subsystems, respectively. The charge cur-
rent is given by Icharge=−e�ṄL�t�, where NL=�k,ck

† ck and

the spin current is given by Ispin=−�B�Ṡz�t�, where Sz

=�k,ck
† ck and �B is the Bohr magneton. In the linear

response regime the charge and spin currents are given by
Is

charge=2e Im�Xcharge�eV+ i��� and Is
spin=2�B Im�Xspin�eV

+ i���, where �→0+. In terms of the Matsubara formalism at
lowest order one gets

Xcharge,spin�i�� = −
1

�
�
�n

�
k,p

��Tk+q/2,p+q/2�2G1
↑,↑�k,i�n�G1

↑,↑�p,i�n − i�m� ± �Tk−q/2,p−q/2�2G1
↓,↓�k,i�n�G1

↓,↓�p,i�n − i�m�

+ Tk+q/2,p+q/2Tk−q/2,p−q/2
* G2

↑,↓�k,i�n�G2
↓,↑�p,i�n − i�m� ± Tk−q/2,p−q/2Tk+q/2,p+q/2

* G2
↓,↑�k,i�n�G2

↑,↓�p,i�n − i�m�� ,

�17�

where �, � refer to the charge and spin current, respectively.
Besides the usual contribution to the single particle charge
current involving the product of Green’s functions G↑↑ and
G↓↓ from the left and right sides of the junction, there are
extra contributions involving the Green’s functions G↑↓ and
G↓↑ which give a term proportional to ei��L−�R�. In particular,
after straightforward calculations we get for the single-
particle charge current

Is
charge�eV� = I0�eV� + I1�eV�cos 
� , �18�

where I0�eV� is the single particle current

I0�eV� = 2�e�T�2 �
k,p,i�j

�1 +
�ka�pa

��ka
2 + �hq�2��pa + �hq�2

	
����eV − Eik − Eip� − ��eV + Eik + Eip��

+ �1 −
�ka�pa

��ka
2 + �hq�2��pa + �hq�2

	
����eV − Eik − Ejp� − ��eV + Eik + Ejp�� �19�

and for I1
charge�eV� we find

I1�eV� = 2�e�T�2 �
k,p,i�j

� �hq�2

��ka
2 + �hq�2��pa + �hq�2

	���eV

− Eik − Eip� − ��eV + Eik + Eip� − ��eV − Eik − Ejp�

− ��eV + Eik + Ejp�� �20�

while for the single-particle spin current we obtain

Is
spin�eV� = Ĩ0�eV�sin 
� �21�

with

Ĩ0�eV� = 2�B�T�2 �
k,p,i�j

� �hq�2

��ka
2 + �hq�2��pa

2 + �hq�2
	

� 
 1

eV + Eik + Eip
−

1

eV − Eik − Eip

− � 1

eV + Eik + Ejp
−

1

eV − Eik − Ejp
	� . �22�

The first difference in the single-particle charge current
occurs due to the FFLO state itself which would be present
also in the case of the uniform exchange field. Most interest-
ingly, the presence of the helimagnetic phase and the corre-
sponding breaking of the SU�2� symmetry induces an addi-
tional term in the single-particle charge current proportional
to cos 
� and generated the corresponding term in the spin
current proportional to sin 
�. The form of the single-
particle spin current resembles the one in the so-called “spin
Josephson effect” in ferromagnetic/ferromagnetic junctions5

which, strictly speaking, is still a single-particle transport.
There the charge current vanishes for zero voltage while the
spin current remains, leading in this way to the appearance of
a persistent spin current across the junction.
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For the Cooper-pair tunneling the charge and spin Josephson currents are determined by IJ
charge

=2e Im�e−2eVt/��charge�eV�� and IJ
spin=2e Im�e−2eVt/��spin�eV��, where

�charge,spin�i�� = −
1

�
�
�n

�
k,p

�Tk+q/2,p+q/2T−k+q/2,−p+q/2F1
↑,↓�k,i�n�F1

↓,↑*�p,i�n

− i�m� ± Tk−q/2,p−q/2T−k−q/2,−p−q/2F1
↓,↑�k,i�n�F1

↑,↓*�p,i�n − i�m� + Tk+q/2,p+q/2T−k−q/2,−p−q/2

� F2
↑,↑�k,i�n�F2

↑,↑*�p,i�n − i�m� ± Tk−q/2,p−q/2T−k+q/2,−p+q/2F2
↓,↓�k,i�n�F2

↓,↓*�p,i�n − i�m�� . �23�

Once more � or � refer to the charge and spin Josephson current, respectively. Evaluating the sum over Matsubara’s
frequencies the charge current can be found

IJ
charge�eV� = �J1�eV� + J2�eV�cos 
��sin�
	 + 2eVt� + �J3�eV� + J4�eV�cos 
��cos�
	 + 2eVt� , �24�

where the explicit expressions of the coefficients J1�eV�, and J2�eV� are given as

J1�eV� = 2e�T�2 �
k,p,i�j

�
q�2

��ks
2 + �
q�2��ps

2 + �
q�2
�1 −
�ka�pa

��ka
2 + �hq�2��pa

2 + �hq�2
	� 1

eV + Eik + Eip
−

1

eV − Eik − Eip
	

+ �1 +
�ka�pa

��ka
2 + �hq�2��pa

2 + �hq�2
	� 1

eV + Eik + Ejp
−

1

eV − Eik − Ejp
	� �25�

and

J2�eV� = 2e�T�2 �
k,p,i�j

�
q�2

��ks
2 + �
q�2��ps

2 + �
q�2
� �hq�2

��ka
2 + �hq�2��pa

2 + �hq�2
	
� 1

eV + Eik + Ejp
−

1

eV − Eik − Ejp
	

− � 1

eV + Eik + Eip
−

1

eV − Eik − Eip
	� . �26�

J3�eV� and J4�eV� are found similarly

J3�eV� = 2�e�T�2 �
k,p,i�j

�
q�2

��ks
2 + �
q�2��ps

2 + �
q�2��1 −
�ka�pa

��ka
2 + �hq�2��pa

2 + �hq�2
	���eV − Eik − Eip� − ��eV + Eik + Eip��

+ �1 +
�ka�pa

��ka
2 + �hq�2��pa

2 + �hq�2
	���eV − Eik − Ejp� − ��eV + Eik + Ejp��� �27�

and

J4�eV� = 2�e�T�2 �
k,p,i�j

�
q�2

��ks
2 + �
q�2��ps

2 + �
q�2
� �hq�2

��ka
2 + �hq�2��pa

2 + �hq�2
	���eV − Eik − Ejp� − ��eV + Eik + Ejp�

− ��eV − Eik − Eip� + ��eV + Eik + Eip�� . �28�

Since J3�0�=0 and J4�0�=0, Eq. �24� becomes for V=0

IJ
charge�0� = �J1�0� + J2�0�cos 
��sin 
	 . �29�

The above result is identical, up to the precise expressions of the current amplitudes, to the zero voltage result of Ref. 13,
though there the superconducting order parameter is uniform. Thus, a nonzero voltage in helimagnetic FFLO-like supercon-
ductors affects the Josephson current in an essential way.

For the Josephson spin current we find

IJ
spin�eV� = sin 
��J̃1�eV�cos�
	 + 2eVt� + J̃2�eV�sin�
	 + 2eVt�� . �30�

where

J̃1�eV� = 2�B�T�2�
k,p

�
q�2�hq�2

��ks
2 + �
q�2��ps

2 + �
q�2��ka
2 + �hq�2��pa

2 + �hq�2

�
 1

eV + Eik + Eip
−

1

eV − Eik − Eip
− � 1

eV + Eik + Ejp
−

1

eV − Eik − Ejp
	� �31�

and
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J̃2�eV� = 2��B�T�2�
k,p

�
q�2�hq�2

��ks
2 + �
q�2��ps

2 + �
q�2��ka
2 + �hq�2��pa

2 + �hq�2

����eV − Eik − Eip� − ��eV + Eik + Eip� − ��eV − Eik − Ejp� + ��eV + Eik + Ejp�� �32�

At zero voltage the spin Josephson current becomes

IJ
spin�0� = J̃1�0�cos 
	 sin 
� . �33�

We see that the term proportional to sin 
� cos 
	 vanishes for zero voltage because J̃2�0�=0, similarly to the charge
Josephson current case. This result also agrees with the corresponding one in Ref. 13. Note once more the crucial role played
by the voltage in this system.

V. EFFECT OF AN EXTERNAL MAGNETIC FIELD

Interesting results follow from Eqs. �29� and �33� in the
presence of an external magnetic field H perpendicular to the
current direction, say x direction, and in the plane of the
junction. By assuming that the external field points in the z
direction, it is straightforward to derive the results

IJ
charge�0� = �J1�0� + J2�0�cos 
��sin�
	 +

2�Hyl

�0
	 ,

�34�

IJ
spin�0� = J�0�cos�
	 +

2�Hyl

�0
	sin 
� , �35�

where l=2�+d, with � being the penetration depth and d the
junction thickness. �0 is the elementary flux quantum. In-
deed, the magnetic field can only couple to the phase of the
superconducting order parameter. The helimagnetic order pa-
rameter is neutral and for this reason its phase cannot couple
to the external magnetic field. If the junction has a cross
section of area LyLz, the total currents IJ,tot

charge and IJ,tot
spin flowing

through the junction are obtained by integrating the y vari-
able over the interval �0,Ly�

IJ,tot
charge = �I1c + I2c cos 
��

�0

��
sin���

�0
	sin�
	 +

��

�0
	 ,

�36�

IJ,tot
spin = Ic

�0

��
sin���

�0
	cos�
	 +

��

�0
	sin 
� , �37�

where I1c=J1�0�LyLz, I2c=J2�0�LyLz, Ic=J�0�LyLz, and �
=HLyl.

From Eqs. �36� and �37� we see that the phase difference

	 can be adjusted in such a way to vanish the spin Joseph-
son current �37�. Remarkably, the opposite situation is also
possible, i.e., the vanishing of the charge Josephson current

by adjusting the phase difference 
	. This constitutes an
example of a system with a spin current but no charge cur-
rent.

VI. CONCLUSION

We have shown that dissipationless dc and ac Josephson
spin currents exist between two nonuniform superconductors
with helimagnetic order. For the spin current the nonzero
average �c↑

†c↓ plays a crucial role. We expect that effects
similar to the ones discussed here may also occur
in some superconductor/ferromagnet/insulator/ferromagnet/
superconductor heterostructures.13,21,22

Measuring a spin current is presently a considerable chal-
lenge. One way could be to detect the electric fields induced
by such a current.5,23 However, in our case the signature of
the spin current would be a corresponding modulation of the
charge Josephson current as follows from Eq. �28�.

One of the main results of our analysis was discussed in
Sec. IV, namely, the possibility of using an external magnetic
field to tune the charge Josephson current to zero, while the
spin Josephson current remains nonvanishing. In such a situ-
ation the resulting spin Josephson effect is very similar to the
one discussed recently in the context of ferromagnet/
ferromagnet tunnel junctions.5 However, here we have a
much better control of the system through the external mag-
netic field. This result presumably holds also in the case of a
helimagnetic superconductor with a uniform order
parameter.13

The model we have studied here assumes the coexistence
of a FFLO state with helimagnetism. In order to fully con-
firm the validity of this scenario, further theoretical and ex-
perimental investigation is necessary.
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