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We develop the phenomenology of magnetic-field-stimulated defect reactions in nonmagnetic solids based
on the concept of defect-induced lattice magnetism �DILM� associated with a rise of spontaneous orbital
currents in the elastic strain field produced by a defect. We present the hierarchy of all magnetic symmetry
classes corresponding to the current structures with long-range or short-range orbital antiferromagnetic order
depending on the perfect crystal symmetry and the symmetry of the defect-induced strain field. This strain field
can result in a confinement of orbital currents and gives rise to size-quantized orbital magnon excitations. An
external magnetic field leads to the splitting of magnon levels and causes the transitions between some of the
intersecting Zeeman sublevels. The excitation of orbital magnon from the discrete size-quantized level into the
continuous spectrum can be considered as the principal stage of magnetic field stimulated defect reactions. One
can consider the DILM phenomenology as a contribution to a new field of solid state physics which could be
termed the spin chemistry of solids.
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I. INTRODUCTION

An external magnetic field can have a pronounced effect
on molecular reactions in liquids1,2 and on reactions of de-
fects in solids.3,4 Spin chemistry studies1,2 of the kinetics of
the molecular reactions are based on the assumption that the
total spin should be conserved during a chemical reaction.
The effect of an external magnetic field can result in a spin
conversion and, therefore, promote a change in the reaction
yield. It is agreed that the spin conversion may occur either
due to the difference in the Zeeman energies of the unpaired
electrons of a radical pair, i.e., the two molecular complexes
with unsaturated electron spins, or due to the hyperfine inter-
action of the electron spins of the radical pair with a nuclear
spin. In the latter case, the nuclear spin plays a role of the
third particle providing the total spin conservation. The mag-
netic field can change the probability of a molecular reaction
if the lifetime of the radical pair is much longer than the time
of magnetic-field-induced repopulation of the spin levels, but
much shorter than the time of the spin relaxation restoring
the initial population of the spin levels due to an interaction
of the radicals with the liquid media.1,2

The validity of the spin chemistry approach for an expla-
nation of the magnetic-field effect on defect reactions in sol-
ids raises doubts5 because of the uncertainty of the nature of
radical pairs in crystals. For example, the unpaired spin of
the partly occupied internal electron shell of a paramagnetic
impurity, considered as one of the components of the radical
pair in the explanation6,7 of the magnetoplastic effect, does
not mean that such an impurity exhibits itself as a radical,
because the reactions between defects are primarily caused
by the external valence electrons. The speculations6,7 relating

to a dangling bond in the core of a topological defect �e.g., a
dislocation, as another component of the radical pair� ignore
the highly probable reconstruction of the core. The strained
covalent bond under sufficiently large deformation �actually
corresponding to the break of the bond� could become a radi-
cal pair4 but the lifetime of such a pair is apparently not long
enough to produce the inverse population of the spin levels
in the magnetic field.5

It is reasonable to conclude that the difficulty of interpre-
tation of the magnetic-field effect on the solid state defect
structure lies not only in the magnetic Zeeman energy weak-
ness in comparison with the thermal energy but, mainly, in
the likely absence of radical pairs as the objects of the effect.
The fact that the numerous macroscopic manifestations of
magnetic-field-induced defect reactions are observed in non-
magnetic crystals notably different in the structure and
chemical composition allows one to propose that there exists
a universal mechanism of such reactions associated with the
nature of the electron spectrum and the quantum states of
solids. Therefore it is highly probable that the magnetic field
effect on defect reactions in solids admits a unified
phenomenology.8

In molecular reactions, the transitions between the orbital
states in an external magnetic field are not taken into consid-
eration because the Zeeman energy is negligible in compari-
son with the distance between the ground and the first ex-
cited molecular terms. That is why one can assume,
following the spin chemistry approach, that there is a conser-
vation of the total spin S, in spite of the fact that the con-
served quantity is the total angular momentum J=L+S,
where L is the total orbital angular momentum.

The effect of magnetic field on the defect reactions in
solids can be described within the framework of the
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phenomenology8 based on the assumption that, in the ex-
tended vicinity of the defect, there are magnetoactive
branches in the spectrum of elementary excitations associ-
ated with the orbital degrees of freedom. The band electron
spectrum of a solid permits the transitions with the simulta-
neous change of the orbital angular momentum and the spin
due to comparatively weak spin-orbit interaction. If the ex-
citation of the orbital degrees of freedom is accompanied by
a rise of spontaneous orbital currents, the appearance of a
magnetoactive branch can be referred to the quasiparticle
�orbital magnon� with the orbital angular momentum L=1
playing the role of the third particle which provides conser-
vation of the total angular momentum. Therefore orbital
physics9,10 complements spin chemistry in the description of
magnetic-field-induced defect reactions in solids.

In this work, we develop the concept of defect-induced
lattice magnetism �DILM�8 which is associated with the rise
of spontaneous orbital currents in the elastic stress field cre-
ated by the defect. A survey of the DILM phenomenology of
the magnetic-field-stimulated defect reactions in crystals is
contained in Sec. II. In Sec. III, we present group theory
classification of orbital current structures compatible with the
point symmetries of the crystal and defect-induced elastic
stress field. Section IV deals with the thermodynamics of the
antiferromagnetic orbital long-range and short-range ordered
states. Section V addresses orbital magnons confined by the
extended stress field vicinity of the defect. In Sec. VI, we
estimate the rate of the defect reaction assisted by orbital
magnon emission. In Sec. VII, we demonstrate the possibil-
ity that magnetic-field-induced effects can be studied using
precise spectroscopy methods. Finally, possible manifesta-
tions of orbital physics on the magnetic-field-stimulated de-
fect reactions in solids are discussed in Sec. VIII.

II. MAGNETIC-FIELD-INDUCED DEFECT REACTIONS
IN SOLIDS

The effects under consideration are the observed changes
in defect structure of nonmagnetic crystals after their treat-
ment by an external magnetic field. There are no magneto-
active branches, similar to spin waves, in the spectrum of
elementary excitations of such crystals without defects. It is
natural to assume that defects themselves are the origin of the
appearance of the magnetoactive branches, associated with
spontaneous orbital currents in an extended distorted vicinity
of the defect. The external magnetic field can excite the size-
quantized orbital magnons confined in the vicinity of a
defect.8 Due to the total angular momentum conservation,
the emission �or absorption� of the orbital magnon with a
change of the orbital angular momentum �L= ±1 is accom-
panied by a change of the total spin of the electron system
�S= ±1. Thus the Zeeman interaction of the spin subsystem
with an external magnetic field can result in a change of the
total spin.

As a simple example of the defect reaction, one can con-
sider a decay of a defect complex �DC� into some defects
treated as reaction products �RPs�.8 To describe this reaction
qualitatively, we restrict ourselves to one-dimensional con-
figuration space with the only reaction coordinate Q corre-

sponding to the atomic displacements in the process of the
transition from the DC atomic configuration into the RPs
configuration. A set of adiabatic energy levels corresponds to
any value of the coordinate reaction and each of these levels
can be referred to definite values of the total spin S and total
orbital angular momentum L, if one can neglect the spin-
orbit interaction.

For the sake of simplicity, we suppose that the DC can be
the origin of the confined orbital magnons whereas the RPs
cannot. The two possibilities of the intersection of the ground
terms corresponding to spin allowed and forbidden transi-
tions DC↔RPs, respectively. The anticrossing of the terms
due to the degeneration lifting in the intersection point of DC
and RPs ground state levels occurs at the equal values of the
total spin of DC and RPs electron subsystems. This leads to
a rise of the ground and excited energy terms. The first of
them has two local minima, which can be referred to the DC
�with the lower energy� and RPs, respectively. In such a case,
any reasonable magnetic field cannot affect the thermally
activated transition DC→RP because of the large energy
separation �E between the ground and the first excited levels
in the saddle point configuration.

There is a crossing of the ground energy state terms of the
DC and RPs with different values of the total spin. In such a
case, the transitions between the DC and RPs are spin for-
bidden when one neglects weak spin-orbit interaction. The
thermal activation of the DC gives rise to the filling of the
vibrational levels including those lying above the crossing
point. This can be considered as a transition of the DC into a
metastable state. In the absence of the spin-orbit interaction,
the transitions between the vibrational levels of the meta-
stable DC and the RPs ground terms are spin forbidden.

The magnetoactive branch in the quasiparticle spectrum
gives rise to an excitation of the DC corresponding to its
transition into an intermediate metastable state DC*. If the
values of the total spin of the DC* and RPs coincide, the
transition DC*↔RPs turns out to be allowed. Indeed, one
can assume that there is at least one size-quantized magne-
toactive sublevel associated with each of the vibrational lev-
els of the DC. Following this assumption, there is a possibil-
ity of the transition of the electron subsystem into such a
sublevel. The transitions between the vibrational levels of the
DC* and RPs become allowed if the difference in their val-
ues of the orbital angular momentum is compensated by or-
bital magnon angular momentum. The magnon provides the
conservation of the total angular momentum of the DC con-
figuration. It should be noted that the thermal excitation of
the magnon sublevels of each of the DC ground term vibra-
tional levels is spin forbidden. Transitions onto the size-
quantized orbital magnon sublevels can emerge in external
magnetic field under the condition that its strength corre-
sponds to the Zeeman energy exceeding the energy separa-
tion between the sublevels. The excitation DC→DC* accom-
panied by orbital magnon emission allows the subsequent
transition DC*→RP which completes the defect reaction.

The phenomenology describing the effect of compara-
tively weak magnetic fields on the defect structure of non-
magnetic crystals is based on the assumption that there arise
spontaneous orbital currents in an extended crystal lattice
region distorted by a defect. This phenomenology is not able
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to estimate quantitatively the magnetic field sensitivity of the
particular defect reaction in the given crystal. To address this
problem, one needs an approach based on an appropriate
microscopic theory taking into account inherent features of
the electron states of the crystal. However, the phenomeno-
logical approach allows one to classify all orbital current
structures consistent both with the crystal symmetry and the
symmetry of the elastic strain field associated with the de-
fect.

III. DEFECT-INDUCED MAGNETIC SYMMETRY BREAK

Because of the break of the translation symmetry in crys-
tals with defects, it is sufficient to consider the symmetry of
directions outgoing from some point in the core of the defect.
This symmetry break is similar to that which arises in the
case of uniform infinitesimal continuous deformation of the
unit cell. Therefore the determination of possible magnetic
symmetry manifested in a vicinity of the defect can be asso-
ciated with the well-known hierarchy of crystal classes.

Deformation excludes some symmetry operators from the
point symmetry group �crystal class G0� of the perfect crys-
tal. According to the hierarchy of groups,11 the crystal class
G of the uniformly deformed crystal is one of the subgroups
of the group G0. Such a hierarchy of the holohedral crystal
classes is presented in Fig. 1 for all of the seven crystal
systems. It is supposed that there is no magnetic symmetry in
the case of the crystal classes of the highest symmetry �cubic
Oh and hexagonal D6h�.

The crystal symmetry can be defined as the symmetry of
the average microscopic charge density, ��r�. The function
��r� is invariant with respect to all symmetry operators of the
point group G as well as with respect to the time reversal
operator R: R��r�=��r�.12 One can define the extended point
group as the direct product, G�K, of the crystal point group
G and the group K consisting of the two elements; the iden-
tity operator and R. Note that the extended point group of the
perfect crystal, G0�K, contains twice as many symmetry
operators �the set of operators G0+RG0� as compared to the
crystal symmetry group G0.

As the average microscopic current density, j�r�, is non-
invariant with respect to the time reversal operator, Rj�r�
=−j�r�, the extended point group turns out to be a magnetic
symmetry point group of a crystal without any magnetic
structure �in such a case j�r��0�. It should be noted that the
charge density cannot become zero and can be defined in all
solids whereas the nonzero current density can only be de-
fined in a relatively few magneto-ordered crystals.12

There are two possibilities of the deformation-induced
magnetic response in a crystal: �1� spontaneous currents do
not arise, therefore the extended point symmetry group of the
undeformed crystal G0�K transforms into the extended
point symmetry group G�K being the magnetic symmetry
group of the deformed crystal; and �2� in the case of a rise of
spontaneous currents, the time reversal operator R altering
the currents cannot itself enter the magnetic symmetry point
group. Therefore half of the symmetry operators, including
the time-reversal operator R, should be excluded from the
extended point symmetry group of the deformed crystal to
obtain its magnetic point symmetry group. The set of ele-
ments of the magnetic point symmetry group can be repre-
sented as G�H�=H+RgH, where H is a subgroup of index 2
of the group G �G contains twice as many symmetry opera-
tors as compared to the subgroup H� and g is a symmetry
operator from G which does not enter into H.

If the order of the extended point symmetry group
G�K is equal to 2n, the order of the magnetic symmetry
point group becomes equal to n. Thus a rise of spontaneous
currents leads to a break of magnetic symmetry of the crys-
tal. As the spontaneous currents exclude the symmetry op-
erators gH, the subgroup H actually determines the symme-
try of the spontaneous currents which give rise to a magnetic
ordering inside the distorted region of the crystal lattice
around the defect.

IV. DEFECT-INDUCED ORBITAL MAGNETIC ORDER

Magnetic order usually arises in the crystals with partially
filled internal electron shells with spatially localized spins.
For ferromagnets or antiferromagnets, the current density
j�r� is determined by the space distribution of spin magnetic
moments. In the general case, the total magnetic moment
arises as a sum of the spin magnetic moment and orbital
magnetic moment. That is why the magnetic order can also
arise in the crystals without any localized spins. In such crys-
tals the average current density should be associated with the
orbital motion of electrons.

The excitation of orbital circular �within the unit cell�
currents leads to an increase of the kinetic energy which can
be �partly� compensated by the interaction of antiferromag-
netically ordered currents. The concept of orbital antiferro-
magnetism �OAF� introduced by Halperin and Rice13 in the
theory of exciton insulators was developed later as the theory
of toroidal magnetic ordered state.14 Recently, this issue be-
came one of the most debatable points in physics of heavy
fermions15 and layered quasi-two-dimensional compounds.16

The concept of OAF is an important issue in solid state
physics although striking evidence of the long-range OAF
order in some kind of crystals is apparently absent. This may

FIG. 1. The hierarchy of magnetic symmetry classes. According
to the conventional notation �Ref. 12�, the symbol G�H� corre-
sponds to a reduction of the crystal symmetry to the magnetic sym-
metry due to a rise of spontaneous currents. G has the meaning of
the charge density symmetry group whereas H is the current density
symmetry group �Ref. 12�. Arrows show the possibilities of charge
symmetry lowering due to homogeneous deforming of a nonmag-
netic crystal. For example, there are three possibilities to realize the
magnetic symmetry C2h�C2�: D6h→C2h�C2�, D3d→C2h�C2�, and
D2h→C2h�C2�.
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be due to a rather weak response of such an order to external
excitations.16,17 In this sense, the long-range OAF order can
be considered as a hidden order.15,16 Using circularly polar-
ized photons in the angle resolved photoemission �ARPES�
technique, Kaminskii et al.18 have observed the time reversal
symmetry break in the pseudogap state of the cuprate com-
pound Bi2Sr2CaCu2O8+x that can probably be referred to
OAF hidden order.

The distortion of the crystal lattice can result in a redis-
tribution of already existing spontaneous currents. For ex-
ample, in spin antiferromagnets, the elastic strain leads to a
nonequivalence of the AF sublattices. Due to this nonequiva-
lence, there arises linear strain macroscopic magnetization
�the piezomagnetic effect�.12

A rise of orbital spontaneous currents under deformation
of the nonmagnetic crystal can be considered as a manifes-
tation of the piezomagnetism as well. The circular AF or-
dered orbital currents corresponding to such an orbital piezo-
magnetism do not result in a macroscopic magnetization.
This restricts the number of magnetic crystal symmetry
classes arising in distorted nonmagnetic crystals. Indeed, one
has to exclude the Index 2 subgroups corresponding to fer-
romagnetic order from the hierarchy of the holohedral
classes according to Fig. 1.

The magnetic order associated with spontaneous orbital
currents breaking the magnetic symmetry of the crystal,
G�KÞG�H�, is determined by the orbital currents inside
the magnetic unit cell. The magnetic dipole moment of this
unit cell is equal to zero. Therefore the orbital current distri-
bution corresponds to a magnetic multipole and one can con-
sider its irreducible components as the components of the
OAF order parameter. In the simplest case, the order param-
eter, �=M1−M2, can be defined in terms of the magnetiza-
tions, M1 and M2, of the two magnetic sublattices �in the
absence of an external magnetic field, M2=−M1�.

The magnetization of the magnetic sublattice arises due to
comparatively weak magnetic fields of circular orbital cur-
rents; therefore one can consider the OAF order parameter to
be small at any temperature. The Landau free energy func-
tional can be represented as an expansion in powers of the
components �x, �y, �z of the vector �,

F��� =� d3r�fg + f2 + f4� , �1�

where the integration should be performed over the volume
of the crystal. The terms f2 and f4 are the contributions into
the free energy density of the second and fourth order, re-
spectively. The gradient contribution, fg, is the correspond-
ing second order combination of space derivatives of the
components of the order parameter. These combinations of
the components and their space derivatives should be invari-
ant under all transformations of the group G�H�. The thermal
equilibrium components of the order parameter correspond
to the absolute minimum of the Landau functional �1�.

For the sake of simplicity, we restrict ourselves to the case
of the perfect crystal of the cubic symmetry Oh and suppose
that a defect reduces the crystal symmetry to the tetragonal
case, Oh→D4h. The elastic strain created by the defect varies

smoothly enough in the vicinity of the defect so that one can
neglect the gradient term fg in the free energy density. In
cubic crystals, there are the only invariant of the second or-
der, �2=�x

2+�y
2+�z

2, and two invariants of the fourth order,
J1=�x

4+�y
4+�z

4, J2=�x
2�y

2+�y
2�z

2+�z
2�x

2. A variation of the
free energy density due to a rise of the locally uniform OAF
order can be represented in the form

f2
�0� + f4

�0� = a�2 + b1J1/2 + b2J2/2, �2�

where the upper index �0� indicates the perfect crystal sym-
metry, G0. The coefficient a in the second-order term in the
Landau free energy density �2� has to become zero on the
phase transition line19 being negative in the ordered low-
temperature phase. Because of our assumption that there is
no long-range magnetic order in the perfect crystal, the co-
efficients a, b1, and b2 in the expansion �2� should be posi-
tive. Therefore all of the equilibrium values of the compo-
nents of the order parameter should be equal to zero.

The symmetry change, G0→G, in the distorted vicinity of
the defect leads to a modification of the structure of the in-
variants in the Landau functional. The uniform contribution,
f2+ f4, into the free energy density should be represented as a
sum of new invariants corresponding to the reduced symme-
try, G. Thus the coefficients in the Landau expansion turn out
to be dependent on the strain tensor, uik. For the sake of
simplicity, we assume that the fourth-order terms are weakly
dependent on uik. This allows one to consider these terms to
be the same as in the perfect crystal. Such an approximation
cannot affect the equilibrium OAF order qualitatively. On the
contrary, the dependence of the second-order terms on the
strain tensor may turn out to be essential, since distortion can
result in the sign reversal of some of these terms. We restrict
ourselves to a consideration of the linear dependence of the
coefficients in the second-order terms on the strain tensor.
This approximation corresponding to orbital piezomagnetism
allows one to present the second-order contribution into the
free energy density as

f2 = a�2 − �uik�i�k, �3�

where the summation over repeating indices i ,k=x ,y ,z is
understood. Without loss of generality, one can assume that
the phenomenological piezomagnetic constant a�0.

The only nonzero component of the strain tensor corre-
sponding to tetragonal distortion of the cubic crystal along
the z axis is uzz�u, therefore the uniform contribution into
the free energy density takes the form

f2 + f4 = a��x
2 + �y

2� + �a − �u��z
2 +

b1

2
J1 +

b2

2
J2, �4�

where the two second-order invariants, �x
2+�y

2 and �z
2, with

reference to the tetragonal symmetry are written explicitly.
As it follows from Eq. �4�, the equilibrium values of

transversal, with respect to the fourth-order axis, components
of the order parameter are equal to zero independently of the
sign and magnitude of the strain, 	�x
= 	�y
=0. In the case
when a−�u�0, the phase transition is forbidden and the
equilibrium value of the longitudinal component is equal to
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zero as well, 	�z
=0. Thus in such a case corresponding to
low strain level, the long-range OAF order turns out to be
impossible.

In the opposite case, when the strain is high enough,
u�a /�, the equilibrium value of the z component becomes
nonzero,

	�z
 = ��u − a�/b1. �5�

One can see that long-range OAF order arises only under the
condition that the strain u is large enough and has a definite
sign. This condition may be satisfied for the crystals with a
soft mode with respect to an excitation of orbital currents. It
is clear that the real strain field in the extended vicinity of the
defect is spatially inhomogeneous decreasing with the dis-
tance r from the defect, u=u�r�. Therefore the solution
r=rl to the equation �u�r�=a can be considered as an esti-
mating length of the region around the defect which mani-
fests spatially inhomogeneous long-range OAF order.

In the case when the coefficient a is small enough, the
condition that a	�u may be satisfied inside the region
where r	rl. The average value of the order parameter is
equal to zero outside of the region r	rl, 	�z
=0, however,
its fluctuations may turn out to be significant far away from
this region. In the more realistic case, when a��u at any
distance from the defect, the long-range order turns out to be
impossible. If the coefficient a−�u in the Landau expansion
�4� is small enough, one can expect a significant enhance-
ment of fluctuations of the z component of the order param-
eter, whereas the fluctuations of the other components remain
suppressed. Thus one can consider one-component OAF or-
der parameter �z�� and reduce the gradient contribution
into the free energy density in the form

fg = g����2/2, �6�

where g is a phenomenological parameter.
A correlation length rc of fluctuations of the order param-

eter can be roughly estimated in the framework of the
Ornstein-Zernicke theory,19

rc = �g/�a − �ū��1/2, �7�

where ū is a characteristic elastic strain inside the extended
vicinity of the defect. Due to a smallness of the value of
a−�ū, the short-range OAF order as developed fluctuations
of orbital currents can manifest itself inside a rather wide
region around the defect.

V. CONFINED ORBITAL MAGNONS

The Landau free energy functional corresponding to the
Ornstein-Zernicke approximation19 can be written as

F��� =� d3r�g����2 + „a − �u�r�…�2� , �8�

where the integral is taken over the volume of the crystal.
The order parameter �=��r� can be determined by the mini-
mization of the functional �8� under the condition that

� d3r�2 = const. �9�

The value of the normalization constant restricting the mag-
nitude of fluctuations of the order parameter is actually de-
termined by the fourth-order terms in the functional �1�
which are neglected in the Ornstein-Zernicke theory.

Minimization of Eq. �8� leads to the equation

− g�2� + „a − �u�r�…� = 
� , �10�

where 
 is a Lagrange multiplier which should be determined
from the condition in Eq. �9�. One can see that this equation
is formally similar to the one-particle Schrödinger equation.
Indeed, one can consider U�r��−�u�r� and E�
−a as the
potential and total energy of a particle with the effective
mass m=�2 /2g, respectively.

For the sake of simplicity, we restrict ourselves to the case
corresponding to fluctuations of the order parameter in the
vicinity of a point defect. In such a case, under the condition
that u�r��0, U�r� can be considered approximately as a
spherically symmetrical effective attractive potential. The
strain created by the point defect with a characteristic core
size r0 decreases with r as u�r���r0 /r�3 when r�r0 and has
a finite value u�0��1 when r→0. Thus the effective poten-
tial has the form of a potential well as it is shown schemati-
cally in Fig. 2.

A solution to Eq. �10� can be presented in the form

�nlm = Rnl�r�Ylm�,�� , �11�

where Ylm� ,�� is the spherical harmonics depending on the
spherical angles  and �, the function Rnl�r� determines the
radial dependence of the order parameter, and �n , l ,m� is a
set of the quantum numbers typical of the spherical symme-
try.

The parameter E has a meaning of an eigenvalue of Eq.
�10�. The set of the eigenvalues E=Enl belongs to the dis-
crete spectrum if −U0	E	0, whereas there is a continuous
spectrum when E�0 �see Fig. 2�.

The short-range order magnitude is determined by occu-
pation numbers nnlm of the levels Enl. A change in the occu-
pation number, �nnlm= ±1, can be considered as absorption
or emission of an orbital magnon confined by the effective
potential well U�r�.

An excitation of the orbital magnon results in a transition
of the system into a new orbital state. Such a transition is
accompanied by a change �L=1 of the orbital angular mo-
mentum. Because of the conservation of the total angular

FIG. 2. The effective potential well and orbital magnon spec-
trum �a�. Zeeman splitting of DC levels in the state with total an-
gular momentum J=1 �b�.
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momentum, this simultaneously corresponds to the transition
of the system into a new spin state with a change of the total
spin �S=1. Thus the orbital magnon as an elementary exci-
tation with orbital angular momentum L=1 and spin S=1
can arise in one of the three states which differ from each
other by the value of the total angular momentum J: J
=0,1 ,2.

The external magnetic field lifts the degeneracy of mag-
non levels with J�0 both in the discrete and continuous
spectrum resulting in the Zeeman splitting of the levels with
different projections along the quantization axis. The Zee-
man splitting of the levels of confined magnons is presented
schematically in Fig. 2. In the case of two levels close to
each other, the corresponding Zeeman sublevels with differ-
ent projections of the total angular momentum can be inter-
sected at a moderate magnetic field strength �Fig. 2�. In such
a case, the external magnetic field raises one occupied Zee-
man sublevel of the discrete level E=−Eb into the continuous
spectrum. This occupied sublevel can intersect the unoccu-
pied Zeeman sublevel of the continuous spectrum at E�0. It
should be noted that the external magnetic field causes not
only the crossing of the Zeeman sublevels but can also lead
to transitions between these sublevels, allowed by the selec-
tion rules.

VI. MAGNON MECHANISM OF DEFECT REACTIONS

To calculate the probability of the transition between the
intersecting Zeeman sublevels arising under an external mag-
netic field one can take advantage of the perturbation theory
for the transitions in continuous spectrum.20 The perturbation
operator has the form

V̂ = �B�L̂ + 2Ŝ�H , �12�

where �B and H are the Bohr magneton and magnetic field
strength, respectively. The energies of the initial, �i
, and fi-
nal, �f
, states are the Zeeman sublevels,

Ei = − Eb + �BgiMJ
�i�H, Ef = E + �BgfMJ

�f�H , �13�

where gi �gf� is the effective Lande factor and MJ
�i� �MJ

�f�� is
a projection of the total angular momentum onto the
magnetic-field direction for the initial �final� state, respec-
tively.

If one ignores the spin-orbit interaction, the wave func-
tions of the initial and final states, �Mi�i
 and �Mf� f
, with
definite values of the projections of the spin, �i, � f, and
orbital angular momentum, Mi, Mf, can be presented as
products of the orbital and spin functions. In addition, the
final state is characterized by the energy belonging to the
continuous spectrum.

The initial and final states with definite values of the pro-
jections, MJ

�i� and MJ
�f�, of the conserving total angular mo-

mentum J can be presented as linear combinations of the
wave functions with definite projections of the spin and or-
bital angular momentum,

�JMJ
�s�
 = 

Ms�s

�Ms�s
	Ms�s�JMJ
�s�
 , �14�

where s= i , f , 	Ms�s �JMJ
�s�
 are the Klebsh-Gordan coeffi-

cients. The functions �Ms�s
, aside from the angle variables,
depend on a radial variable.

The rate of the transition from any Zeeman initial state
into any final state can be written as

w =
2�

�

i,f

nJ�Vfi�2N�E�� , �15�

where Vfi= 	JMJ
�f��V̂�JMJ

�i�
 and the summation over i , f is
performed over the total angular momentum and its projec-
tions both in the initial and final states, nJ is an average
occupation number of the initial state corresponding to the
total angular momentum J, and N�E���E is magnon density
of states in the continuous spectrum. The argument of the
density of states is determined from the condition that the
energies of the initial and final states in the magnetic field
should be equal to each other.

For the sake of simplicity, we assume that there is equi-
probable occupation of the initial states with different J, that
is we assume that nJ=1/3. The assumption that E��0 re-
sults in the fact that MJ

�i��MJ
�f�. Therefore the selection rules

corresponding to the perturbation operator �12� provide two
kinds of transitions: Mf =Mi−1, � f =�i and Mf =Mi, � f =�i
−1. The selection rules also permit the transitions without a
change of the projections of the spin and orbital angular mo-
mentum, Mf =Mi, � f =�i. However, under the necessary con-
dition that E��0, these transitions turn out to be possible
only at gi�gf, that is in the considerably strong magnetic
fields. We do not consider such transitions and restrict our-
selves to the simplest case when gi=gf �g. Then, the energy
E�=�BH−E does not depend on the quantum numbers of
the initial and final states. One can see that the transi-
tions between Zeeman sublevels turn out to be possible
if the magnetic field strength exceeds the threshold value,
H0=Eb /�Bg.

The matrix element can be written in the form Vfi
=�BH+CJA, where H+=Hx+ iHy. The dimensionless quanti-
ties CJ are determined by the Klebsh-Gordan coefficients in
the linear combinations �14�: C1

2=10/9, C2
2=55/54. The fac-

tor A is the overlap integral between the radial wave func-
tions Rb�r� and Rk�r� belonging to the discrete spectrum and
continuous spectrum, respectively. Here, k2=2m*��BgH
−Eb� /�2, where m* has a meaning of orbital magnon effec-
tive mass.

The simplest choice of the radial wave functions,

Rb�r� =
2�5/2

�3
re−�r, Rk�r� =

4�i
�V

j1�kr� , �16�

where V is a normalization volume, �2=2m*Eb /�2 deter-
mines the spatial localization scale, �−1, of the confined or-
bital magnon, results in the estimation of the transition rate
averaged over magnetic-field orientations,
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w =
211 · 5 · 23�Eb

36g2�

�h − 1�3/2

h4 . �17�

Here h=H /H0 is a reduced magnetic-field strength.
The DC decay rate as a function of the reduced magnetic-

field strength, w�h�, is shown in Fig. 3. The function w�h�
exhibits a threshold at h=1 and a maximum at h=8/5. An
estimation of the DC decay rate at h=8/5, wm=w�8/5� re-
sults in wm�1012–1014 s−1, if one supposes that m* is of the
order of free electron mass. Note that this estimation is of the
order of a rate of thermal phonon excitation. However, as it
is mentioned above, the phonon mechanism of magnetic-
field-stimulated defect reactions is forbidden by the angular
momentum selection rules.

VII. EXPERIMENT

The effects of a magnetic field on nonmagnetic materials
have been previously investigated primarily by evaluating
macroscopic properties, such as plasticity of crystals,3,4

chemical activity of their surfaces,21 electric conductivity,22

homogeneity of solid solutions and compounds,8 etc. Such
investigations on a wide range of materials of different na-
ture lead to the suggestion that the origin of these effects is a
launch of defects reactions by the magnetic field. To confirm
or refute such a suggestion one needs direct investigations of
the magnetic-field effect on electron spectra of defects in
crystals. However, there have been few relevant spectro-
scopic studies performed up to now.

Here we present two examples of the effect of magnetic
field on the spectrum of a defect subsystem of a crystal. In
particular, we show the possibility of investigating the effect
of magnetic field on defects in the well-studied AgCl crystals
using the precise photoluminescence �PL� technique. Also,
we use deep level transient spectroscopy �DLTS� to study
this effect in GaAs crystals.

The first effect is the long-term increase of the PL inten-
sity of the Bridgeman-grown AgCl crystals after the short-
term pulsed magnetic-field �PMF� treatment. The samples
were treated by symmetrical triangular magnetic-field pulses
with an amplitude of 4 kOe, a duration of 4�10−5 s, and a
frequency of f =50 Hz. The time of treatment was 30 s. The
PL spectra were measured under nitrogen laser ��
=337 nm� excitation at 77 K. The effect is shown in Fig. 4.

It is assumed23 that the PL intensity short-wave band with the
maximum at 490 nm is associated with the presence of cat-
ion vacancies AgV

+ in the volume of the AgCl crystals, while
the wide band in the range of 600–800 nm is due to Ag-
containing DC at the surface of the crystals. Thus the PMF-
induced increase of the PL intensity indicates the corre-
sponding increase of the concentrations of the AgV

+ vacancies
in the volume and of the Ag-containing DC at the surface of
the crystal.

This first effect can be qualitatively explained similar to
the previously reported8 effect of the PMF on InAs crystals.
It is reasonable to assume a deficiency of the volatile com-
ponent �Cl� in the AgCl crystals resulting in the existence of
initial DC with chlorine vacancies �Clv� in the crystal vol-
ume. The PMF treatment may cause a decay of the
Clv-containing DC with a formation of mobile chlorine va-
cancies. The motion of these vacancies towards the surface
results in a generation of antistructural point defects �Ag in
the Cl sites� and AgV

+ in the volume of the crystal. The mo-
tion of the chlorine vacancies is accompanied by the opposite
motion of Cl atoms from the surface into the volume. The
depletion of the surface with Cl disturbs a stoichiometry of
the surface layer making it enriched with the metal element.
Thus the PMF treatment of the AgCl crystal results in a
generation of the AgV

+ vacancies in the volume of the crystal
and of the Ag-containing DC inside the surface layer. These
defects are responsible for the PL short-wave band and the
wide long-wave band, respectively. It is highly probable that
the decrease of the PL intensity in the final stage of the
PMF-induced relaxation occurs due to the partial decay of
the Ag-containing surface DC and annihilation of the AgV

+

vacancies in the volume caused by a diffusion of Ag atoms
from the metal-enriched surface layer into the crystal vol-
ume.

The second effect is the PMF-induced irreversible change
of the energy distribution of the surface electron states in the
GaAs crystals. This effect is clearly demonstrated by the
DLTS spectra in Fig. 5. We studied the Al-GaAs Schottky
barriers with thermally deposited Al electrodes on the chemi-

FIG. 3. Normalized DC decay rate as a function of the reduced
magnetic-field strength h=H /H0.

FIG. 4. PL spectra of AgCl crystal: 1-before, and 2, 3-three and
four days after the PMF treatment. Inset: the time dependence of
short-wave �490 nm� band maximum of PL intensity.
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cally polished surface of n-type Czochralski-grown GaAs
�100� substrate and In-Ga paint ohmic contact at the backside
of the wafer. The PMF treatment was the same as in the
former case. The DLTS spectra were measured with constant
delay times ratio t1 / t2=10 ms/210 ms, the charging time t0
=10 ms, and the charging voltage Vd=2 V. The discharge
voltage Vrev was varied. The initial DLTS spectrum of the
GaAs crystal has three bands with the energies Ec
−0.38±0.02 eV, Ec−0.57±0.02 eV, and Ec−0.85±0.02 eV,
where Ec is the energy of the conduction band bottom. The
decrease of the central peak with increasing of Vrev indicates
the surface localization of the relevant electron traps. Such
traps are considered24,25as the surface electron traps respon-
sible for the pinning of the Fermi level at the GaAs surface.
The PMF treatment of the Al-GaAs structure results in an
irreversible temperature shift of the central DLTS peak. This
temperature shift corresponds to a new energy distribution of
the surface electron states density with the maximum at Ec
−0.65±0.02 eV. The passivation of the GaAs surface in se-
lenium vapor results in an elimination of the surface states
which is demonstrated by a drastic decrease of the central
DLTS peak. The residual central peak, the low-temperature
peak, and the high-temperature peak in the DLTS spectra
may be ascribed to the well- known24,26 electron levels EL6,
EL3, and EL2, respectively. We did not observe any effect of
the PMF treatment on these levels. The Se-reconstructed sur-
face of the GaAs crystal was insensitive to the PMF. We are
unable to give a microscopic explanation of the PMF effect
on the energy distribution of the surface electron states in the
initial GaAs crystal because the structure of these states has
been studied insufficiently. Nevertheless, the results we
present here agree with the DILM phenomenology8 which
admits an enhancement of magnetic-field sensitivity of dis-
torted surface layers. It should be noted that the one-
dimensional potential well U�r� created by the surface nec-
essarily leads to at least one discrete magnon level.20

The results of the DLTS and PL spectroscopic studies
directly demonstrate the ability of weak magnetic fields to
induce defect reactions in nonmagnetic crystals due to mag-
netic field-induced change in the electron spectrum of the
defect crystal. The origins of these effects are qualitatively

explained by the above-developed DILM phenomenology,
while a quantitative comparison of the experiment and
theory �e.g., dependences of the effects on the magnetic-field
strength� needs further investigation.

VIII. CONCLUSION

The phenomenology of magnetic-field effect on defect re-
actions in solids developed on the DILM concept allows one
to explain qualitatively all of the currently available experi-
mental data in the framework of the mechanism of orbital
magnon excitations. In particular, such an approach gives a
possibility to associate the magnetic field effect on a defect
reaction with the symmetries of the perfect crystal and the
strain field of the defect. The magnon mechanism allows one
to obtain reaction rate dependence on the magnetic field.

One can consider the DILM phenomenology as an expan-
sion of the well-known spin chemistry concept of magneto-
sensitive molecular reactions of radicals in liquids into the
field of defect reactions in solids. Both in liquids and in
solids, the effect of an external magnetic field appears as a
result of lifting of a spin ban on the reaction. However, con-
trary to the spin-dependent reactions in liquids, the lifting of
the spin ban in solid-state defect reactions can occur because
of the participation of the orbital degrees of freedom. In the
solid state, transitions between different orbital states are
possible due to band structure of the electron spectrum.

Orbital currents with short-range antiferromagnetic order
arising due to defect-created strain field result in a rise of the
magnetic structure of the crystal. Corresponding local mag-
netization �dynamic short-range hidden order� is linear in the
strain and can be considered as a manifestation of the orbital
piezomagnetism. Magnetization fluctuations can be associ-
ated with the emission and absorption of orbital antiferro-
magnetic magnons being the elementary excitations, which
correspond to a defect-induced magnetoactive branch of the
crystal energy spectrum. The orbital magnon plays a role of a
third particle providing a balance between the total spin and
the total orbital angular momentum under the condition that
the total angular momentum has to be conserved.

The DILM phenomenology can be a basis for a new field,
which we name the spin chemistry of solids. Despite the
absence of direct evidence of hidden orbital antiferromag-
netic �long-range� order in crystals, we believe that the con-
cept of such a short-range order is a fruitful approach for
understanding spin effects in solids. The field of the spin
chemistry of solids is not restricted by a simple reaction as
the decay of quasi-zero-dimensional �point� defect com-
plexes, but can include the reactions of more complicated
defects such as dislocations and surfaces. One can expect
that a wide class of spin-forbidden structural transitions in
solids should be initiated by both constant and pulsed exter-
nal magnetic field.
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FIG. 5. DLTS spectra of the GaAs crystals with initial �1, 2�
and selenium passivated �3, 4� surfaces: 1, 3-before, and 2, 4-a day
after the PMF treatment. The curves 1a, 1b, 1c correspond to
Vrev=−0.2,−1 ,−2 V.
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