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The nature and effects of the Goldstone mode in the ordered phase of helical or chiral itinerant magnets such
as MnSi are investigated theoretically. It is shown that the Goldstone mode, or helimagnon, is a propagating
mode with a highly anisotropic dispersion relation, in analogy to the Goldstone mode in chiral liquid crystals.
Starting from a microscopic theory, a comprehensive effective theory is developed that allows for an explicit
description of the helically ordered phase, including the helimagnons, for both classical and quantum helimag-
nets. The directly observable dynamical spin susceptibility, which reflects the properties of the helimagnon, is

calculated.
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I. INTRODUCTION

Ferromagnetism and antiferromagnetism are the most
common and well-known examples of long-range magnetic
order in solids. The metallic ferromagnets Fe and Ni in par-
ticular are among the most important and well-studied mag-
netic materials. In the ordered phase, where the rotational
symmetry in spin space is spontaneously broken, one finds
soft modes in accordance with Goldstone’s theorem: namely,
ferromagnetic magnons. The latter are propagating modes
with a dispersion relation, or frequency-wave vector relation,
Q ~k? in the long-wavelength limit. In antiferromagnets, the
corresponding antiferromagnetic magnons have a dispersion
relation Q ~ |k|. In rotationally invariant models that ignore
the spin-orbit coupling of the electronic spin to the underly-
ing lattice structure these relations hold to arbitrarily small
frequencies () and wave vectors k. The lattice structure ulti-
mately breaks the rotational symmetry and gives the Gold-
stone modes a mass. In ferromagnets, the low-energy disper-
sion relation is also modified by the induced magnetic field,
which generates a domain structure. These are very small
effects, however, and magnons that are soft for all practical
purposes are clearly observed, directly via neutron scattering
and indirectly via their contribution to, e.g., the specific
heat.! These observations illustrate important concepts of
symmetries in systems with many degrees of freedom with
ramifications that go far beyond the realm of solid-state
physics.>?

In systems where the lattice lacks inversion symmetry ad-
ditional effects occur that are independent of the spin rota-
tional symmetry. This is due to terms in the action that are
invariant under simultaneous rotations of real space and M,
with M the magnetic order parameter, but break spatial in-
version symmetry. Microscopically, such terms arise from
the spin-orbit interaction and their precise functional form
depends on the lattice structure. One important class of such
terms, which is realized in the metallic compound MnSi, is
of the form M- (V X M).*> They are known to lead to helical
or spiral order in the ground state, where the magnetization is
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ferromagnetically ordered in the planes perpendicular to
some direction ¢, with a helical modulation of wavelength
27/|q| along the g axis.®’ In MnSi, which displays helical
order below a temperature 7.~30 K at ambient pressure,
21r/|q| =~ 180 A.® Application of hydrostatic pressure p sup-
presses 1., which goes to zero at a critical pressure p,
~ 14 kbar.?

In addition to the helical order, which is well understood,
MnSi shows many strange properties that have attracted
much attention lately and so far lack explanations. Arguably
the most prominent of these features is a pronounced non-
Fermi-liquid behavior of the resistivity in the disordered
phase at low temperatures for p>p_.'? In part of the region
where non-Fermi-liquid behavior is observed, neutron scat-
tering shows “partial” magnetic order where helices still ex-
ist on intermediate length scales but have lost their long-
range directional order.!! Such non-Fermi-liquid behavior is
not observed in other low-temperature magnets. Since the
helical order is the only obvious feature that sets MnSi apart
from these other materials, it is natural to speculate that there
is some connection between the helical order and the trans-
port anomalies. In this context it is surprising that some basic
properties and effects of the helically ordered state, and in
particular of the helical Goldstone mode, which we will refer
to as a helimagnon in analogy to the ferromagnons and an-
tiferromagnons mentioned above, are not known. The pur-
pose of the present paper is to address this issue. We will
identify the helimagnon and determine its properties, in par-
ticular its dispersion relation and damping properties. We
also calculate the spin susceptibility, which is directly ob-
servable and simply related to the helimagnon. The effects of
this soft mode on various other observables will be explored
in a separate paper.'? A brief account of some of our results,
as well as some of their consequences, has been given in Ref.
13.

One of our goals is to develop an effective theory for
itinerant quantum helimagnets. We will do so by deriving a
quantum Ginzburg-Landau theory whose coefficients are
given in terms of microscopic electronic correlation func-
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tions. Such a theory has two advantages over a purely phe-
nomenological treatment based on symmetry arguments
alone. First, it allows for a semiquantitative analysis, since
the coefficients of the Ginzburg-Landau theory can be ex-
pressed in terms of microscopic parameters. Second, it de-
rives all of the ingredients necessary for calculating the ther-
modynamic and transport properties of an itinerant
helimagnet in the ordered phase using many-body perturba-
tion theory techniques.'?

The organization of the remainder of this paper is as fol-
lows. In Sec. II we use an analogy with chiral liquid crystals
to make an educated guess about the wave vector depen-
dence of fluctuations in helimagnets and employ time-
dependent Ginzburg-Landau theory to find the dynamics. In
Sec. IIT we derive the static properties from a classical
Ginzburg-Landau theory. In Sec. IV we start with a micro-
scopic quantum mechanical description and derive an effec-
tive quantum theory for chiral magnets. We then show that
all of the qualitative results obtained from the simple argu-
ments in Sec. I follow from this theory, with the additional
benefit that parameter values can be determined semiquanti-
tatively. We conclude in Sec. V with a summary and a dis-
cussion of our results. Some technical details are relegated to
three appendixes.

I1. SIMPLE PHYSICAL ARGUMENTS AND RESULTS

Helimagnets are not the only macroscopic systems that
display chirality; another example is cholesteric liquid crys-
tals whose director order parameter is arranged in a helical
pattern analogous to that followed by the magnetization in a
helimagnet.'* There are some important differences between
magnets and liquid crystals. For instance, the two orienta-
tions of the director order parameter in the latter are equiva-
lent, which necessitates a description in terms of a rank-2
tensor, rather than a vector as in magnets.15 Also, the chiral-
ity in cholesteric liquid crystals is a consequence of the chi-
ral properties of the constituting molecules, whereas in mag-
nets it is a result of interactions between the electrons and
atoms of the underlying lattice. However, these differences
are not expected to be relevant for some basic properties of
the Goldstone mode that must be present in the helical state
of either system.'® We will therefore start by using the
known hydrodynamic properties of cholesteric liquid crystals
to motivate a guess of the nature of the Goldstone mode in
helimagnets. In Sec. III we will see that the results obtained
in this way are indeed confirmed by an explicit calculation.
The arguments employed in this section are phenomenologi-
cal in nature and very general. We therefore expect them to
apply equally to classical helimagnets and to quantum heli-
magnets at 7=0, as is the case for analogous arguments for
ferromagnetic and antiferromagnetic magnons.

A. Statics

Consider a classical magnet with an order parameter field
M(x) and an action®’
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S[M] = f deMz(x) + g[VM(x)]Z
+ %M(x) IV X M(x)]+ %[M2(x)]2 . @0

This is a classical ¢* theory with a chiral term with coupling
constant c. Physically, ¢ is proportional to the spin-orbit cou-
pling strength ggo. The expectation value of M is propor-
tional to the magnetization, and it is easy to see that a helical
field configuration constitutes a saddle-point solution of the
action given by Eq. (2.1),

M, (x) = mg(e; cos g - x +e;sing - x) (2.2a)

=my(cos gz,sin gz,0). (2.2b)
In Eq. (2.2a), e, and e, are two unit vectors that are perpen-
dicular to each other and to the pitch vector ¢q. The chirality
of the dreibein {q,e,e,} reflects the chirality of the underly-
ing lattice structure and is encoded in the coefficient ¢ in Eq.
(2.1), with the sign of ¢ determining the handedness of the
chiral structure. In Eq. (2.2b) we have chosen a coordinate
system such that {e,,e,,q/q}={%,¥,Z}, a choice we will use
for all explicit calculations. We will further choose, without
loss of generality, ¢>0. The free energy is minimized by
g=c/2a, and the pitch wave number is thus proportional to
8so-

Now consider fluctuations about this saddle point. An ob-
vious guess for the soft mode associated with the ordered
helical state are phase fluctuations of the form

M (x) = my(cos[qz + $(x)].sin[gz + ¢(x)].0)
=M, (x) + myeh(x) (= sin gz,cos ¢z,0) + O(¢?).
(2.3)

These phase fluctuations are indeed soft; by substituting Eq.
(2.3) in Eq. (2.1), one finds an effective action S.ql ]
=const X [dx[V ¢(x)]>. However, this cannot be the correct
answer, which can be seen as follows.!” Consider a simple
rotation of the planes containing the spins such that their
normal changes from (0,0,9) to (a;,®,,q), which corre-
sponds to a phase fluctuation ¢(x)=a;x+a,y. This cannot
cost any energy, yet (V¢)2:a%+a§¢0 for this particular
phase fluctuation. The problem is the dependence of the ef-
fective action on V¢, where V=(V,d,). The soft mode
must therefore be some generalized phase u(x) with a sche-
matic structure

u(x) ~ ¢(x) +V_ o(x), (2.4)
where ¢(x) represents the z component of the order param-
eter vector M(x). The lowest-order dependence on perpen-
dicular gradients allowed by rotational invariance is V7 u,
and the extra term in u proportional to V, will ensure that
this requirement is fulfilled. The correct effective action thus
is expected to have the form
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where ¢, and ¢ are elastic constants. The Goldstone mode
corresponding to helical order must therefore have an aniso-
tropic dispersion relation: it will be softer in the direction
perpendicular to the pitch vector than in the longitudinal
direction.!® Separating wave vectors k=(k, ,k.) into trans-
verse and longitudinal components, the longitudinal wave
number will scale as the transverse wave number squared,
k,~k* /q. The factor 1/4? in the transverse term in Eq. (2.5),
which serves to ensure that the constants ¢, and ¢, have the
same dimension, is the natural length scale to enter at this
point, since a nonzero pitch wave number is what is causing
the anisotropy in the first place. A detailed calculation for
cholesteric liquid crystals'® shows that this is indeed the cor-
rect answer, and we will see in Sec. III that the same is true
for helimagnets.

B. Dynamics

In order to determine the dynamics of the soft mode in a
simple phenomenological fashion we utilize the framework
of time-dependent Ginzburg-Landau theory.?’ Within this
formalism, the kinetic equation for the time-dependent gen-
eralization of the magnetization field M reads

OM(x,t) =— yM(x,t) X

5M(X) M(x,1)

+{(x,1),
M(y,r)

oS
J>@DQ y)gﬁ@;

(2.6)

with y a constant. The first term describes the precession of
a magnetic moment in the field provided by all other mag-
netic moments, D is a differential operator describing dissi-
pation that we will specify in Sec. II C, and ¢ is a random
Langevin force with zero mean, ({(x,7))=0, and a second
moment consistent with the fluctuation-dissipation theorem.

Now assume an equilibrium state given by Eq. (2.2b). In
considering deviations from the equilibrium state we must
take into account both the generalized phase modes at wave
vector g, which are soft since they are Goldstone modes, and
the modes at zero wave vector, which are soft due to spin
conservation. The latter we denote by m(x,f), and for the
former we use Eq. (2.3),2!

M(x,t) = M,(x) + m(x,t) + mou(x,1)(- sin gz,cos qz,0).
(2.7)

The action for u is the effective action given by Eq. (2.5),
and the action for m is a renormalized Ginzburg-Landau ac-
tion of which we will need only the Gaussian mass term. We
thus write

S[m,u] = % f dxm?(x) + Seefu]. (2.8)

The mass ry of the zero-wave-number mode that appears
here and in the remainder of this section is different from the
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coefficient r in Eq. (2.1), and we assume r,>0.?

We now use the kinetic equation (2.6) to calculate the
average deviations (m(x,r)) and (u(x,?)) from the equilib-
rium state. For simplicity we suppress both the averaging
brackets and the explicit time dependence in our notation,
and for the time being we neglect the dissipative term. With
summation over repeated indices implied, Eq. (2.6) yields

dms3(x)
; S ouly)
=~ yes;M (%) J d %&‘;j(x)
fd 55 { gu(y) . u(y)
TV ) D sy L T am ) oM ()
(2.9a)
and by using Eq. (2.7) in the identity
B Su(x) oM (z)
=)= [ @ oM ) ouly)
we find
( ] ou(x) Ou(x) ) 5
mp| — sin gz M) + €08 ¢z M, y) (x—y)
(2.9b)

Using Eq. (2.9b) in Eq. (2.9a) eliminates the integration, and
using Egs. (2.8) and (2.5) we find a relation between m5 and
u,

OSett

dms(x) =— 5 ) =—y(-c, 6'2 + CLVi/qz)u(x).

(2.10)

A second relation is obtained from the identity
oM (x)

o"tMl(x)zf Su(y)

By applying Eq. (2.6) to the left-hand side and using Egs.
(2.8) and (2.7), we obtain

oM (x) M (x)
| % 0=, [y

— o ().

or

Au(x) = yroms(x). (2.11)

Combining Egs. (2.10) and (2.11) we find a wave equation
&,Zu(x) =— Vro(- czﬁg + clVi/qz)u(x). (2.12)

This is the equation of motion for a harmonic oscillator with
a resonance frequency

(2.13)

———
wy(k) = yry* Ve, k2 +c kY /q?

and a susceptibility

054431-3



BELITZ, KIRKPATRICK, AND ROSCH

ta \ g

‘

'k,

®| O e & ®
@8@8@8

e?
|

2

o~qk, o~ k-

FIG. 1. Sketch of a longitudinal (kllg, left panel) and transverse
(k L g, right panel) helimagnon. The solid lines delineate planes of
spins pointing out of (dotted circle) or into (crossed circle) the
paper plane.

1

0= - (2.14)

We thus have a propagating mode, the helimagnon, with an
anisotropic dispersion relation: for wave vectors parallel to
the pitch vector ¢ the dispersion is linear, as in an antiferro-
magnet, while for wave vectors perpendicular to ¢ it is qua-
dratic. Fluctuations transverse with respect to the pitch vec-
tor are thus softer than longitudinal ones. The nature of the
excitation corresponding to the longitudinal and transverse
helimagnon, respectively, is shown in Fig. 1.

For later reference we note that for determining the static
properties of the helimagnon it sufficed to discuss the phase
modes at wave vector ¢, while the dynamics are generated by
a coupling between the phase modes and the modes at zero
wave vector. This observation gives an important clue for the
correct structure of the microscopic theory we will develop
in Sec. IV.

C. Damping

In order to investigate the damping of the mode we need
to take into account the dissipative term in the master equa-
tion (2.6) which we have neglected so far. Usually, in the
case of a conserved order parameter, the damping operator D
in Eq. (2.6) is proportional to a gradient squared.”’ In the
present case, however, one expects an anisotropic differential
operator, with different prefactors for the longitudinal and
transverse parts, respectively. We will see in Sec. IV that in
the particular model we will consider the transverse part of
the gradient squared has a zero prefactor. We thus write

D(x-y)=T8kx —y)&f, (2.15)
where I is a damping coefficient. Going through the deriva-
tion in the previous subsection again, we see that Eq. (2.11)
remains unchanged except for gradient corrections to the
right-hand side. Equation (2.10), on the other hand, acquires
an additional term that is of the same order as the existing
ones,
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- czﬁg +c, Vg ulx) - rorﬁfm3(x).
(2.16)

dms(x) = -

Together with Eq. (2.11) this leads to an equation of motion
for u given by

&2u(x - Yro(—c. 072 + clV4 Ig*)u(x) - rol"&za u(x).

(2.17)
This corresponds to a damped harmonic oscillator with a
susceptibility
1

2.18
X= wo(k) 0’ —iwyk)’ ( )

where the damping coefficient is given by

k) = rol'k?. (2.18b)

Now recall that we are interested in systems where the
magnetization is caused by itinerant electrons. In a system
without any elastic scattering due to impurities and at zero
temperature, the coefficient I', which physically is related to
a generalized viscosity of the electron fluid, is itself wave
number dependent and diverges for k—0 as I'oc1/[k|. This
leads to a damping coefficient

vk — 0) (2.19a)

We see that y(k) scales as k. (for k2>k4 /g or as k3/ 2 (for
k2 <k4 /¢*), while the resonance frequency wy scales as k. If
the prefactor of the damping coefficient is not too large, we
thus have y(k) < wy(k) for all k and the mode is propagating.
Any amount of quenched disorder will lead to I' being finite
at zero wave vector and hence to

vk — 0) =« k%

(2.19b)

In this case, the mode is propagating at all wave vectors
irrespective of the prefactor.

D. Physical spin susceptibility

The physical spin susceptibility y,, which is directly mea-
surable, is given in terms of the order-parameter correlation
function. The transverse (with respect to ¢) components of x
are given by the correlations of the phase ¢ in Eq. (2.3) and
are thus directly proportional to the Goldstone mode. In a
schematic notation, which ignores the fact that ¢ at zero
wave vector corresponds to a magnetization fluctuation at
wave vector +¢q, we thus expect

xi (k,w) o (2.20a)

wpk) - @ = iwy(k)’

The longitudinal component will, by Eq. (2.4), carry an ad-
ditional factor of k% and is thus expected to have the struc-
ture

K

Xi(kvw) & w(z)(k) _ (1)2

. 2.20b
—iwy(k) ( )
Since w~k,~k? in a scaling sense, we see that the trans-
verse susceptibility )(Sl ~ 1/ is softer than the longitudinal
one x-~1/w.

054431-4



THEORY OF HELIMAGNONS IN ITINERANT QUANTUM...

E. Effects of broken rotational and translational invariance

For the arguments given so far, the rotational symmetry of
the action S[M], Eq. (2.1)—i.e., the invariance under simul-
taneous rotations in real space and spin space—played a cru-
cial role. Since the underlying lattice structure of a real mag-
net breaks this symmetry, it is worthwhile to consider the
consequences of this effect.

In a system with a cubic lattice like MnSi, the simplest
term that breaks the rotational invariance is of the form®’

Scubic[M] = % f dx{[(?xMx(x)]z + [&yMy(x)]z + [(9zMz(x)]2}'
(2.21)

Other anisotropic terms with a cubic symmetry (see Appen-
dix A for a complete list) have qualitatively the same effect.
In Eq. (2.21), a,* g%, with ggo the spin-orbit coupling
strength (see Sec. IT A). On dimensional grounds, we thus
have a,=bg*a, with b a number and «a the coefficient of the
gradient squared term in Eq. (2.1). b # 0 leads to a pinning of
the helix pitch vector in (1,1,1) or equivalent directions (for
b<0) or in (1,0,0) or equivalent directions (for »>0).%7 In
addition, it invalidates the argument in Sec. II A that there
cannot be a (V| ¢)? term in the effective action. However,
the action is still translationally invariant, so a constant phase
shift cannot cost any energy. To Eq. (2.1) we thus need to
add a term

) ba?
5= [ @ P, 222
This changes the soft-mode frequency, Eq. (2.13), to
wo(k) = yri\e 2 + bagk* +c K igh.  (2.23)

We note that, due to the weakness of the spin-orbit coupling,
aq®*<1, and therefore the breaking of the rotational symme-
try is a very small effect. In MnSi, where the pitch wave
length is on the order of 200 A, while a"? is on the order of
a few A at most, the presence of the ki term is not observ-
able with the current resolution of neutron scattering experi-
ments, and we will ignore this term in the remainder of this
paper.

The above considerations make it clear that the Goldstone
mode is due to the spontaneous breaking of translational in-
variance, rather than rotational invariance in spin space.
Consistent with this, there is only one Goldstone mode, as
the helical state is still invariant under a two-parameter sub-
group of the original three-parameter translational group.?
In this sense, the helimagnon is more akin to phonons than to
ferromagnetic magnons. Let us briefly discuss the effect of
the ionic lattice on this symmetry, as the helix can be pinned
by the periodic lattice potential and therefore one expects a
gap in the magnetic excitation spectrum. To estimate the size
of the gap, we investigate the low-energy theory taking into
account only slowly varying modes with |[k—g|=<g. In a pe-
riodic lattice, momentum is conserved up to reciprocal lattice
vectors Gj. The leading term which breaks translational in-
variance, Mk—>Mke”"’0, therefore is of the form
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Sn: 2 V{kl},Gijlez...Mknﬁ(zki_Gj),
ky,...k,j i

(2.24)

where V parametrizes the momentum-dependent coupling
strength (and we have omitted vector indices). Within the
low-energy theory, all momenta are of order of g. Therefore,
umklapp scattering can only take place for n=G/gq. In the
case of MnSi, where G/¢g =40, one therefore needs a process
proportional to M* to create a finite gap. It is difficult to
estimate the precise size of the gap which depends crucially,
for example, on the commensuration of the helix with the
underlying lattice. However, the resulting gap will in any
case be unobservably small as it is exponentially suppressed
by the large parameter G/q >« 1/ggo.

III. NATURE OF THE GOLDSTONE MODE
IN CLASSICAL CHIRAL MAGNETS

One of our goals is to derive from a microscopic theory
the results one expects based on the simple considerations in
Sec. II. As a first step, we show that the phenomenological
action for classical helimagnets given by Eq. (2.1) does in-
deed result in the effective elastic theory given by Eq. (2.5).
A derivation from a microscopic quantum mechanical
Hamiltonian will be given in Sec. IV.

The classical ¢* theory with a chiral term represented by
the action given in Eq. (2.1) can be analyzed in analogy to
the action for chiral liquid crystals.!” In the magnetic case
the chiral term with coupling constant ¢ is of the form first
proposed by Dzyaloshinski* and Moriya,’ who showed that it
is a consequence of the spin-orbit interaction in crystals that
lack spatial inversion symmetry.

A. Saddle-point solution
The saddle-point equation 85/ 6M;(x)=0 reads

[r=aV?+c¢(V X)) +uM*(x)]M(x) =0, (3.1a)

and the free energy density in saddle-point approximation is
given by
T
fp= M), (3.1b)
with My, a solution of Eq. (3.1a).
The helical field configuration given by Egs. (2.2) with an
amplitude m3=—(r+aq>—cq)/u is a solution for any value of

q. The physical value of ¢ is determined from the require-
ment that the free energy must be minimized, which yields

q=cl2a (3.2a)
and

1
mo=—=(c*l4a —r)"".
Vu

(3.2b)

The zero solution my=0 is unstable with respect to the heli-
cal solution for all << ¢?/4a, and for ¢ # 0 the ferromagnetic
solution ¢g=0, méz—r/ u is always unstable with respect to
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the helical one since one can always gain energy by making
q # 0 due to the linear momentum dependence of the chiral
term M- (VX M).

B. Gaussian fluctuations

1. Disordered phase

In the disordered phase r>c?/4a, the Gaussian propaga-
tor is easily found by inverting the quadratic form in Eq.
2.1),

(M (k)M (p)) = &, (r+ a2
2 . ¢
5ij(r+ aq ) + Gijllckl— kikjr+ an .
(3.3)

The structure of the prefactor in this expression is consistent
with the conclusion of Sec. III A: For r> ¢?/4a, the denomi-
nator N(q)=(r+aq*)*—c?q* is minimized by ¢=0 and N(q)
has no zeros in this regime. N(g) first reaches zero at r
=c?/4a and g=c/2a, and the disordered phase is unstable for
all r<c?/4a. The quantum-critical fluctuations in the disor-
dered phase have been discussed by Schmalian and
Turlakov.?*

2. Ordered phase

In the ordered phase the determination of the Gaussian
fluctuations is more complicated. Let us parametrize the or-
der parameter field as follows:

cos[gz + ¢(x)]
M(x) =[mg+ dm(x)]| sin[gz+ H(x)] |,
¢(x)

where &(x), ¢(x), and Sm(x) describe small fluctuations
about the saddle-point solution. Fluctuations of the norm of
M one expects to be massive, as they are in the ferromag-
netic case, and an explicit calculation confirms this expecta-
tion. We thus can keep the norm of M fixed, which means
that dm is quadratic in the small fluctuation ¢ and does not
contribute to the Gaussian action. In order to treat the ¢ and
¢ fluctuations, it is useful to acknowledge that, upon per-
forming a Fourier transform, ¢(k=0) corresponds to taking
M at k=q, while ¢ and M come at the same wave number.
We therefore write

(3.4a)

@(x) = @;(x)sin gz + @,(x)cos gz, (3.4b)

where ¢; and ¢, are restricted to containing Fourier compo-
nents with |k| < ¢.> The Goldstone mode is now expected to
be a linear combination of ¢, ¢;, and ¢, at zero wave vector.
If we expand Eq. (3.4a) to linear order in ¢= ¢, substitute
this in Eq. (2.1), neglect rapidly fluctuating Fourier compo-
nents proportional to ¢”9* with n=2, and use the equation of
motion (3.1a), we obtain a Gaussian action

2
Sel="7"2 3 ele)vsp)e-p).

p i=0,1,2

(3.5a)
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with a matrix

2

p° —igpy —iqpy
Yp)=|igp, ¢*+p*2  iqp. (3.5b)
iqp.  —igp. q’+p°12
The corresponding eigenvalue equation reads
(=p)(@* +p* 12— W)+ P (P +p* 12— )
+¢°p2p* - W =0. (3.6)

We see that at p=0 there is one eigenvalue u;=0 and a
doubly degenerate eigenvalue ,u,z,3:q2. As expected, there
thus is one soft (Goldstone) mode in the ordered phase. The
behavior at nonzero wave vector is easily determined by
solving Eq. (3.6) perturbatively. The degeneracy of u, and
s is lifted, py3(p—0)=g*+gp., and for u, we find

wi(p — 0)=p+p 24>+ 0(p2p>). (3.7a)
The corresponding eigenvector is
01(p) = ¢(p) - i(p/9)[1 + O(?)]e: (p)
—i(pJg)[1+0(@?)]exp). (3.7b)
It has the property
(W1(p)v,(=p)) = Vamdu,(p). (3.7¢)

A comparison with Eq. (2.5) shows that the effective soft-
mode action has indeed the form that was expected from the
analogy with chiral liquid crystals. If we identify \s"amévl(x)
with the generalized phase u(x), the coupling constants in
Eq. (2.5) are c,=1 and ¢, =1/2. Repeating the calculation in
the presence of a term that breaks the rotational symmetry—
e.g., Eq. (2.21)—yields a result consistent with Eq. (2.22) or
(2.23), with b=0(1).

IV. NATURE OF THE GOLDSTONE MODE IN QUANTUM
CHIRAL MAGNETS

We now turn to the quantum case. Our objective is to
develop an effective theory for itinerant helimagnets that is
analogous to Hertz’s theory for itinerant ferromagnets.?® That
is, starting from a microscopic fermionic action we derive a
quantum mechanical generalization of the classical
Ginzburg-Landau theory studied in the preceding section.
The coefficients of this effective quantum theory will be
given in terms of electronic correlation functions, which al-
lows for a semiquantitative analysis of the results. In addi-
tion, it provides the building blocks for a treatment of quan-
tum helimagnets by means of many-body perturbation
theory, which will allow us to go beyond the treatment at the
saddle-point and Gaussian level employed in the present pa-
per. We will show that this theory has a helical ground state
given by Egs. (2.2) and consider fluctuations about this state
to find the Goldstone modes.
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A. Effective action for an itinerant quantum chiral magnet

Consider a partition function

Z= J D, e, (4.1a)
given by an electronic action of the form
S[‘Y/,‘p]:go[‘?/,l//]"'sznv (41b)

Here S!, describes the spin-triplet interaction. So[, ],
which we will explicitly specify later, contains all other parts

of the action, and the action is a functional of fermionic (i.e.,

Grassmann-valued) fields ¢ and . The spin-triplet interac-
tion we take to have the form

1 ur ) .
st o= 5 f dxdyf dmy(x, 1A (x - y)n(y,7).
0
(4.2a)

Here and in what follows summation over repeated spin in-
dices is implied. x and y denote the position in real space, 7
is the imaginary time variable, and ni,(x, 7) denote the com-
ponents of the electronic spin-density field ny(x, 7). The in-
teraction amplitude A is given by

Ayjlx —y) = 5;I'8(x —y) + € C(x ~y). (4.2b)
The first term, with a pointlike amplitude I';, is the usual
Hubbard interaction. The second term involves a cross prod-
uct ny(x) X ny(y) and cannot exist in a homogeneous electron
system, which in particular is invariant under spatial inver-
sions. Dzyaloshinski* and Moriya® have shown that such a
term arises from the spin-orbit interaction in lattices that lack
inversion symmetry. After coarse graining, it will then also
be present in an effective continuum theory valid at length
scales large compared to the lattice spacing. In such an ef-
fective theory the vector C(x—y) is conveniently expanded in
powers of gradients. The lowest-order term in the gradient
expansion is

Cx-y)=cl8x-y)V +0(V?), (4.2¢)

with ¢ a constant. The ferromagnetic case’® can be recovered
by putting ¢=0. We now perform a Hubbard-Stratonovich
transformation to decouple the spin-triplet interaction. To lin-
ear order in the gradients the inverse of the matrix A has the
same form as A itself—viz.,

- 1 ¢
Ajl(x-y)= @jﬁé(x -y)- e,-jkﬁé(x -y)d+O0(V?),
(4.24)
with Jy=d/dx;, a spatial derivative. The Hubbard-

Stratonovich transformation thus produces all of the terms
one gets in the ferromagnetic case and, in addition, a term
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— %cft f dxM(x,7) - [V X M(x,7)] + O(Vz), (4.3)

where M is the Hubbard-Stratonovich field whose expecta-
tion value is proportional to the magnetization. The partition
function can then be written in the form

z= J DL, el f pM]
Xexp(— (ry/2) J dxM (x) ~M(x)>
><exp<— c('/2) f dxM(x) - [V X M(x)])

><exp<Ft f dxM(x) 'ns(x)>. (4.4)

Here we have adopted a four-vector notation x=(x,7) and

Jdx=[dx[}"dr.
Now we consider the ordered phase and write
M(x) = M,(x) + oM (x), (4.5)

with M, given by Eq. (2.2b). The parameters m, and ¢
which characterize M, will still have to be determined. By
substituting Eq. (4.5) into Eq. (4.4) and formally integrating
out the fermions we can write the partition function

Z= f D[ SM]e~AM], (4.6a)

with A an effective action for the order-parameter fluctua-
tions,

AlM]=-1nZ,+ % f dxM(x) - M(x)

. %Fr f M) - [V X M(x)]

—ln<exp<thdx5M(x)-ns(x))> .
s

0

(4.6b)

Here
SO[‘Z’ lﬂ] = :S:O[Jl’ lﬂ] + Fl f dXMsp(x) : ns(x) (473)

is a reference ensemble action for electrons described by §0
in an effective external magnetic field

H(x) =T M,(x). (4.7b)

Only the Zeeman term due to the effective external field is
included in the reference ensemble. Z, is the partition func-
tion of the reference ensemble,

Zy= f DL, Sl (4.7¢)
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and (- -)SO denotes an average with respect to the action .
The effective action A can be expanded in a Landau ex-
pansion in powers of dM. To quadratic order this yields

AloM] = f dxT'V(x) 6M (x)

1
+ 3 f dxdyc‘)‘Mi(x)I‘ff)(X,y)5Mj(y) +0(M°),

(4.8a)
with vertices
TV = Ty(1 - cq)Mi(0) = T(ni(x))s,  (4.8b)
and
TP (x,y) = 8;00 = y)T, = €8x = )T ed = x§ (x. )T
(4.8¢)
Here
X Ge.y) = (nl)nl())s, (4.8d)

is the spin susceptibility in the reference ensemble. The su-
perscript ¢ in Eq. (4.8d) indicates that only connected dia-
grams contribute to this correlation function.

B. Properties of the reference ensemble

In order for the formalism developed in the previous sub-
section to be useful we need to determine the properties of
the reference ensemble. As we will see in Sec. IV E and in a
forthcoming paper,'? the reference ensemble is not only nec-
essary for the present formal developments, but also forms
the basis for calculating all of the thermodynamic and trans-
port properties of helimagnets. This is because the reference
ensemble, rather than just being a useful artifact, has a pre-
cise physical interpretation: it incorporates long-range helical
order in a fermionic action at a mean-field level.

We first need to specify the action §0. For simplicity, we

neglect the spin-singlet interaction contained in §0 and con-
sider free electrons with a Green function

Golk,iow,) =1/(iw, - &). (4.9a)

Here w,=27T(n+1/2) is a fermionic Matsubara frequency
and

& =k*2m, - e, (4.9b)

with m, the effective mass of the electrons and &g the chemi-
cal potential or Fermi energy. (Here we neglect spin-orbit
interaction effects discussed in Ref. 27 as well as quenched
disorder.) For later reference we also define the Fermi wave
number kp=12m,.eg, the Fermi velocity vp=kp/m,, and the
density of states per spin on the Fermi surface, Ng

=kpm,/272, in the ensemble S,.

1. Equation of state

The equation of state can be determined from the
requirement?®

PHYSICAL REVIEW B 73, 054431 (2006)

(6M(x)) =0, (4.10a)

where (---) denotes an average with respect to the effective
action A. To zero-loop order, this condition reads

(1= cq)My(x) = (ny(x))s,=0. (4.10b)
The zero-loop order or mean-field equation of state is thus
determined by the magnetization of the reference ensemble
induced by the effective external field I'M(,(x), Eq. (4.7b).
The latter is given by the effective field times a generalized
Lindhardt function. The result is

1 1
l—cqg==-2I'—2, XT ,
! lvg %GEI(P’iwn)Gal(P—q,iwn)—)\z

(4.10¢)

where N=m['; is the exchange splitting or Stoner gap. No-
tice that this provides only one relation between A and the
pitch wave number ¢g. The latter still has to be determined
from minimizing the free energy, as in the classical case, Sec.
I A.

2. Green function

The basic building block for correlation functions of the
reference ensemble is the Green function associated with the

action S,, Eq. (4.7a). With S, as specified above, the latter
reads, explicitly,

Solth, ] = f dxdyP(x)G™ (x,y) (), (4.11)

with an inverse Green function

G (x,y)

J 1
= {(— —+—V24 /.L)O'O + M, (x) - 0'] Sx—y).
it 2m,

(4.12a)

Here o=(0,05,03) denotes the Pauli matrices and o, is the
2 X2 unit matrix. Upon Fourier transformation we have

Grp(i®,) = 8,Gy' (kiw,) o0+ T Mk —p) - 0.
(4.12b)

The result of the inversion problem is

Glin,) = gylo,_a,(k.q;iv,) + o_a_(k,q;iw,)]
b_(k.q;iw,),
(4.13a)

+ Orq pTib (k. qiw,) + Sj_g pO-

where

. Go'(ktg.iw,)
ai(k7q;lwn) = —1 . —1 . 2°
GO (k’lwn)GO (k * q’lwn) -\
(4.13b)
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-
Gy (k,i,)Gy (k£ q.iw,) — \*
(4.13¢)

b,k,q;iw,) =

Here o,=(0,%i0,)/2, 0,_=0,0_, and 0_,=0_0,.

3. Spin susceptibility

Since the reference ensemble describes noninteracting
electrons, the reference ensemble spin susceptibility factor-
izes into a product of two Green functions. Applying Wick’s
theorem to Eq. (4.8d) one obtains

XJ(x,y) =— [ 0:G(x,y)0;G(y,x)] (4.14a)

or, after a Fourier transform,
X (k.p;i€d,)
-1

% E TE tI'[O'inr’pr(l.wn) X (Tijr_‘_p’kr_,_k(l.wn

k’,p’ i“)n

+i0)]. (4.14b)

Here the trace is over the spin degrees of freedom and (),
=27Tn is a bosonic Matsubara frequency.

From the structure of the Green function, Eq. (4.13a), it is
obvious that y, is nonzero if k and p differ by zero, +q, or
+2q. The full expression in terms of a, and b, is lengthy and
given in Appendix B.

4. Ferromagnetic limit

It is illustrative to check the ferromagnetic limit ¢ —0 at
this point. In this case M,=(m,,0,0) becomes position in-
dependent and both the Green function and the reference
ensemble spin susceptibility become diagonal in momentum
space. For zero momentum and frequency, the latter is also
diagonal in spin space,

Xg,q=o(k,P 5 IQ,,) = 5k,ng,q=0(k’iQ") ’ (4153.)

ngzo(o,i()) =8, [ S x + (1= ) xrl.

The static and homogeneous transverse susceptibility yt of
the reference ensemble is related to the magnetization by a
Ward identity?*?’ [remember that I' My, is the effective field
in the reference ensemble; see Eq. (4.7b)]

<ns(x)>0 = 1_‘tMstT'

A calculation of yr by evaluating Eq. (4.14b) for =0 shows
that Eq. (4.16) is the equation of state, Eq. (4.10c), for ¢
=0. Equation (4.10c) thus represents the generalization of
this Ward identity to the helimagnetic case.

(4.15b)

(4.16)

C. Gaussian fluctuations I: k=g modes

We are now in a position to explicitly write down the
fluctuation action given by Egs. (4.8). From both the phe-
nomenological arguments in Sec. II A and the classical field
theory in Sec. III A we expect the static behavior to be cor-
rectly described by the fluctuations with wave numbers close
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to the pitch wave number ¢, while Sec. II B suggests that
treating the dynamics correctly requires one to also take into
account fluctuations with wave numbers near zero. For the
sake of transparency we first concentrate on the k=g modes.
We will later expand our set of modes to study the effects of
the k=0 modes on the dynamics.

1. Gaussian action

We parametrize the fluctuations of the order parameter as
in the classical case, Egs. (3.4), but now allow for the fields
¢, ¢, and ¢, to depend on imaginary time or Matsubara
frequency. To linear order in the fluctuations we have

- ¢(x)sin(q - x)
¢(x)cos(q - x)
@1(x)sin(q - x) + @y(x)cos(q - x)

SM(x) =my

(4.17)

As in the classical case we have anticipated that fluctuations
of the norm of the order parameter are massive. The term
linear in M vanishes due to the saddle-point condition, and
the Gaussian term can be expressed in terms of integrals by
using Egs. (4.14b), (B1), and (B2). Using the notation ¢(x)
= @,(x) as in the classical case, we find a Gaussian action’

2
APe]= T3S S i)Y p.i0),)

p iQ, i=0,12

X (Pj(_p’_ lQn) (4188)
Here the matrix y'¢) is the quantum mechanical analog of Eq.
(3.5b), which couples the phase or k=¢ modes among each
other. In a four-vector notation k= (k,i{},) = (k,k,,k.,i€},)
it is given by

7(‘1)(/()
(1 =cq)IT = fpg(k)  —icky 2T, —ick, /2T,
= icky/ZFt 1/2Ft - f] 1 (k) _fIZ(k)
ick,/21'; fiok) 1721~ f11(k)
(4.18b)
Here

f¢¢(k) = §0¢¢(k) + <P¢¢(— k), (4.18c¢)
fu1(k) = @11 (k) + @11 (= k), (4.18d)
fr2k) = il @11 (k) = @11 (= k)], (4.18¢e)

where
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Gy'(p - k,iw, - iQ,)Gy' (p - q.iw,) = \*
‘quqs(k) == 1 . . _1 . . 2 =1 - —1 . IR (4.18f)
p [GO (p - k’lwm - lQn)GO (p -k- q,10, — l‘Q’n) -A ][GO (p’lwm)GO (p - q»lwm) -A ]
® Golp —kiiw, —iQ,)Gy' (p +q.iw,) + Gy (p —k - q.iw,, — iQ,)G;' (p,iw,,) — 2\ (4.182)
P11\K) == _ . . _ . . — . _ ; > 168
14 [G()l(p _kam - l‘Q’n)GOI(p - k —q,lw,, — lQn) - Az][GOI(p’lwm)Gol(p + q’lwm) - )\2]
I
with [,=(1/V)2,TZ,, . B=4&IN, (4.20e)
In contrast to the classical case, here it is not obvious that
the Gaussian vertex, Eq. (4.18b), has a zero eigenvalue. To
see that it does, we invoke the equation of state (4.10c). By
comparing this with Egs. (4.18¢c) and (4.18f), we see that Vo= T(que)8\2, (4.20f)
1 —cq—T'f440,i0) =0. (4.19a)
Similarly, yi=—4y4kelq)’. (4.20g)
1/2 =T'f1,(0,i0) = cq/2T',. (4.19b)

Since ¢« g [see Egs. (3.2a) and (4.21) below], it follows that
the quantum mechanical vertex Y9(p,if),) has the same
structure as its classical counterpart, Eq. (3.5b), except for an
additional frequency dependence in the quantum mechanical
case.

To determine the eigenvalues we need to evaluate the in-
tegrals to lowest nontrivial order in the wave vector and the
frequency. A complete calculation is rather difficult, and we
restrict ourselves to the limit N> qugp. The calculation, the
details of which we relegate to Appendix C, yields

ey Ay s
Al P\, 4eF 2helkl| |
(4.20a)

k 2 Q 2
fll(k’iQn) =f11(07i0) _NF|:L¥(—> — B(u)

ZkF 461:
0, K ]
+ , 4.20b
Y 4 (2kp)? (4.20b)
le(k’iQn) = lZNFa(Zk )2 . (420C)
Here
a=1/3, (4.20d)

These expressions are valid for |Q,|<\N<ep, |k|<g<kp,
and qug<<\. The damping terms have the form shown if, in
addition,

We now also can express the pitch wave number ¢ in
terms of the parameters of our model. The minimization of
the saddle-point free energy proceeds as in the classical case,
and by comparing Eq. (3.2a) with Egs. (4.17), (4.18a),
(4.18b), (4.19a), and (4.20a), we find

q = ck:/Nel\a. (4.21)

2. Eigenvalue problem

The diagonalization of the matrix 49, Eq. (4.18b), can be
done perturbatively as in the classical case. The soft (Gold-
stone) mode—i.e., the eigenvector corresponding to the
smallest eigenvalue—is

v(k,iQ,) = ¢(k,i€2,) —i(k,/q)[1 + O(k Ve, (k,if,)
—i(k /g1 + O(k )]y (k,iL),). (4.22)

The helimagnon is proportional to the v-v-correlation func-
tion, which in turn is proportional to the inverse of the small-
est_eigenvalue of the matrix Y9. With K=\ ak/ 2kg, O
—\'aq/2k , W= \,BQ /4€g=10,/2\, c4= y¢/\a,8 and ¢
=1,/ a\ B, the latter reads
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K+ o+ C¢|w|K§/|K| -0k, -0k,
1 1 1
- 2 > 2 -
+ =K+~ = =)ol .
JO() = 2N, iQk, 0 St 2c1|w| d iQk, 423)
) . 1 1
iQk, 0k, Q2+5K2+5a)2—Ec,|w|lc2l

The eigenvalue equation, which is the quantum mechani-
cal generalization of Eq. (3.6), can be simplified if we antici-
pate, from Secs. II and III B, that the smallest eigenvalue
scales as u~ K?"“ K ~ w”. Keeping only terms up to O(Kf),
the eigenvalue equation reads

2
(,LL— K- wz—c¢|w||K:z|>Q4+ Q2Ki<Q2+ %) =0.
(4.24)

This result has several interesting aspects, which will be
very useful when we generalize the theory to include the
k=0 modes in Sec. IV D. First, of the function f;;, Eq.
(4.20b), only the constant and the term proportional to
k% ~k, contribute to the leading terms in the eigenvalue. In
particular, the damping term proportional to y;, which has a
potential to lead to an overdamping of the Goldstone mode,
does not contribute. Second, the function f;,, which de-
scribes the coupling between the phase modes ¢; and ¢;,
does not contribute to the leading result. Indeed, the only
role of ¢; and ¢, is to subtract the K2l contribution from the
eigenvalue, and this is accomplished entirely by the purely
static matrix elements in Eq. (4.18b) which do not depend on
reference ensemble correlation functions.

For the smallest eigenvalue we find, from Eq. (4.24),

4 2

K K
K—0,0— 0)= i+ 0>+ —= + cylo|—= + 0().
lu’( ) z 2Q2 ¢| ||K| (z)

(4.25)

Since the Goldstone correlation function is proportional to
the inverse of the smallest eigenvalue, this result has indeed
the functional form we expect from the phenomenological
treatment in Sec. II; see Egs. (2.18a) and (2.19a). At zero
frequency it also is consistent with the result of the classical
field theory in Sec. III. However, in contrast to Eq. (2.13) the
mass of the zero-wave-number mode does not enter in Eq.
(4.25), which suggests that the frequency scale is not cor-
rectly described yet. This was to be expected; see the re-
marks at the start of Sec. IV C. We will see in Sec. IV D that
the £=0 mode has to be included in the analysis to obtain the
correct prefactor of the w” term in the smallest eigenvalue, in
agreement with the phenomenological analysis.

3. Ferromagnetic limit

Before we expand our set of modes it is again illustrative
to consider the ferromagnetic limit ¢=0. Going back to Egs.
(4.17), we see that in this limit ¢, disappears and ¢ and ¢,

play the roles of the two independent field components 7,
and , in a ferromagnetic nonlinear o model, which are both
soft.3! The Gaussian action is given by the reference en-
semble spin susceptibility at g=0, and one finds>?

1
A<2)[¢’ (P2] = EIVFFt2 2 2 71-i(p’i(ln) :)711(p’lQn)

p,iQ), i=1,2
X Wj(_p’_ lQn) > (426)
with 77, = ¢ and m,= ¢, and a matrix
o K> 2i(iw)

Comparing with the eigenvalue problem given by Eq. (4.23)
we see that the latter does not correctly reproduce the ferro-
magnetic result upon dropping ¢; and letting ¢ — 0. This is
not surprising, since the gradient expansion implicit in the
effective field theory approach implies that we are restricted
to wave numbers small compared to g. That is, the validity of
Eq. (4.23) shrinks to zero as ¢ —0. However, it raises the
following question. The leading frequency dependence of the
ferromagnetic magnon is determined by the off-diagonal el-
ements of the matrix 7. Similarly, the time-dependent
Ginzburg-Landau theory of Sec. II B suggests that the lead-
ing frequency dependence of the helimagnon is produced by
the coupling of the phase mode to the homogeneous magne-
tization. Although the latter is massive at wave number ¢, its
conserved character makes it important for the dynamics. In
contrast, in the treatment above the leading frequency depen-
dence was produced by the phase correlation functions. We
therefore extend our set of modes to allow for a coupling
between the phase modes, which represent k=¢ fluctuations
of the magnetization, and the homogeneous magnetization.

D. Gaussian fluctuations II:
Coupling between k=g modes
and k=0 modes

The discussion in the preceding subsection suggests to
generalize the expression for the magnetization fluctuations,
Eq. (4.17), by writing

- ¢(x)sin(q - x)
P(x)cos(q - x) + m3(x)
@1(x)sin(q - x) + @a(x)cos(q - x) + m, (x)
(4.28)

SM(x) = my
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That 1is,
fluctuations.

we add the k=0 fluctuations
33

to the k=gq

1. Gaussian action

If one repeats the development of the previous subsection
for the current set of five modes, one finds that of the two
k=0 modes only 7r; contributes to the leading terms in the
eigenvalue problem. 7, does not couple to ¢, and its cou-
plings to ¢; and ¢, produce only higher-order corrections.
7y, on the other hand, couples to ¢ in a way that preserves
the off-diagonal frequency terms characteristic for the ferro-
magnetic problem [see Eq. (4.27)] and needs to be kept.
These observations are in agreement with the phenomeno-
logical theory of Sec. II B, where only the three-component
of the homogeneous magnetization is coupled to the phase
mode. They also are consistent with the observation in Sec.
IV C 2 that ¢; and ¢, serve only to provide the correct static
structure of the theory. We thus drop m, and consider the 4
X 4 problem given by the phase modes plus 7.

The Gaussian action that generalizes Egs. (4.18) now
reads

G, (p-k,iw,

PHYSICAL REVIEW B 73, 054431 (2006)

AP[g]= E > E o(p.i,) ¥V (p.iQ,)
p iQ, i=0
X QDj(_P’_ lQn) . (4293)

Here ¢;=; and the matrix 14, which couples the phase
modes to 7, reads, in a block matrix notation,

—ihg (k)
Y ) 0
0
ih¢1(k)0 0 /I g (k)

with ¥ from Eq. (4.18b). In addition to the functions de-
fined in Egs. (4.18), we need

gll(k’iﬂn) = 4’()Dll(k - q’lQn) 5
with ¢;; from Eq. (4.18g), and

h g1 (k,i€),) = 14, (k,iL),) = 7y (= k,

Y4O(k) = . (4.29b)

(4.29¢)

-iQ,), (4.29d)

where

-iQ,) -Gy (p—q.iw,,)

k)=X\ .
71(k) L [Gy'(p —k.iw, —iQ,)Gy' (p —k - q,iw, - iQ,) - NG, (p.iw,) G, (p - q.iw,) = N*]

Performing these integrals in the limit N> qug yields the
leading contributions (see Appendix C)

2 2 . 2
; q k i),
gn(k,iQ,) = I/F[—ZNF{a<2—kF) +a<2—kF> +ﬁ(4_€F)

|0, 2kek?
- : 4.30
2746 K (4.30a)
Q
g (. 190,) = 2Np8 " ” (4.30b)
F
|
2
K
K+ c¢|w|m
20 (k) = 2N 0k,
10K,
8i(iw)

(4.29)

2. Eigenvalue problem

Now consider the generalization of Eq. (4.23). It is obvi-
ous from Egs. (4.29b) and (4.30) that the mode 7; will con-
tribute to the eigenvalue a term proportional to (0> whose
prefactor is large compared to the one in Eq. (4.25) by a
factor of (kg/q)*. This is because the mass of 7, is propor-

tional to (g/kg)?. Consequently, one can neglect the terms
proportional to ? in the diagonal elements of Y9, Eq.
(4.23). The leading damping term, however, is still given by
fse Eq. (4.20a). Droppmg all terms that yield contributions
of higher order than k in the eigenvalue equation, the matrix
Y99 Eq. (4.29b), reads in the notation of Sec. IV C 2,
- iQk, -iQk, -8i(iw)
0>+ 1,{ iQk, 0
2 ' (4.31)
-iQk, Q™+ —KL 0
0 0 0?
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The smallest eigenvalue is

2 4

5 w
mwk— 0,0 — 0) =k, +64— +

—+c |w| +O(K§),
0 >

(4.32a)

and the corresponding eigenvector reads

v(k,iQ,) = p(k,iQ,) — i(k,/Q) @, (k,i,)
—i(k/Q) @ (k,iQ,) + (4w/Q?) 7, (k,i},,).
(4.32b)

Notice that the origin of the leading frequency depen-
dence is consistent with the ferromagnetic limit, Eq. (4.27),
and, more importantly, with the time-dependent Ginzburg-
Landau theory in Sec. II B. Namely, it is produced by the
coupling of the three-component of the k=0 magnetization
fluctuation to the phase mode at k=q. The frequency depen-
dence in Eq. (4.23), on the other hand, corresponded to
second-order time derivative corrections to the kinetic equa-
tion (2.6).

E. Goldstone mode and the spin susceptibility

1. Goldstone mode in the clean limit

We are now in a position to determine the

Goldstone _mode. Defining the latter as g(k,iQ,)
=(V2NpV192kge/ q)v(k,i€),) and returning to ordinary units,
we find, from Egs. (4.32),
1
= (i€2,)” + wglk) + |, | y(k)”
(4.33a)

<g(k’lQn)g(_ k’_ lQn)> =

where

k) =N—L-
wolk) = 2k

1 1
gkﬁ/(sz)2 + gk“l/(zqu)2
(4.33b)
and
¢ K
(ZkF)4 2kglk|”

k)= (4.33¢)
This has the same functional form as the result of the phe-
nomenological treatment in Sec. II; see Egs. (2.18a) and
(2.19a). The current microscopic derivation reveals in addi-
tion that the prefactor of the damping coefficient is smaller
than that of the resonance frequency by at least a factor of
(qur/N\)(q/kg). The Goldstone mode is thus propagating and
weakly damped for all orientations of the wave vector.>* As
in the classical case, adding cubic anisotropic terms—e.g.,
the quantum mechanical generalization of Eq. (2.21)—leads
to a soft-mode energy of the form of Eq. (2.23).

2. Goldstone mode in the presence of quenched disorder

Equation (4.33c) holds for clean systems. As we have
mentioned in the context of Egs. (2.19), the structure of the
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damping term is expected to change qualitatively in the pres-
ence of even weak impurity scattering. Let 7, be the inelas-
tic scattering rate due to quenched impurities. Then the bare
Green function G, Eq. (4.9a), acquires a finite lifetime,*

Golk,iw,) = U[iw, = &+ (i12Tymp)sgn w,].  (4.34)
For weak disorder €p7,,> 1, the leading effect is that the
hydrodynamic singularity in the generalized Lindhard func-
tion ¢(<§<)b’ Eq. (C1f), is now protected. The net effect is the
replacement 1/vglk|— Timp 10 the damping term in fy4, Eq.
(4.20a), and hence in the damping coefficient (k). The
Goldstone mode is then given by Eq. (4.33a), with the reso-
nance frequency still given by Eq. (4.33b) and

¢ K

PTSUETS

ko
Z EF( eFTimp)

k) =
This is again consistent with the result of the phenomeno-
logical treatment in Sec. II; see Eq. (2.19b). Since (k)
~ k> < wy(k) ~ k., the mode is again propagating.

3. Physical spin susceptibility

The helimagnon correlation function is simply related to
the physical susceptibility, which is directly measurable by
inelastic neutron scattering.>3® To express the latter in
terms of order-parameter correlation functions we generalize
the partition function, Eq. (4.1a), to a generating functional
for spin-density correlation functions,

Zlj1= f D[y, w]exp<5[fb, Y1+ f dxj(x)-ns(x)>,
(4.36)

where j(x) is a source field. The spin susceptibility is given
by

X! (6,) = (nl0nl(y)s = (ny () s(nl(y))s
& .
- 5ji(x)5jj()’) j:OIHZ[]]

=LA M), () (A7 M) (). (437)
Here A™! is the matrix given in Eq. (4.2d) and the last aver-
age is to be taken with respect to the effective action A, Egs.
(4.8).

The chiral nature of the helix is also reflected in the spin
fluctuations and will become manifest if the spin susceptibil-
ity is measured with circularly polarized neutrons. To see
this, it is useful to define magnetization fluctuations oM.
=0M,+iéM,. Similarly, we define gradient operators d.
=d,xid,. With these definitions one finds

(A7 M) (x) = M ,(x) + icd.6M .(x) F icd. M (x),

(4.38a)
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T (A7 M).(x) = SM.(x) + i%[&ﬁM_(x) — .M, (0)].

(4.38b)

By means of Eq. (4.28) we can express the components of
oM in terms of ¢y= ¢, @y, ¢, and @3 =7},
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EM.(x) = mym () + (o) = iy () + c.c.],

(4.39b)

where c.c. denotes the complex conjugate of the preceding
expression. The elements of the susceptibility tensor can
therefore be expressed in terms of the correlation functions
of the ¢;, which we denote by x4, etc. The various correla-
tion functions can be determined from the Gaussian action
A®| Eq. (4.29a), with the vertex function 94 given by Eq.

SM(x) = + imyp(x)e™, (4.39a) (4.31). The inverse of the latter matrix reads
|
o’ iQ2Ky - Q%K Q%K+ Q4KZKy - 80w+ O(w?)
3 —-iQ%k, - Q*k K, - 0K’ KK, diwk,
i) = L | T mC o Qs . . (440)
2Npu(p,if),) | —iQ Kk, + Q'K kK, Ok, Ky -0k, diwk,
80w diok, 4iwk, QK? + QC¢|w|K§/|K|

Here we use the same notation as is Egs. (4.23) and (4.31),
and corrections to each matrix element are one power higher
in k.~ Kk’ ~ w than the terms shown. All of the correlation
functions that determine the spin susceptibility are propor-
tional to the inverse of the smallest eigenvalue u, Eq.
(4.32a), which scales as w”. {¢¢) is the softest; it scales as
1/w?* The autocorrelation functions of ¢, and ¢, have an
additional factor of & ~ w in the numerator and thus scale
as 1/w, and so does (¢, p,). The autocorrelation function of
, scales as a constant. The mixed correlations {¢¢,;) and
(¢p¢h,) scale as 1/w*?, and the mixed correlations {¢r,) and
(¢ ,m) scale as 1/w and 1/w'"?, respectively.

Defining the momentum- and frequency-dependent spin
susceptibility by

urT
Xéj(k,P;iQn)=fdxdye[k'x_’p'yf dre 7
0

XX (x.y;7), (4.41)
we find that x!~ and x,* reflect the strongest hydrodynamic
contribution, which is given in terms of the ¢— ¢ correlation
function at wave vector +q,

X:I(k’p 5 l‘Q’n) = 6kpmgx¢d)(k e~ q’iQn)

+ (less leading terms).  (4.42a)

The “less leading terms” in Eq. (4.42) reflect the terms pro-
portional to ¢ in Eq. (4.38a). They are either less singular
than the leading term, which scales as 1/w?, or have a pre-
factor that is small by a factor of cqgx¢* x* and x;~ also are

proportional to x4, but they are not diagonal in the mo-
menta,

X (k,p:iQ) == 8, gangmix pplk £ q,iQ,). (4.42b)

Only the terms with k=p contribute to the neutron scattering
cross section. Right and left circularly polarized neutrons
will therefore see the hydrodynamic singularity only at wave
vector k=q and k=-q, respectively. Unpolarized neutrons
will see symmetric contributions at k=+gq. For instance, the
xx component of the susceptibility tensor, x!'=(x"+x;*
+X: T+ X, )/4 is given by

xi' (k.,p;i€,)
2
my . .
= I[@k()(w(k +q,iQ,) + X¢¢(k -q,i8),))

= 8y kr2gX ok + 4,182,) = 8y k2 X pp(k — q,182,)].
(4.43)

with the first term in the square brackets contributing to the
neutron scattering cross section.

The longitudinal component )(33 is less singular than i~
since the contribution of ¢ to (A~'6M), is suppressed by a
transverse gradient; see Eqgs. (4.38b) and (4.39a). Accord-
ingly, the leading hydrodynamic contribution to X? at k
==+gq scales as (¢;¢;)~ 1/w. There is also a weak signature
of the Goldstone mode in the vicinity of k=0 due to the
contribution of () to x2°, but this scales only as «’.

All of these results are in agreement with what one ex-
pects from Sec. I D.
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V. DISCUSSION AND CONCLUSION

Let us summarize our results. We have developed a
framework for a theoretical description of itinerant quantum
helimagnets that is analogous to Hertz’s treatment of
ferromagnets.”® We have analyzed this theory in the helically
ordered phase at a mean-field and Gaussian level analogous
to Stoner theory. As in the ferromagnetic case there is a split
Fermi surface, with the splitting proportional to the ampli-
tude of the helically modulated magnetization. We then fo-
cused on the Goldstone mode, or helimagnon, that results
from the spontaneous breaking of the translational symmetry
in the helical phase. We have found that the helimagnon is a
propagating, weakly damped mode with a strongly aniso-
tropic dispersion relation. The frequency scales linearly with
the wave number for wave vectors parallel to the pitch of the
helix, but quadratically for wave vectors in the transverse
direction. In this sense the helimagnon behaves like an anti-
ferromagnetic magnon in the longitudinal direction, but like
a ferromagnetic one in the transverse direction. This aniso-
tropy is analogous to the situation in chiral liquid crystals,
and indeed the results of our microscopic theory are qualita-
tively reproduced by combining an educated guess of the
statics, inferred from the liquid-crystal case, with a phenom-
enological time-dependent Ginzburg-Landau theory for the
dynamics. The structure of the microscopic field theory is in
one-to-one correspondence with the structure of the phenom-
enological theory. Particle-hole excitations provide a damp-
ing of the helimagnon, with a damping coefficient propor-
tional to the pitch wave number to the fourth power.

Our continuum theory ignores the spin-orbit coupling of
the electron spins to the underlying lattice which, in conjunc-
tion with crystal-field effects, will change the dispersion re-
lation of the Goldstone mode at very small wave numbers or
frequencies. In contrast to the case of ferromagnetic and an-
tiferromagnetic magnons, however, breaking the spin rota-
tional symmetry does not give the helimagnons a mass; it
just changes the dispersion relation at unobservably small
wave numbers, making it less soft. Consistent with this, soft
helimagnons are observable by neutron scattering,’® as are
ferromagnetic and antiferromagnetic magnons. The neutron
scattering cross section is proportional to the magnetic struc-
ture factor, which in turn is simply related to the spin sus-
ceptibility, which we have shown to be proportional to the
helimagnon correlation function.

Let us now discuss some observable properties using pa-
rameter values appropriate for MnSi. MnSi has a Fermi tem-
perature Tp=23200 K,* a pitch wave number ¢
~0.035 A=' %0 and an effective electron mass, averaged over
the Fermi surface, m,=~4m,*" with m, the free electron
mass. In a nearly-free-electron model this leads to kg
~1.45 A~ and qup/ky =~ 1000 K. The value of the exchange
splitting X\ is less clear. The large ordered moment of about
0.4 up per formula unit!'' suggests an exchange splitting that
is a substantial fraction of T. This is hard to reconcile with
the low Curie temperature 7-=29.5 K at ambient pressure.
Reference 41 found an exchange splitting N/kg=520 K,
which is hard to reconcile with the large ordered moment.
We recall that the helical order is caused by the (weak) spin-
orbit interaction, which suggests a clear separation of energy
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scales and, in particular, N> qug. In judging such estimates
one needs to keep in mind that MnSi is a fairly strong mag-
net (as evidenced by the large ordered moment) with a com-
plicated Fermi surface with both electron and hole orbits,
and a nearly-free-electron model as well as a weak-coupling
Stoner picture is of limited applicability.

One question that arises is the value of qug/\ appropriate
for MnSi (recall that our calculation is for gup/\<<1). This
hinges on the value of \. If one accepts a sizable value of A
(in units of the Fermi temperature) as suggested by the large
value of the ordered magnetic moment, then gup/A<<1. If
one accepts the much smaller value for \ obtained in Ref. 41,
then gug/N=1. Even in the latter case we expect our con-
siderations to still apply qualitatively, although the lack of a
clear separation of energy scales would make a quantitative
analysis more difficult.

The anisotropic helimagnon is well defined for wave
numbers |k| <gq. In MnSi, ¢=0.035 A", which is accessible
by inelastic neutron scattering.!" An estimate of the helimag-
non excitation energy in MnSi at this wave number can be
obtained from Ref. 42. In this experiment, a small magnetic
field was used to destroy the helix. The resulting ferromag-
netic magnons at a wave number equal to ¢ had an energy of
about 300 mK above the field-induced gap. An estimate of
the helimagnon energy at the same wave number from Eq.
(4.33b) yields the same order of magnitude if \ is a substan-
tial fraction of the Fermi energy. The prediction is thus for an
anisotropic helimagnon, which at a wave number on the or-
der of ¢ and an energy on the order of 300 mK, will cross
over to a ferromagnetic magnon. The damping is expected to
be weak, especially in systems with some quenched disorder,
although in ultraclean systems it may be strongly wave vec-
tor dependent.*

One expects the low-energy helimagnon mode to have an
appreciable effect on other observables such as the specific
heat or the electrical resistivity. This is indeed the case, and
we will discuss these effects in a separate paper.'?

In conclusion, the present paper provides a general many-
body formalism for itinerant quantum helimagnets, which
can be used for calculating any observable of interest, with
the single-particle Green function and the helimagnon propa-
gator as building blocks. Observables of obvious interest in-
clude the specific heat, the quasiparticle relaxation time, and
the resistivity. Calculations of these quantities within the
framework of the present theory will be reported in a sepa-
rate paper.'?
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APPENDIX A: ROTATIONAL-INVARIANCE-BREAKING
TERMS IN THE GINZBURG-LANDAU EXPANSION

In addition to the term considered in Eq. (2.21), there are
other terms that break the rotational symmetry and contribute
to the same order in the spin-orbit interaction strength ggo.
The detailed structure of such terms in the action depends on
the precise lattice structure. For definiteness we assume the
cubic P2,3 space group realized, for instance, in MnSi.

The leading terms which break the rotational symmetry
are of the form®’

5= | ax(a {[ZMET+ [ZMT + (20T

+ g50laal .M (x)* + as[9,M (x)]* + cycl}
+ g40aa{[M () T* + [M,(x)]* + [M_(x)]*}).

Here ay, a,, a3, and a, are constants which remain finite for
vanishing spin-orbit coupling, gso—0, and “cycl” denotes
cyclic permutations of x, y, and z. Omitted terms like
(M§M§+cycl) or [(d,M,)*>+cycl] can be obtained by adding
rotationally invariant terms to &S. We note that the
Dzyaloshinski-Moriya interaction—i.e. the constant ¢ in Eq.

(A1)

xz'{(k,p;inn)=72 T2 A8 a, k' —k.qsiw,

K oy,
+ (E;Dija-(k' -k,q;iw,
+ (35 ik —k.qsiw,
+ g pl B3 ijar (k' —k.gsi,
+(2p0)ib (k' —k.qsiw,

—iQ)a (k' .q;iw,) + (X)) a_(k' —k.q;iw, - iQ
—iQ)b_(k' +q.q:iw,) + (2,,);b_(k' —k.q:iw,
- Q)b (k' - q.q:iw,) + (S ) a_(k' —k.q:iw,
—iQ)a (k' .q;iw,) + (2},);b. (k" —k.q;iw, —iQ,)a_(k',q;iw,)]
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(2.1), the pitch wave number ¢, and therefore all typical
momenta—is linear in ggo. Consequently, all terms in Eq.
(A1) contribute only to order géo. They are therefore small
compared to the energy gain obtained by forming the helical
state, which is is of order qZOCgéo.

The main effect of S is to pin the direction of the spiral
to some high-symmetry direction: namely, either (1,1,1) and
equivalent directions or (1,0,0) and equivalent directions.®’
In addition, they change the dispersion relation of the helical
Goldstone mode at extremely small wave numbers. For one
particular term this has been demonstrated in Sec. II E; all
other terms have qualitatively the same effect. Notice that in
a ferromagnet the effect on the Goldstone mode is stronger.
For instance, the cubic anisotropy [the term with coupling
constant a, in Eq. (A1)] gives the ferromagnetic magnons a
true mass, leaving no soft modes. This is a result of the fact
that in a ferromagnetic state the translational invariance is
not spontaneously broken, while in a helimagnetic one it is.

APPENDIX B: THE REFERENCE ENSEMBLE SPIN
SUSCEPTIBILITY

Substituting Eq. (4.13a) into Eq. (4.14b) and performing
the spin traces yields

-iQ)a, (k' \q:iw,) + (X)) 0. (k' —k.q:iw, —iQ,)a_(k' .q:iw,)

Da_(k'.q;iw,)
-iQ)b, (k' —q.q;iw,)]
-iQ,)b, (k' - q,q;iw,)

+ gl Cip)ijar (k' —k,qsiw, —iQ)b_(k' +q,q:iw,) + (23, a_(k' —k,q;iw, —iQ,)b_(k' +q.q:i0,)

+(Cn)ib-(k' —k.qsiw, —iQ,)a, (k' q;iw,) + () b-(k' —k.q;i0,
—iQ,)b, (k" = q.q:i®,) + psogp(20)iib-(k' —k.q;iw,

+ 5k—2q,p(2bb)ijb+(k, -k.q;iw,

The 3 symbols denote traces of Pauli matrices:

000
(E.)i=tr(oy0,0_050,0.)=|0 0 0|, (B2a)
0 0 1
1 -1 0
(2;;),-]: tr(oyo,0_0j0_0,)=|i 1 0], (B2b)
0 0 O

- iQn)a—(kl’q;iwn)]
—iQ,)b_(k' +q.q;iw,)}.

(B1)
|
1
()i =t(oo o000 )=| =i 1 0], (B2c)
0 00
000
()= tr(oo_o,00.0,)=[0 0 0], (B2d)
001
00 O
(2h,)=t(go,050)=10 0 0 |, (B2e)
00 -1
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00 O 0 00
(EZZ)U = tI‘(O',-O'_O'j0'+) =10 O 0 . (B2f) (Ezg)tj = tr(O'iO'_O'jO'_(T+) = 0 00 . (an)
00 -1 -1 i 0
001 1 ¢ 0
() =tr(o0,0_050,)=(0 0 i |, (B2g) )i =tr(oyo,ojo) =i =1 0], (B20)
000 0 0 O
0 0 0 1 —-i 0
(E.p)i=tr(oo_o,00,)=| 0 0 0|, (B2h) Ep)ij=t(oo oo )=[-i -1 0. (B2p)
-1 -i 0 0 0 O
000 APPENDIX C: THE FUNCTIONS f 4, f115 f12 8115
AND h
()i =tr(oy0,050,0)=(0 0 0|, (B2i) #1
1 i 0 In this appendix we show how to evaluate the functions
fog f11s f12, and hy defined in Eqgs. (4.18¢), (4.18d), (4.18e),
00 (4.18f), (4.18g), and (4.30) in the limit of long wavelengths
-1 and small frequencies.
>)i=tr(oo,00.0)=0 0 —i |, B2j
(%) ! (o1, ! 2 00 0 (B2)) 1. Function f
We start with the expression for ¢, in terms of Green
00 0 functions given in Eq. (4.18f). By symmetrizing the depen-
. dence on k and g, performing the sum over Matsubara fre-
(Eub)ij =tr(oyo,0.00)=(0 0 0], (B2k) quencies and doing a partial fraction decomposition, @4, can
1 -i 0 be written
00 1 Qod)d)(k’lﬂn) = (Pzgz’;(kJQn) + ¢$-<)b(_ kv_ lQn) + (P((;(zs(kvlﬂn)
- A
Ep)ij=tr(oo_o,00)=(0 0 i |, (B21) ool= k= i€2,). (Cla)
00 0 From Eq. (4.18¢c) we have
Foall.i€,) = 2 @) (k.i02,) + ¢y~ k.~ i€2,)]. (C1b)
. 001 That is, f4 is given by the symmetric part of ¢4 alone. The
(Xpa)ij=t(oio_0j0,0)=| 0 0 —i |, (B2m) antisymmetric part ¢, does not contribute, but we list it
00 O here for completeness:
|
Sk - T ls @ p v -p+>w_{ A& -w) L AE+w) ]
PP gy » 2mew, w_ iQ,—k-pm.+w,—w_ iQ,—k-p/m.—w,+w_
L@+ -p+>w_{ fE-w)  fE@sw) ] cio
2mw,w_ iQ,—k-plm—w,—w_ iQ,—k-plm,+w,+w_]||’
The symmetric part ¢'*) consists of two parts that are structurally distinct,
P Hk,iQ,) = gUy(k,i),) + o)k, if),), (C1d)
where
-1 _+ N2+ [ 7 —w_ 4+ w_ |
qog(;(k,iﬂn)=—2 wiw 8(p) : f(& ) - f(& ) ’ (Cle)
4ve, wow_ L iQ, —k-plm.—w,—w_ iQ,—k-p/m,+w,+w_ |
-1 =\ - [ T —w_ T+ w_ |
‘Pg;s(k,iﬂn) _ _E w,w s@) : fE-w) ;- SE+w.) . (C1f)
4ve, Wow_ LiQ, —k-plm.+w,—w_ iQ,—k-p/m,—w,+w_ |
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In these expressions §Z=§I,++q2/8me, p.=p=xk/2, and w,
=w(p.) with B
(q-p)°

i +A2 (Clg)

w(p) =
and

IS CURCR P 2)
8(p) 4mg((q p) - la-k)7). (C1h)

(1) and cp ) are both generalized Lindhard functions. For
A=0 tﬁey comblne to form a Lindhard functlon at wave vec-
tor k+q, while, for ¢=0, go ) vanishes and (p ¢ ¢ turns into the
function that determines tﬁe ferromagnetic magnon 2 A
structural difference between them is that in <p & ) the hydro-
dynamic singularity at k=i(), =0 that is characteristic for the
Lindhard function is protected by A, while in w((f()b this is not
the case.

The remaining wave vector integral is difficult, and we
evaluate it only in the limit A > gvg. The Fermi functions in
Egs. (Cle) and (C1f) pin the integration momentum p to a
shifted Fermi surface. For A > qug one can therefore perform
a straightforward expansion of the integrand in powers of
que/\. For ¢ the leading term is the g=0 contribution.
Specifically, in this limit,
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1 k\ [iQ,)\?
@g()zs(k,iﬂn)mp(”(o 10)+NF|: 3< )+(u) }

2k 2\
(C3)
For ¢? the leading term is of O(g?), since
[waw_ =N = g(p)Jw,w_— (g - k)/8m2N*,  (C4)

and the integral is reduces to a Lindhard function. The non-
hydrodynamic part provides only corrections of O((qug/\)?)
to ¢V, but the hydrodynamic part is qualitatively new and
must be kept. We find

7 (g -k)*[Q |
32 mA\? v

o (k.i0),) = ¢ (k,i0) — Np— (C5)

which is valid for |(),| <vpk. Combining these results yields
Eq. (4.20a) with coefficients appropriate for the case A
> gug. Corrections are of O((qug/\)?).

2. Functions f1, f12, and gq;

In order to calculate ¢;;, Eq. (4.18g), it is convenient to
consider ¢;,(k—q,i(),), which can be written in a form simi-
lar to @44k, i€2,): namely,

(Pll(k - q’lQn) = (P(]ll)(k - qsiQn) + 90(121)(k - q’iQn)’

wow_+ N2+ g()w,w_— 2, (C2)
+ glp + (C6a)
and the calculation reduces to the ferromagnetic case. For
k<kg and |Q,| <\, the result is where
J
_—gp)+\? —w_) - f(&+ +w_
k= q.i0) = LS 2= 5@) [f(ﬁ w) = f(Ew) | SE )~ fE - w) ] Cob)
8V~ wow_ iQ,—k-plm,—w,—w_ zQ —k-p/me+w,+w_
-1 _+gp) - N AE-w)-f(&- 7+ w_) - f(&+
P A ) {f(gq W)= flEl-w) | AE+w) - f(E ) ] 60)
8V~ wow_ iQ,—k-pm.+w,—w_ iQ,—k-p/m.—w,+w_

To evaluate these integrals we again assume A > qug. In this
limit,

[wow_—g(p) + N w,w_— 2, (C7)

and the integral again reduces to the ferromagnetic case. The
result is

. ) N, 1 k 2 lQn 2
etie-gim=eviam+ 3|55 (5]

(C8a)

Shifting k by ¢, we find

‘Pu(k i) ) 9011(0 i0)

NF[ 2 k-gq 1( k )2 (mnﬂ
+—|—-= Y + .
2| 3(2kp)? 3\ 2k 2\

(C8b)

()

11 we need

For ¢

[wow_+g(p) - NYw,w_— (q ~p)2/2m§)\2. (C9)

In contrast to Eq. (C4), this is quadratic in the integration
variable p. (p(lzl) therefore is a stress correlation function. It
has a hydrodynamic contribution of the same functional form
as the Lindhard function, but only the transverse (with re-
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spect to k) components contribute to it. The nonhydrody-

namic contributions are again subleading compared to cp(lll).
One finds

2 : T vpq gk> |,
1= 0,i0,) = 61 = .10+ Mg S S
(C10a)
and after shifting the momentum we obtain
2 m UFqu |Q |
§011)(k iQ) ) ¢( >(k i0) + NF32 N q2 N

(C10b)

Using these results in Egs. (4.18d), (4.18e), and (4.29¢) we
obtain Egs. (4.20b), (4.20c), and (4.30a), respectively.

3. Functions £ 4

Finally, the function 7,4, which is defined by Eq. (4.29)
and determines h,; according to Eq. (4.29d), can be written

71 (ki) = 750 (k,iQ,) + 93} (k,iQ,),  (Clla)

where
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Azwqﬂm{ﬂﬁ—wJ—ﬂﬁ+wJ

W i) = —=
71 k- 1€1,) Ve wawo LiQ,—p-kime—w,—w_

F(E+w) - f(&l - wg}

lQ -p-kim.+w,+w

(Cl1b)

77(/)1 (k lQn) -

we—w | f(&l-w)—f(§-w,)
VE Ww {

» iQ,—p-kim.+w, —w_

F(E+w) - ﬂa+wg} 1o

zQ -p-kim.+w,—-w

Using the same techniques as above we find, in the limit A
>qUF,

i)
k. i€,) = 4N (C11d)

7]5;1) is proportional to Ng(iQ,/\)(g-k)*/kik? and hence is

small compared to 7]5151 by a factor of ¢*/ k2 These results
yield Eq. (4.30b).
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