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We consider the effect of random site dilution on a honeycomb lattice of quantum spins described by the
antiferromagnetic Heisenberg spin-S model. Using linear spin-wave theory, we compute the zero-temperature
magnetization and density of states as a function of dilution up to the classical percolation threshold. Several
subtle issues regarding the treatment of quasidivergent zero-energy modes, which appear in the real-space
formulation of the spin-wave problem, are clarified. For S�1/2, the spin-wave theory is well defined in the
sense that results at all dilution concentrations are consistent with the underlying assumptions of the theory. For
S=1/2, however, the approximation breaks down. In this case, we have studied the effect of dilution on the
staggered magnetization using the stochastic series expansion Monte Carlo method. Two main results are to be
stressed from the Monte Carlo calculation: �i� an improved estimate for the staggered magnetization of the
undiluted system mav�L→��=0.2677�6� and �ii� a finite value of the staggered magnetization of the percolat-
ing cluster at the classical percolation threshold, showing that there is no quantum critical transition driven by
dilution in the Heisenberg model. We have used the computed staggered magnetization and density of states to
analyze neutron scattering experiments and Néel temperature measurements of two quasi-two-dimensional
diluted honeycomb systems: �i� MnpZn1−pPS3 �a diluted S=5/2 system� and �ii� Ba�NipMg1−p�2V2O8 �a
diluted S=1 system�. We have found that our calculations are in good agreement with the experimental data.
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I. INTRODUCTION

The study of dilution and its effect on the magnetic prop-
erties of antiferromagnetic materials is a central problem in
modern condensed matter theory.1–5 For the square lattice, a
number of important experimental and theoretical results
have been reported.1,3–5 For the honeycomb lattice, there are
some experimental results in the literature2 already, but the
corresponding theoretical understanding lags far behind.

Insulating antiferromagnets are possible candidates for
exhibiting quantum critical points separating ordered from
disordered phases. The quantum corrections to the staggered
magnetization of diluted antiferromagnetic insulators became
an important experimental and theoretical topic once it be-
came possible to dope La2CuO4 with nonmagnetic impuri-
ties,1,6 such as Zn or Mg. Theoretical studies interpreting the
magnetic properties of these diluted systems have been re-
cently performed,3–5,7 showing a good agreement between
theory and experiment. A description of the effect of dilution
on the spin flop phase of La2CuO4 was attempted from the
point of view of a simple mean-field theory,8 with some
qualitative agreement with experimental results. In addition,
the expectation of a magnetic quantum phase transition
driven by the interplay of dilution and quantum fluctuations
was shown not to occur in the antiferromagnetic Heisenberg
model in a square lattice.4,5 In the undiluted case, on the
other hand, it was shown that the Heisenberg model itself is
incapable of describing the high-energy part of the spin-wave
spectrum; a calculation starting from the Hubbard model was
shown to give the correct high-energy behavior.9–11

The key role played by dimensionality in determining the
behavior of a system of quantum magnetic moments lends

special importance to the honeycomb lattice, which has the
lowest possible coordination in more than one dimension
�see Fig. 1�. Realizations of insulating antiferromagnets
based on this lattice have already been achieved both with
and without magnetic dilution. Recently Spremo et al.12 have
studied the magnetic properties of a metal-organic antiferro-
magnet on an undiluted but distorted honeycomb lattice. The
authors found good agreement between the theoretical pre-
dictions obtained within the framework of a modified spin-
wave approach and the experimental results for the magne-
tization as a function of uniform external field and for the
uniform zero-field susceptibility.

FIG. 1. �Color online� A finite size honeycomb lattice showing
the periodic boundary conditions used in the numerical calculations.
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Honeycomb layers are also found in transition-metal thio-
phosphates MPS3, where M is a first row transition metal.
These compounds are viewed as “perfect” two-dimensional
�2D� magnetic systems because of the weak van der Waals
cohesion energy binding the layers. In each layer the mag-
netic ions are arranged in a honeycomb lattice. Neutron dif-
fraction and magnetic susceptibility studies on MnPS3,
FePS3, and NiPS3 antiferromagnets13–15 �S=5/2, S=2, and
S=1, respectively� showed the existence of quite different
types of ordering among the different compounds. Whereas
for FePS3 and NiPS3 the metal ions are coupled ferromag-
netically to two of the nearest neighbors and antiferromag-
netically to the third, for MnPS3 all nearest-neighbor inter-
actions within a layer are antiferromagnetic. In fact, it turns
out that the simplest nearest-neighbor antiferromagnetic
Heisenberg model is a reasonable approximation for the de-
scription of the magnetic properties in MnPS3, although the
second- �J2� and third-nearest-neighbor �J3� interactions—
which are both also antiferromagnetic—are not negligible for
this compound �J1 /J2�10 and J1 /J3�4�.16 Substitution of
magnetic Mn2+ ions by nonmagnetic Zn2+ impurities showed
that long-range order �LRO� is lost at p=0.46±0.03 for
MnpZn1−pPS3.2,17,18 The fact that LRO is preserved for dilu-
tions higher than the classical percolation threshold for the
honeycomb lattice pc�0.7 is attributed to the significance of
J2 and J3 in this compound.

Recently, Rogado et al.19 have characterized the magnetic
properties of the S=1 honeycomb compound BaNi2V2O8,
which can be described as a weakly anisotropic 2D Heisen-
berg antiferromagnet.20 The magnetic Ni2+ ions lie on
weakly coupled honeycomb layers, exhibiting antiferro-
magnetic LRO close to 50 K. The doped compound
Ba�NipMg1−p�2V2O8 has a fraction 1− p of the honeycomb
layer sites substituted by Mg2+, a nonmagnetic ion. Magnetic
susceptibility studies showed that the Néel temperature is
substantially reduced with increasing doping in the range
0.84� p�1. For p=0.84 the onset of antiferromagnetic LRO
occurs only at TN�17 K, a TN reduction of almost 70%
relative to its undiluted value. It would be interesting to
know whether the suppression of antiferromagnetic LRO by
nonmagnetic impurities occurs at the classical percolation
transition pc�0.7, as predicted by our calculations �see be-
low�.

In addition to these exciting experiments, there was the
theoretical prediction by Mucciolo et al. that the vanishing of
the staggered magnetization for the S=1/2 square-lattice
system coincides with the classical percolation transition.4

This result raised the naive expectation that for a 2D lattice
with nonfrustrating nearest neighbor interactions and a
smaller number of neighbors, magnetic quantum phase tran-
sitions driven by the interplay of disorder and quantum fluc-
tuations could occur. The honeycomb lattice is the simplest
realization of such a lattice, for its coordination number is
smaller than that of the square lattice. On the other hand,
large-scale quantum Monte Carlo simulations of the square
lattice have shown that the percolating cluster actually has
robust long-range order,5 in disagreement with the spin-wave
calculation. Hence, spin-wave theory is not reliable close to
the percolation point for S=1/2, which should be equally
true for the square and honeycomb lattices. Indeed, our quan-

tum Monte Carlo simulations of the S=1/2 honeycomb-
lattice system show only a rather modest reduction of the
sublattice magnetization of the percolating cluster, whereas
spin-wave theory predicts no long-range order at all.

Experimental S=1/2 antiferromagnetic systems with hon-
eycomb lattice structure have already been reported by Zhou
et al.21 in the A2CuBr4 salt, where A is morpholinium
�C4H10NO�. Their data is well described by a nearest-
neighbor antiferromagnetic Heisenberg model, but with two
different couplings Ja and Jb. To the best of our knowledge,
the dilution of this system has not yet been attempted.

Motivated by the experimental results on diluted
MnpZn1−pPS3 and Ba�NipMg1−p�2V2O8 and by the possibil-
ity of quantum phase transitions driven by the interplay of
disorder and quantum fluctuations, we study here the effect
of site dilution on the magnetic properties of the Heisenberg
antiferromagnetic nearest-neighbor model, for an arbitrary
spin-S value. Our study is performed both at zero and finite
temperatures. A first attempt to understand the effect of a
nonmagnetic defect on the properties of the S=1/2 2D
Heisenberg antiferromagnet in the honeycomb lattice was
made by de Châtel et al.22 In their mean-field approach, a
single impurity was introduced in clusters up to 12 spins. It
is clear, however, that their results can only be applied to
systems with dilutions up to 1− p=1/13. Moreover, the ran-
dom nature of defects cannot be accounted for using their
method.

In this paper, we follow the general idea of the work of
Mucciolo et al.,4 by using the linear spin-wave approxima-
tion in real space to compute different physical quantities. In
addition, we use finite-size scaling to determine the magnetic
moment of the samples. We address the problem of deter-
mining the density of states �DOS� of our system using a
different and more reliable method, which gives the behavior
of the DOS in the thermodynamic limit. The paper is orga-
nized as follows. In Sec. II we present the Hamiltonian and
the spin-wave formalism adapted for diluted systems. In Sec.
III we briefly introduce the numeric diagonalization methods
we use; we discuss how to deal with the quasidivergent en-
ergy modes that appear in the numerical diagonalizations and
clarify the relationship between these modes and the diver-
gent Goldstone bosons present in the thermodynamic limit;
details of the cluster formation, the finite-size scaling proce-
dure, and the calculation of the DOS are also given. In Sec.
IV we characterize the cluster statistics, which determines
the finite-size scaling exponent to be used in L→� extrapo-
lations of the staggered magnetization; the spin-wave results
for the diluted staggered magnetization are presented and
applied to the study of neutron-scattering experiments and
Néel temperature measurements of two diluted honeycomb
antiferromagnetic �S=1,5 /2� materials; we present and dis-
cuss the results for the DOS in the presence of dilution, with
emphasis on its low-energy behavior; we give a discussion of
the physics of the S=1/2 case using quantum Monte Carlo,
since for this case the spin-wave description breaks down.
Finally, in Sec. V we summarize our work and present some
concluding remarks.

II. MODEL HAMILTONIAN AND FORMALISM

The Heisenberg Hamiltonian describing quantum spins in
a site-diluted honeycomb lattice is written as
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H = J �
i�A,�

�i�i+�Si
a · Si+�

b , �1�

where Si
a �Si

b� is the spin operator on a site i of sublattice A
�B�. The notation i+� represents a nearest-neighbor site of
site i, connected to i by the vector �. There are three different
� vectors given by

�1 =
c

2
�1,�3�, �2 =

c

2
�1,− �3�, �3 = − c�1,0� , �2�

where c is the hexagon side length. The �i variables can have
the values 0 or 1 depending on whether the site i exists or
not.

The usual spin-wave approximation starts by assuming
that LRO exists and, in the case of antiferromagnetism, that
the ground state is not substantially different from the Néel
state. The mathematical meaning of this similarity is that the
following inequalities should hold:

S − �Si
a,z� � S for i � A , �3�

S + �Si
b,z� � S for i � B . �4�

With these in mind we express the spin operators in terms of
bosonic creation and annihilation operators as introduced by
Holstein and Primakoff.23 The transformation is defined on
sublattice A as

Si
a,z = S − ai

†ai, Si
a,+ = �2S�1 −

ai
†ai

2S
ai,

Si
a,− = �2Sai

†�1 −
ai

†ai

2S
. �5�

On sublattice B, the spins have projection Sz=−S in the Néel
state. Since the bosons should describe excitations above the
ground state—subject to the inequalities �3� and �4�—the Sb,z

operator needs to be redefined as Si
b,z=−S+bi

†bi. Accord-
ingly, the Si

b,+ operator must create bosons, and all the opera-
tors in sublattice B are defined as

Si
b,z = − S + bi

†bi, Si
b,− = �2S�1 −

bi
†bi

2S
bi,

Si
b,+ = �2Sbi

†�1 −
bi

†bi

2S
. �6�

The linear spin-wave Hamiltonian follows straightforwardly
by expanding the square roots in Eqs. �5� and �6� in powers
of 1 /S and keeping only the zeroth order terms

H = − JhaS�S + 1� �
i�A,�

�i�i+�

+ JS �
i�A,�

�i�i+�	ha�aiai
† + bi+�

† bi+�� + aibi+� + bi+�
† ai

†
 .

�7�

Note that we have introduced a magnetic anisotropy ha in the
Si

a,zSi+�
b,z term.

The linear spin-wave Hamiltonian can be seen as having a
classical part given by the first term on the right-hand side of
Eq. �7�, and a quantum fluctuating part which can be written
as

Hsw = ��a�,�b†��D��a�,�b†��†, �8�

where ��a� , �b†��† is a column vector containing all the boson
operators and

D = Ka �

�T Kb � �9�

is the so-called grand dynamical matrix. For a diluted lattice,
the number of sites in sublattice A need not be the same as
that in sublattice B; therefore the dimensions of the blocks in
D are Na�Na for Ka, Nb�Nb for Kb, Na�Nb for �, and
Nb�Na for �T. The corresponding matrix elements are

Kij
a = JhaS�ij�i�

�

�i+� for i � A , �10�

Kij
b = JhaS�ij�i�

�

�i+� for i � B , �11�

�ij = � ji
T = JS�i� j for i � A, j � i + � . �12�

The diagonalization of the bosonic Hamiltonian amounts
to finding a transformation T such that

�T†�−1DT−1 = diag�	1, . . . ,	Na+Nb
� , �13�

where diag�	1 , . . . ,	Na+Nb
� stands for a diagonal matrix with

elements 	1 , . . . ,	Na+Nb
. In this case all the eigenvalues are

positive. The quasiparticles associated with those eigenval-
ues are obtained from

��
�,��†��† = T��a�,�b†��†. �14�

An operator transformation of the Bogoliubov-Valatin type
in real space provides such a transformation


n = �
i=1

Na

uniai + �
i=1

Nb

vnibi
†, �15�

�n = �
i=1

Na

wniai
† + �

i=1

Nb

xnibi, �16�

from which the diagonalized form of the spin-wave Hamil-
tonian is obtained,

Hsw = �
n=1

Na

	n
�
�
n
n

† + �
n=1

Nb

	n
����n

†�n. �17�

	Notice that we have relabeled the positive eigenvalues in-
troduced in Eq. �13� to 	1

�
� , . . . ,	Na

�
� ,	1
��� , . . . ,	Nb

���.
 The el-
ements of matrix T �the transformation coefficients� and the
energy of the quasiparticles are determined by solving the
following non-Hermitian eigenproblem
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Ka − �

�T − Kb �ūn

v̄n
� = 	n

�
�ūn

v̄n
� �18�

and

Ka − �

�T − Kb �w̄n
*

x̄n
* � = − 	n

���w̄n
*

x̄n
* � , �19�

where the column vectors ūn, v̄n, w̄n
*, and x̄n

* contain the co-
efficients uni, vni, wni

* , and wni
* , respectively.

Using Eq. �14�, it is possible to write any average of the
initial bosonic operators in terms of the quasiparticle opera-
tors 
 and �. The simplest example is the staggered magne-
tization Mz

stagg at T=0 given by

Mz
stagg = ��

i�A

Si
a,z − �

i�B

Si
b,z� = �Na + Nb��S − �mz� ,

�20�

where

�mz =
1

Na + Nb
�

n=1

Na

�
i�B

�vni�2 + �
n=1

Nb

�
i�A

�wni�2� . �21�

III. NUMERICAL DETAILS

A. Numerical diagonalization

The formalism developed in the previous section is based
on the existence of the matrix T and, naturally, on the pos-
sibility of finding it by some numerical procedure. In this
work we have used two independent methods to compute the
transformation matrix and the associated eigenenergies. Both
methods agree with each other within the numerical accuracy
of the calculation. One of them is based on a Cholesky de-
composition and gives the T−1 matrix directly, whereas the
other solves the eigenvalue problem defined by Eqs. �18� and
�19�, computing the matrix T. �See the Appendix for details
on both methods.�

B. Zero modes

Depending on the particular disorder realization of the
diluted lattice, the numerical diagonalization of the spin-
wave Hamiltonian �7� reveals the existence of one or two
zero-energy modes, whose contribution to physical quantities
such as the staggered magnetization must be handled care-
fully. In this section we discuss the origin of these zero-
energy modes and how they should be taken into account.

For convenience of the subsequent discussion, let us start
by reproducing here the results of the diagonalization of
Hamiltonian �8� in the undiluted honeycomb lattice.24 We
first introduce operators ak and bk defined as the inverse
Fourier transforms of ai and bi,

ai =
1

�Na
�
k

e−ik·riak, bi =
1

�Nb
�
k

e−ik·ribk, �22�

where the k summation ranges over the first Brillouin zone
of either sublattice A or B. �Do not confuse the site index i

and the complex imaginary unit also present in the Fourier
transform.� The vector ri is the position vector of site i, and
Na=Nb in the absence of dilution. Substituting Eq. �22� into
Hamiltonian �8� gives us Hsw=�kHk, with

Hk = JSz	ha�akak
† + b−k

† b−k� + �kakb−k + �k
*b−k

† ak
†
 ,

�23�

where �k is defined as �k=z−1��e−ik·�. The diagonalized
form of Hamiltonian �23�, given by

Hk = 	k�1 + 
k
†
k + �k

†�k� , �24�

with

	k = JSz�ha
2 − ��k�2, �25�

can be easily obtained from the following Bogoliubov-
Valatin transformation:


k = ukak + vkb−k
† , �k = vkak

† + ukb−k, �26�

with coefficients uk and vk given as functions of the param-
eters ha and �k.

As can be seen from Eqs. �24� and �25�, the clean and
isotropic limit of Hamiltonian �7� has two zero-energy exci-
tations, occurring at k=0. These well known gapless modes
�Goldstone bosons� are a consequence of the fact that the
ground state spontaneously breaks the rotational symmetry
of the Hamiltonian in spin space. It can be shown25 that these
zero-energy modes have divergent amplitudes. In two and
three dimensions the quantum corrections to the staggered
magnetization �at zero temperature� are finite, meaning that
the divergence associated with the zero-energy modes is in-
tegrable. We note, however, that if the mean square ampli-
tudes of the differences between the two x�y� components,
given by

1

Na + Nb
�

i�A

Si
a,x�y� − �

i�B

Si
b,x�y�� , �27�

are computed, we immediately find divergent behavior.26

The above conclusions drawn from a thermodynamic
limit calculation are, however, a strong indication that com-
putations based on finite size lattices, using effective Hamil-
tonians 	as Hamiltonian �7�
, whose spin rotation symmetry
has been explicitly broken, should be done with extra care.
Indeed, if a finite-size scaling procedure recovers the known
value for the staggered magnetization in the thermodynamic
limit, it is mandatory to exclude the divergent contributions
u0 and v0 associated with the zero-energy modes.

Anderson has explained the existence of LRO in the ther-
modynamic limit of 2D isotropic Heisenberg antiferromag-
nets at zero temperature, even though the mean square am-
plitudes of the quantities defined in Eq. �27� are divergent in
these systems. At the same time, the reason to exclude the
contribution of zero-energy modes from a finite-size scaling
analysis of the staggered magnetization in the spin-wave ap-
proximation is made clear, as will be shown next. According
to Anderson, the presence of a broken symmetry ground state
is made possible if we analyze the H0 term in Eq. �23�, from
which the Goldstone modes arise. This term cannot be diago-
nalized through any Bogoliubov-Valatin transformation. Ac-

CASTRO et al. PHYSICAL REVIEW B 73, 054422 �2006�

054422-4



tually, it has a continuous spectrum starting from the zero
energy ground state. Using this continuum of states we can
form a wave packet centered around some fixed orientation
in spin space, with the property of having both a finite stag-
gered magnetization, and a mean square root of the quanti-
ties defined in Eq. �27� scaling with 1/N1/2−
, with 
�0, as
long as we pay some extra energy. In addition, it can be
shown that this extra energy scales as 1 /N1/2+
, which is
negligible in the thermodynamic limit. Thus it is a suitable
approximation to form the abovementioned wave packet
from the solutions of H0, and to study the energy and the
zero point motion of all other normal modes within a time
interval smaller than that needed for the zero-energy wave
packet to disrupt the coherence of the unidirectional state.25

Therefore, the staggered magnetization can be obtained in
the spin-wave approximation from the finite-size calculations
if the zero-energy point motion contributions are subtracted,
because the H0 solutions were already used to form the start-
ing broken symmetry state.

This discussion now needs to be carried on to the diluted
case, where the above aspects are more delicate than in the
nondisordered case. In the presence of dilution, it is easy to
verify that there is at least one zero-energy mode in Eq. �18�
in the isotropic case. This nontrivial solution with zero en-
ergy satisfies the equation

Ka − �

�T − Kb �c̄

c̄
� = 0, �28�

with all the amplitudes constant. To prove that this is indeed
an eigenstate we only need to remember definitions
�10�–�12� of matrices Ka, Kb, and �, and check that the
following equalities always hold:

Kii
a = �

j=Na

Na+Nb

�ij , �29�

Kii
b = �

j=1

Na

�ij
T . �30�

In terms of quasiparticle excitations, the eigenvector de-
fined by Eq. �28� can be expressed as27


0
†  �

i=1

Na

ai
† + �

i=1

Nb

bi �31�

in the case of an 
-type excitation and

�0
†  �

i=1

Na

ai + �
i=1

Nb

bi
† �32�

if it is a �-type excitation. Recalling the approximate expres-
sions in the linear spin-wave approximation for the operators
Si

�a,b�+ and Si
�a,b�− in terms of bosonic operators a and b, Eqs.

�31� and �32� can be rewritten as


0
†  Stot

− , �33�

�0
†  Stot

+ . �34�

Thus, excitations 
0
† and �0

† are precisely the Goldstone
bosons associated with the broken continuous symmetry of
spin rotation in the diluted system.28

As will be shown in Sec. III D, the thermodynamic limit
of the staggered magnetization for the diluted system will be
obtained from a finite-size scaling analysis. As we have
started from a broken symmetry ground state �the wave
packet�, which is a direct consequence of Eqs. �3� and �4�,
we would proceed as in the clean limit and neglect the con-
tributions of 
0 and �0 modes. However, although in the
undiluted case the number of zero-energy modes is always
two, when dilution is present this number can either be one
or two, in a finite size lattice. The reason why this is so is
that operators Stot

− and Stot
+ do not always represent indepen-

dent excitations, i.e., they do not always commute. Naturally
Stot

− and Stot
+ never commute strictly speaking because

	Stot
+ ,Stot

− 
 = 2Stot
z . �35�

Nevertheless, in the clean limit we can easily convince our-
selves that the expectation value of Stot

z is always zero, and,
as Stot

z is a constant of the motion, commutator �35� will
always be zero. To get the value of the commutator �35� in
the presence of dilution we can use again the linear relation
between Si

�a,b�± and the bosonic operators a and b in the
spin-wave approximation, from which one finds

	Stot
+ ,Stot

− 
  Na − Nb. �36�

Now it is easily seen that one can have one or two zero-
energy modes in a finite size diluted system: if the number of
undiluted sites in each sublattice is the same �Na=Nb� there
will be two of these modes; otherwise, if Na�Nb, there will
be only one. Applying to this case the reasoning used for the
undiluted case, we should then neglect the contributions of
the existent zero-energy modes, which are to be identified
with the Goldstone bosons in the thermodynamic limit.

As the system size increases, the fluctuations relative to
the zero mean value of Na−Nb should scale as 1/�Na+Nb,
statistically speaking. Therefore the difference Na−Nb is
again zero in the thermodynamic limit and the system has
two zero energy excitations. This situation cannot be
achieved in finite size lattices, unless we restrict ourselves to
cases where the disordered realizations are constrained to
obey the condition Na=Nb, being clear that the staggered
magnetization in the thermodynamic limit cannot depend on
this restriction. We stress, however, that without this restric-
tion the conclusions drawn from finite size lattices would be
different if we had accepted all sorts of disordered lattice
realizations. This difference is due to the contribution of one
non-zero-energy quasidivergent mode, which exists when
Na�Nb, and becomes a true zero-energy mode �Goldstone
boson� only in the thermodynamic limit. We will get back to
this point in Sec. IV, presenting numerical evidence for what
we have just analyzed.

C. Cluster formation and periodic boundary conditions

The study of diluted lattices requires the concept of larg-
est cluster, and therefore some care is required in construct-
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ing the effective lattice where the quantum problem is to be
solved. Since we are interested in dilution, the algorithms
discussed in Appendix sections 1 and 2 are to be imple-
mented not on all occupied lattice sites, but only on the sites
defined by the largest connected cluster of spins, since in the
thermodynamic limit a finite magnetization cannot exist if
one is below the percolation critical threshold pc. The dilu-
tion is induced in the lattice by diluting any site with prob-
ability 1− p. For p=1 there is no dilution at all. When p
= pc a classical percolation transition occurs in the thermody-
namic limit preventing the existence of magnetic long-range
order in the system. According to Suding and Ziff,29 pc
=0.697043�3� in the honeycomb lattice. Here we use pc

=0.697043.
We work with finite size lattices where periodic boundary

conditions �PBC’s� are implemented as defined in Fig. 1. In
Fig. 1 the links on the border are labeled according to which
site they connect to. The lattices are characterized by their
linear dimension L �L=3 in Fig. 1�. The total number of sites
for a given L is 2L2.

The algorithm starts by identifying the largest cluster, for
rigid boundary conditions �this is, with no PBC’s�. As in Ref.
4, it is only after the largest cluster is found that we apply
PBC’s to the original lattice, checking whether there are new
sites belonging to the largest cluster. As previously discussed
in Sec. III B, only clusters with Na=Nb are to be used, so we
reject all disordered lattice realizations in which Na�Nb.30

Finally, the eigenvalue problem is solved for the final cluster
using the aforementioned algorithms. In Fig. 2 we show an
example of a disorder realization and the corresponding clus-
ter labeling process at p= pc. The larger cluster found for
rigid boundary conditions can be seen in panel �c� of Fig. 2.
After PBC implementation the final cluster has a larger num-
ber of elements 	panel �d� in Fig. 2
.

D. Finite-size scaling

The eigenvalue problem determines all the eigenvalues
and eigenfunctions for the cluster, and from these the correc-
tions to the staggered magnetization are computed according
to Eq. �21�. For a given p value, Nrz disordered lattice real-
izations with Na=Nb are performed, leading to an average
staggered magnetization density mav

mav�p,L� =
1

Nrz
�
i=1

Nrz Mz
stagg,i

Nm
i , �37�

where Mz
stagg,i is the value of Eq. �20�, and Nm

i is the total
number of magnetic �undiluted� sites in the lattice, for the
given disorder realization i. Although mav does not depend
explicitly on L, the sizes of the clusters are determined by L,
and therefore different L’s lead to different values for Eq.
�37�. With this definition we will be able to identify
mav�p ,L→�� with the ordered magnetic moment magnitude
per magnetic ion measured in neutron-diffraction experi-
ments.

From Eq. �20� it is easily seen that mav can be expressed
as an average over the product of two different contributions,
one purely classical �mcl

i � and the other purely quantum
�mqm

i �,

mav�p,L� =
1

Nrz
�
i=1

Nrz

mcl
i mQM

i , �38�

where we used the notation mcl
i =Nc

i /Nm
i for the classical fac-

tor, with Nc
i =Na

i +Nb
i , and mQM

i =S−�mz
i for the quantum-

mechanical factor. The quantum contribution is simply the
staggered magnetization density of the larger cluster found in
the disorder realization i. It would be S in the Néel state but
it is reduced by �mz

i�p ,L� due to quantum fluctuations,
whose strength depends on the dilution p and lattice size L.
If LRO is present we can assume that the sublattice magne-
tization, or equivalently the staggered magnetization, is a
self-averaging quantity, as was shown to be true in the square
lattice case.5 Thus, in the thermodynamic limit of mav each
disorder realization mQM

i can be replaced by its infinite-size-
extrapolated average, which we denote by mQM,

mav�p,L → �� = mclmqm. �39�

The classical factor now assumes the standard form for the
order parameter of the classical percolation problem

mcl = � Nc

Nm
�

L→�

, �40�

which is zero for p� pc. Therefore a quantum critical point
can only exist above pc if mQM=0 for some p*� pc. To find
mQM we need to compute the average infinite-size value of
the quantum corrections �mz

� from our finite size calcula-
tions. We show that finite-size scaling can be found for this
quantity, from which results holding in the thermodynamic
limit can be obtained. In our study the size of the largest
connected cluster Na+Nb is not fixed; instead the linear di-
mension of the lattice L is. As shown for the square lattice,5

the alternative approach where the percolating cluster size is

FIG. 2. �Color online� An example of the cluster formation for a
particular disorder realization in a lattice with L=10. The original
lattice is shown in �a�; in �b� each site is chosen to be diluted with
probability 1− pc, with pc=0.697043; in �c� the existent clusters �12
in this case� have been determined with rigid boundary conditions;
in �d� the largest cluster found in �c� �blue� is augmented by the
periodic boundary conditions.
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fixed leads to the same magnetization value in the thermo-
dynamic limit. The finite-size scaling properties of the quan-
tum correction to the magnetization are strictly not known
for a disordered system at the percolation point. However, in
practice a direct generalization of the pure-system scaling,
using the fractal �Hausdorff� dimensionality, has been shown
to work well.5 Hence we will assume

��mz�p,L��Nrz
= �mz

� + aL−D/2 + bL−D, �41�

where �mz
� is the average quantum correction to the stag-

gered magnetization density in the thermodynamic limit, and
D is the fractal dimension of the cluster, which should have
the universal value D=91/48 at pc �in two dimensions�, as is
confirmed for the square and triangular lattices.31

E. Density of states

The real space diagonalization procedure, either Bogo-
liubov-Valatin or Cholesky decomposition, is very time con-
suming, preventing us from accessing large clusters �in the
honeycomb lattice L=16 is our upper limit�. Although for the
staggered magnetization density a finite-size scaling analysis
can be done, we cannot easily determine the thermodynamic
limit behavior of the DOS from results of systems as small as
L=16.

In this work the well known recursion method is used to
compute the average DOS. With this method we can handle
lattices as large as L=128, with the advantage that the ob-
tained DOS is not the typical finite size DOS of a system
with L=128, but instead a very good approximation to its
thermodynamic limit value. We refer the reader to the paper
of Haydock32 for details in the case of noninteracting fermi-
onic systems. Being a real space method the effect of disor-
der can be easily incorporated. Here we adopt the formula-
tion introduced in Ref. 33 for disordered electronic systems.
Further details on the recursion method in relation to disor-
dered bosonic bilinear systems 	such as model Hamiltonian
�8�
 will be presented elsewhere.34

It is worth mentioning that the recursion method has
proved to be a powerful technique even in the presence of
interactions.35 Actually, the continued fraction representation
of the Fourier components of the one particle propagator, the
basis of the recursion method, is also an essential point in the
Padé analytical continuation which usually arises in the
many-body problem.36

We define the following set of zero temperature retarded
Green’s functions in the standard way:

Gij
aa�t� = − i�0��ai

†�t�,aj�0���0���t� ,

Gij
bb�t� = − i�0��bi�t�,bj

†�0���0���t� , �42�

where the notation �0� is used for the ground state of the
spin-wave Hamiltonian �8�. It can be easily shown that ��E�
is given in terms of the Fourier components of the Green’s
functions as

��E� = −
1

Nc

1

�
Im��

i�A

Gii
aa�E + i0+� − �

i�B

Gii
bb�E + i0+�

− �
i�A

Gii
aa�− E + i0+� + �

i�B

Gii
bb�− E + i0+�� . �43�

The recursion method gives Im	Gij�E+ i0+�
 directly,34 from
which the DOS is straightforwardly computed.

IV. RESULTS

A. Larger cluster statistics

The number of sites in a regular planar lattice goes as the
square of its linear size. In the thermodynamic limit, the
same scaling applies to the largest cluster of the correspond-
ing randomly site-diluted lattice. This behavior persists up to
the percolation threshold, at which point the lattice is domi-
nated by a spanning cluster of fractal dimension. Beyond
percolation, individual clusters are no longer extensive: they
each constitute a vanishing fraction of the total number of
sites.

For a honeycomb lattice of size L and dilution level x
= �1− p� / �1− pc�, let P�Nc �L ,x� denote the probability that
the largest cluster has Nc sites. The average size of the largest
cluster is simply the corresponding first moment

N̄c�L,x� = �
Nc=1

2L2

NcP�Nc�L,x� . �44�

Example probability distributions for the honeycomb lattice
are given in Fig. 3. For small x, the distributions are sharply
peaked. As x→1, they become progressively broader and
develop long tails skewed toward small values of Nc �mark-
ing the evolution to a different universal scaling function at
percolation�.

An effective scaling dimension Deff�L ,x� can be defined

by the relation N̄c�LDeff. Its evolution with L is plotted in
Fig. 4. Note that Deff�L ,x� has two points of attraction in the
limit L→�: Deff�L ,x�1�→2 and Deff�L ,1�→91/48. Plot-
ted in the appropriate reduced coordinates—viz., LDP�Nc�
versus L−DNc, where D=2 below percolation and D=91/48
at percolation—the probability distribution tends to either a
simple delta function or the nontrivial curve shown in the
inset of Fig. 4.

As can be seen in Fig. 4 �inset�, a long tail is present for
smaller cluster sizes. This enhancement of the larger cluster
size distribution can be understood as a consequence of the
many possible disorder configurations for the same dilution.
That is, we can have various smaller clusters instead of one
large dominant cluster for the same number of diluted sites,
though, of course, these disorder configurations are not so
favorable.

B. Staggered magnetization

We have performed numerical real space diagonalization
of model Hamiltonian �8�, as described in Sec. III, for the
honeycomb and the square lattices. Lattices with sizes L
=5,6 ,7 ,8 ,9 ,10,11,12,13,14,15,16 �honeycomb� and L
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=6,8 ,10,12,14,16,18,20,22,24,26,28 �square� were gen-
erated. Averages were taken over Nrz=105 disorder
realizations.37,38

In Fig. 5 we show, for the honeycomb lattice, the average
quantum correction to the staggered magnetization
��mz�p ,L��Nrz

, for various values of dilution x= �1− p� / �1
− pc�, as a function of lattice size L−D/2. The error bars are
much smaller than the symbols used. The lines are fits to the
points using the finite-size scaling hypotheses �41�. The ex-
trapolated zero abscissa value gives the average quantum
correction to the staggered magnetization density in the ther-
modynamic limit �mz

��p�. In the undiluted case there is an
excellent agreement between the real space diagonalization
results �left triangles� and the reciprocal space sum �black
squares�, obtained from the first k summation in Eq. �C9� of
Ref. 24, thus providing a reliability test to our algorithms.

For p= pc we show in Fig. 5 the results obtained from
three different approaches. The blue up triangles are the re-
sults of our standard technique discussed in Sec. III, i.e., only
lattices in which Na=Nb were considered and zero the modes
were subtracted. The result labeled by violet down triangles
refers to a calculation in which the disordered realized lat-
tices are not constrained to have Na=Nb. The considerable
difference between these two results is due to the presence of
one “quasidivergent” low-energy �nonzero� mode when Na
�Nb. That is, even though we subtract the zero energy Gold-
stone mode as discussed in Sec. III for Na�Nb, there is, in

FIG. 3. �Color online� The solid �blue� lines show the distribu-
tion of the number of sites in the largest cluster of a randomly
site-diluted honeycomb lattice. From top to bottom, the three panels
correspond to dilution levels x=0.1,0.5,0.8. From left to right, the
peaks correspond to linear system sizes L=4,5 , . . . ,18. The vertical

dotted �red� lines indicate the average cluster sizes N̄c, computed as
per Eq. �44�.

FIG. 4. �Color online� The effective scaling dimension of the
largest cluster takes one of two values in the L→� limit: Deff=2
�0�x�1� or Deff=91/48 �x=1�. For x�0.5, Deff is close to its
asymptotic value at all system sizes. When x is close to 1, very large
system sizes are necessary to reach the asymptotic regime. The
figure inset shows the largest-cluster size distribution at percolation
plotted in reduced coordinates. Each curve is computed as a histo-
gram over 105 disorder realizations for system sizes L
=5,6 , . . . ,48. As L→�, the finite-size results converge to a smooth
scaling function �one not dissimilar from that of the square-lattice
case; see Fig. 2 of Ref. 5�.

FIG. 5. �Color online� Finite-size scaling of the average quan-
tum correction to the staggered magnetization ��mz�p ,L�� for dif-
ferent values of dilution x= �1− p� / �1− pc�. Each point was obtained
after 105 disorder realizations of lattices with equal number of sites
in each sublattice. Also shown for x=1 is the result obtained when
the realized lattices are not constrained to have Na=Nb: * zero
modes were subtracted and the highest amplitude �nonzero� mode
�see text� was subtracted if Na�Nb; ** only zero modes were sub-
tracted. For x=0 the RSS result was obtained by a reciprocal space
sum using the analytical result �Ref. 24�.
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this situation, a low-energy eigenstate that contributes in or-
der O�1� for �mz, compared to the O�1/Nc� contributions of
the other eigenstates. If the contribution of this mode is sub-
tracted the result labeled by orange diamonds is obtained,
which agrees well with the result of our standard technique
�where the constrain Na=Nb is always used�.

To better understand the presence of this nonzero energy
“quasidivergent” mode when Na�Nb, we have computed the
contribution to �mz from the lower nonzero energy mode
��mz

�1��, and the next one in energy ��mz
�2��, constrained to

lattices with Na−Nb= ±1, at percolation. Figure 6 shows the
behavior of �mz

�1� �upper panel� and �mz
�2� �lower panel� with

the average cluster size N̄cLD. The �mz
�2� contribution de-

creases with N̄c, signaling the linear increase of the number
of modes that contribute to �mz. Instead, the contribution

�mz
�1� increases with N̄c, and will be of O�1� in the thermo-

dynamic limit. As already mentioned in Sec. III, if Na and Nb
are both of magnitude 1023, then, if Na−Nb= ±1, there will
be, for any practical purpose, two Goldstone modes and not
only one. This statement should always be true if �Na−Nb�
�Na�Nb. The results presented in the top panel of Fig. 6
agree with this general picture. Furthermore, they imply that
even for small sizes there is a mode, which will be identified
with a Goldstone mode in the thermodynamic limit, that con-
tributes “macroscopically” to �mz, though having a finite en-
ergy.

The results we found for the quantum-mechanical factor
mQM�x� are summarized in Fig. 7 for the honeycomb lattice
	panel �a�
 and for the square lattice 	panel �b�
. Three dif-
ferent values of spin S= 1

2 ,1 , 3
2 , are shown.

In the undiluted limit we obtain �mz�0��0.258 for the
honeycomb lattice, and �mz�0��0.197 for the square lattice.
These results are in excellent agreement with quantum
Monte Carlo results, namely, �mz�0�=0.2323�6� for the spin

1/2 Heisenberg antiferromagnet in the honeycomb lattice
�see Sec. IV F�, and �mz�0�=0.1930�3� in the square
lattice.39

The effect of the classical factor mcl�x� �not shown� is
only significant very close to pc, where it vanishes with ex-
ponent 5 /36.40 Thus, for S�

1
2 there is a classically driven

order disorder transition at pc. For S= 1
2 linear spin-wave

theory predicts a quantum critical point in both the honey-
comb and square lattices to occur at x*=0.85�1� and x*

=0.98�1�, respectively. Similar results for the square lattice
were obtained in Ref. 4, though the limited number of aver-
ages over disorder prevented the authors to distinguish x*

from x=1.
The predicted quantum critical point is absent in quantum

Monte Carlo calculations, either in the honeycomb lattice or
in the square lattice.5 As already mentioned in Sec. II, we
should not expect the validity of spin-wave approximation
when �mz�S, because inequalities �3� and �4� break down in
this situation. This is precisely what happens when disorder
increases for S= 1

2 .

C. Magnetic moments for two honeycomb materials

Now we compare our results for the staggered magne-
tization in the spin-wave approximation with available
experimental measurements on MnpZn1−pPS3 and
Ba�NipMg1−p�2V2O8.

The layered compound MnPS3 is a S=5/2 Heisenberg
antiferromagnet.14 This huge spin value suggests that the
spin wave approximation should work well in this case. In-
deed, the average magnetic moment on the Mn atoms was
found to be 4.5�2��B at 3.5 K in the pure material,2 in ex-
cellent agreement with our spin-wave result m�4.48�B. The
effect of dilution in the average magnetic moment of Mn2+

ions is presented in Fig. 8. Neutron diffraction results on
MnpZn1−pPS3 are shown as gray circles,2 and the red squares
are the theoretical results within the linear spin-wave ap-
proximation. To go beyond pc �the first-nearest-neighbor per-

FIG. 6. Contributions to ��mz�pc ,L�� from the lower nonzero
energy mode �upper panel� and the lower energy mode higher than
the lower nonzero energy mode �lower panel�. The average was
taken over 104 disordered honeycomb lattices, with Na−Nb= ±1, at
p= pc.

FIG. 7. �Color online� Average quantum-mechanical factor
mQM�x� vs dilution x= �1− p� / �1− pc� for different values of the spin
S. Panel �a� shows the results for the honeycomb lattice and panel
�b� for the square lattice.
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colation threshold� we would have to take into account
second- and third-nearest-neighbor couplings in Hamiltonian
�1�. Nevertheless, the effect of dilution for p� pc is already
well described by the first-nearest-neighbor model. Further-
more, the agreement between experimental and theoretical
results even at p= pc, indicates that the primary effect of
second- and third-nearest-neighbor interactions is classical.
That is, the existence of one largest connected cluster with a
finite fraction of spins in the thermodynamic limit is guaran-
teed by these couplings for p� pc, but the quantum correc-
tion to the staggered magnetization density is determined by
the smaller first nearest neighbors clusters belonging to this
larger one, at least for p� pc. Further investigations are
needed to clarify whether this is the correct picture.41

The layered compound BaNi2V2O8 is a spin S=1 antifer-
romagnet in a honeycomb lattice. Neutron-diffraction experi-
ments have found, in the pure case, an average magnetic
moment of 1.55�4��B for Ni at 8 K,19 which is in good
agreement with the spin wave result m�1.48�B. To our
knowledge, the magnetic moment has not yet been measured
for the diluted compound. Nevertheless, the available mag-
netic susceptibility measurements on Ba�NipMg1−p�2V2O8

for dilutions in the range 0.84� p�1, show that the Néel
temperature is strongly dependent on the amount of
dilution.19 For the highest diluted sample �p=0.84� a reduc-
tion of almost 70% relative to the undiluted Néel temperature
was found. It would be interesting to know whether the sup-
pression of antiferromagnetic LRO by nonmagnetic impuri-
ties will occur at the classical percolation transition pc�0.7,
as predicted in our calculations.

D. Néel temperature for two honeycomb materials

The Néel temperature of both MnpZn1−pPS3 and
Ba�NipMg1−p�2V2O8 shows a linear suppression with in-
creasing dilution 1− p,2,19 a feature that is also seen in �quasi-

2D� diluted Heisenberg antiferromagnets with square lat-
tice.42–44

Within the linear spin-wave theory developed in Secs. II
and III for diluted antiferromagnetic systems the finite tem-
perature staggered magnetization is given by

Mz
stagg�T� = ��

i�A

Si
a,z − �

i�B

Si
b,z� = Nc	S − �mz − �mz

T�T�
 ,

�45�

where �mz is the zero-temperature correction to the staggered
magnetization defined in Eq. �21�, and �mz

T�T� is the thermal
correction

�mz
T�T� = �

n=1

Na

�mz
�n,
�nB�	n

�
�� + �
n=1

Nb

�mz
�n,��nB�	n

���� , �46�

with generalized �mz
�n,
� and �mz

�n,��,

�mz
�n,
� =

1

Nc
�

i�A

�uni�2 + �
i�B

�vni�2� , �47�

�mz
�n,�� =

1

Nc
�

i�A

�wni�2 + �
i�B

�xni�2� , �48�

and nB�	�= �e	/kBT−1�−1 is the Bose distribution function. In
the thermodynamic limit the average over disorder staggered
magnetization density can be expressed as

mav�p,T,L → �� = mclmQM�T� , �49�

where mcl is the classical factor defined in Eq. �40�, and
mQM�T� is the temperature-dependent quantum-mechanical
factor,

mQM�T� = S − �mz
� − �mz

T,L→��T� . �50�

In the undiluted case the thermal correction �mz
T�p=1,T� can

be expressed as

�mz
T,L�p = 1,T� =

1

Na + Nb
�
k

ha

�ha
2 − ��k�2

nB�	k� , �51�

with 	k given by Eq. �25�, and �k as in Eq. �23�. The sum-
mation in k is done in the first Brillouin zone of sublattice A
or B, and can be replaced by an integration when L→�.
When ha=1 the spin-wave dispersion behaves as 	kk in
the long wavelength limit, similarly to the square lattice case.
As a consequence the thermal correction to the staggered
magnetization develops a logarithmic divergence, which sig-
nals the well known suppression of LRO at T�0 in the 2D
isotropic Heisenberg model.

Therefore, if LRO is present up to TN�0, either a mag-
netic anisotropy ha or a finite interplanar exchange J� �or
both� must be present. If the former is the dominant effect TN
can be calculated using the mean-field-like equation45

mQM�TN� = 0. �52�

In the latter the transition should occur when the interplanar
coupling is strong enough to stabilize the LRO in compari-
son with thermal fluctuations

FIG. 8. �Color online� Average magnetic moment per magnetic
site as a function of dilution p. The linear spin-wave result for the
S=5/2 Heisenberg antiferromagnet in the honeycomb lattice �red
squares� is compared with neutron scattering data on MnpZn1−pPS3

from Ref. 2 �gray circles�.
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J�mQM
2 �p,T = 0�

�2�p,TN�
A/2

� kBTN. �53�

The parameter ��p ,T� is the inplane correlation length,
which characterizes the spin fluctuations of a layered system
in a paramagnetic phase. The area of a hexagon of side c is
given by A=c23�3/2. The correlation length can be calcu-
lated in the context of the modified spin-wave theory,46 and
in the nondiluted �p=1� case it is exponentially divergent
with 1/T as T→0. The mean-field picture which leads to Eq.
�53� was proposed in Ref. 7, and gives a good description of
the variation of TN�p� /TN�0� with dilution 1− p in a variety
of layered compounds with square lattice.

In the case of MnPS3 a small gap of magnitude �E
=0.5 meV was found in the spin-wave energy at the Bril-
louin zone center.16 This energy gap can be explained by
either a single-ion anisotropy or a dipole coupling, being
modeled here by a small magnetic anisotropy ha�1. From
the spin-wave dispersion �25� it is found that ha�1.004 is
needed to obtain �E=0.5 meV �a nearest-neighbor exchange
of magnitude J=0.8 meV was used16�. We remark that such
a small magnetic anisotropy has no effect in the conclusions
we have made so far based on the isotropic Heisenberg
model �ha=1�. As an example, the average magnetic moment
on the Mn atoms given by spin-wave theory is m�4.48�B
for ha=1 and m�4.55�B for ha=1.004, both in excellent
agreement with the experimental value 4.5�2��B at 3.5 K.2

Inserting the value ha=1.004 into Eq. �51� we obtain TN
�70 K as a solution of Eq. �52�, in agreement with the mea-
sured value TN=78 K.14

Nevertheless a finite interplanar exchange of magnitude
J�=0.0019�2� meV is also present in the MnPS3

compound.16 With ��p=1,TN=78 K�=27.5 Å measured by
neutron scattering,47 and c=3.5 Å,48 we obtain from the
mean-field equation �53� TN�6 K. This small value of TN is
an indication that the effect of the interplanar coupling is not
as important as the magnetic anisotropy in stabilizing the
LRO. Therefore we use Eq. �52� to study the effect of dilu-
tion on TN�p�. The thermal correction �mz

T defined by Eq.
�46� is computed via recursion method �see Sec. III E�, not-
ing that it can be expressed as

�mz
T�T� = �

0

�

dEnB�E�K�E� , �54�

where the kernel K�E� is given by

K�E� = −
1

Nc

1

�
Im��

i�A

Gii
aa�E + i0+� + �

i�B

Gii
bb�E + i0+�

+ �
i�A

Gii
aa�− E + i0+� + �

i�B

Gii
bb�− E + i0+�� . �55�

It is worth mentioning that with the recursion method �mz
T

can be computed with the same precision �limited by the
linear size L=128 of the sample� from the undiluted limit
p=1 to the percolation threshold p= pc.

The result of numerically solving Eq. �52�—with �mz
T

computed by applying the recursion method to systems with
L=128 and averaging over 200 to 400 disorder

realizations—is shown in Fig. 9. Also shown are the results
of magnetometry measurements on MnpZn1−pPS3 from Ref.
2. The difference between the theoretical results and experi-
mental values suggests that in opposition to the magnetic
moment at zero temperature �see Fig. 8� the effect of second-
and third-nearest-neighbor couplings should be included to
obtain a quantitatively correct Néel temperature as dilution is
increased. An estimation of TN�p� /TN�1� can as well be ob-
tained by standard mean-field theory TN

MF= 2
3JzS�S+1�.49 Re-

placing S by the zero temperature staggered magnetization
density mav�p� defined in Eq. �39�, and assuming that the
coordination number decreases linearly with dilution z p,
the ratio TN�p� /TN�1� is given by

TN�p�
TN�1�

= pmav�p�	mav�p� + 1
 . �56�

In Fig. 9 we show as diamonds the results of Eq. �56�. Al-
though this result reproduces the correct dependence on p, it
should be stressed that as a mean-field approximation the
absolute value of TN�p� is overestimated.

The effect of dilution on the Néel temperature of
Ba�NipMg1−p�2V2O8 was studied by Rogado et al. for dilu-
tions in the range 0.84� p�1.19 The few experimental re-
sults concerning the magnetic properties of BaNi2V2O8 are
insufficient to undoubtedly determine the model which better
describes the magnetic behavior of this compound. Although
electron-spin resonance measurements seem to be well fitted
by a weakly anisotropic Heisenberg model with easy-plane
symmetry �XY�, i.e., ha�1 in Hamiltonian �7�, the same re-
sults can as well be explained with the isotropic limit of this
model.20 Further experiments would be valuable in determin-
ing the nature of the LRO observed in this compound, in
particular inelastic neutron scattering from which the spin-
wave dispersion can be measured. Here we assume that a
small gap is present at the Brillouin zone center, and that it
can be modeled by a small uniaxial interaction anisotropy,

FIG. 9. �Color online� TN�p� /TN�0� vs p for S=5/2. The results
obtained by numerically solving Eq. �52� �squares� and the mean-
field result of Eq. �56� �diamonds� are compared with experimental
results on MnpZn1−pPS3 from Ref. 2 �circles�.
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i.e., ha�1 in Hamiltonian �7�. In particular ha−1�10−4 is
needed to get TN�50 K in the undiluted case �a nearest-
neighbor exchange of magnitude J�4 meV was used�.19

The TN�p� /TN�1� vs p result obtained by numerically
solving Eq. �52� for S=1—with �mz

T computed applying the
recursion method to systems with L=128 and averaging over
200 to 400 disorder realizations—is shown in Fig. 10
�squares�. Also shown are the mean-field result of Eq. �56�
�diamonds� and results of magnetic susceptibility data for
Ba�NipMg1−p�2V2O8 �circles� �Ref. 19�. The disagreement
between the mean-field result 	Eq. �56�
 and experimental
values can be attributed to the small spin S=1 value, which
means higher quantum fluctuations and less mean-field-like
behavior. The theoretical result �squares� and the experimen-
tal values are in reasonable agreement, though it seems to
worsen as dilution increases. It should be noted that the spin-
wave theory for layered materials is not really adequate at
T�TN, and when it is applied to the mean-field-like Eq. �52�
it tends to overestimate the absolute value of the Néel
temperature.50

E. Density of states in the thermodynamic limit

The effect of dilution has a strong impact on the DOS of
the system. Since the momentum is no longer a well-defined
quantum number the spin waves acquire a finite lifetime.7 As
a consequence, the basis that diagonalizes the problem has a
very different energy spectrum, which implies a different
DOS.

We have calculated the DOS of the antiferromagnetic
Heisenberg model in the linear spin-wave approximation for
the honeycomb and square lattices in the presence of dilu-
tion. The recursion method briefly discussed in Sec. III E
was used to study the variation of the DOS with dilution. The
method is valid from the undiluted p=1 limit to the percola-
tion threshold pc, and provides access to the whole energy
spectrum. The precision limit is set by the linear size L of the

system, which we fix here to L=128 both in the honeycomb
and square lattices.

In Fig. 11 we show the square lattice DOS at four differ-
ent values of dilution x. The depletion of the high-energy
part of the DOS in favor of low energy modes is clearly seen
as dilution is increased, in agreement with the results ob-
tained by exact diagonalization of smaller systems.4 The two
structures visible at around E /JS=2 and 3, which Mucciolo
et al.4 associated with the breaking of the clean-limit magnon
branch into three distinct but broad branches, are also evi-
dent.

The DOS for the honeycomb lattice is shown in Fig. 12. A
decrease in the density of high-frequency states and the pro-
portional increase in the density of low-frequency ones is
also clear as dilution increases. This feature can then be
viewed as a general effect of the presence of dilution. Struc-
tures as those observed in the square lattice case, just below
E /JS=2 and 3, are not so easily identified. Nevertheless, a
feature of this kind seems to be present just below E /JS=2.
To determine whether or not it can be associated with the
presence of fractons, as in the square lattice case,4 a more
detailed study is needed, such as the calculation of the dy-
namical structure factor in the diluted honeycomb lattice.

The effect of moving spectral weight from the top of the
band to lower energies due to dilution is accompanied by the
appearance of a set of peaks, starts to develop in the high-
frequency part of the spectrum for small dilution and extends
to the entire band as dilution increases. There is, however, a
particular peak that deserves special attention. This peak can
be seen very close to the bottom of the band �E=0� for x
�0.8 both in the honeycomb and square lattice DOS. Figure

FIG. 10. �Color online� TN�p� /TN�0� vs p for S=1. The results
obtained by numerically solving Eq. �52� �squares� and the mean-
field result of Eq. �56� �diamonds� are compared with experimental
results on Ba�NipMg1−p�2V2O8 from Ref. 19 �circles�.

FIG. 11. �Color online� DOS of the Heisenberg antiferromag-
netic model in the linear spin-wave approximation for the square
lattice. The four panels correspond to different dilution levels x. An
energy mesh with spacing 0.01 in units of JS was used. These
results were obtained applying the recursion method to systems
with L=128, and averaging over 200 to 400 disorder realizations.
The dotted line is the clean limit DOS.
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13 is a magnification of the DOS close to E=0 at x=xc.
Being present both in the honeycomb and square lattices,
though a bit stronger in the former, this peak seems to be a
general feature associated with dilution. In fact, it is closely
related to the finiteness of the quantum corrections to the
staggered magnetization at zero temperature.

As shown by Mucciolo et al.,4 the finiteness of the quan-
tum fluctuations reduces to the problem of the convergence

of the integral �0
EmaxdE��E�E−1. In Fig. 13 we show a poly-

nomial fit to the low-energy behavior of the DOS �red line�.
Although it should be seen as a guide to the eyes, we can
undoubtedly say that in the low-energy limit the DOS be-
haves as ��E�E
 with 
�1, and thus the abovementioned
integral is convergent. This result is consistent with the ex-
istence of an upper bound for the quantum fluctuations in
any model with a classically ordered ground state whose
Hamiltonian can be mapped onto that of a system of coupled
harmonic oscillators, as argued by Mucciolo et al.4 This re-
sult also agrees with the FSS results presented in Sec. III D,
where we found finite values for �mz

��x�. The �mz
��xc�

�1/2 result can be attributed to the breakdown of the spin-
wave approximation when �mz�S, as will be shown in the
next section.

F. Quantum Monte Carlo results for S=1/2: Absence of a
quantum phase transition

We have performed a Monte Carlo study of the S=1/2
quantum Heisenberg antiferromagnet on the site-diluted hon-
eycomb lattice using stochastic series expansion �SSE�.39,51

Unlike the spin-wave approach described in Secs. II and
III—which should be understood as an expansion in the rela-
tive reduction of the staggered moment �mz /S—this tech-
nique is exact �up to statistical uncertainties� and well be-
haved even when �mz�S. In particular, the SSE Monte
Carlo can access the small-S, near-percolation regime where
the spin-wave calculation becomes unreliable.

We have closely followed the procedure outlined in Ref.
5, which treats the site dilution problem on the square lattice.
To accelerate convergence, we have taken advantage of the
�-doubling scheme described therein: 100 equilibration and
200 sampling sweeps are performed at each temperature with
the resulting configuration �an M-element operator list SM
= 	a1 ,b1
 , . . . , 	aM ,bM
� used to generate a high-probability
initial configuration at the next lowest temperature �S2M

= 	a1 ,b1
 , . . . , 	aM ,bM
 , 	aM ,bM
 , . . . , 	a1 ,b1
� according to
the cooling schedule �=2,4 ,8 , . . . ,2048,4096.

A refinement to previous work is that we extrapolate the
staggered magnetization to the thermodynamic limit using
two different quantities

mQM = lim
L→�

� 2

Nc
�M̂z

stagg��
L,x

, �57a�

mQM
2 = lim

L→�
� 3

Nc
2 �M̂z

stagg�2�
L,x

. �57b�

Here, M̂z
stagg=�i�AŜi

z−�i�BŜi
z is the z-projected staggered

magnetization and mQM is the quantum-mechanical factor in-
troduced in Sec. III D. The notation �¯�L,x represents an
ensemble average over the quantum states of the system and
over all configurations of the size-L lattice with dilution x.

The site indices in M̂z
stagg are understood to range over only

the largest connected cluster.
Equation �57a�, being linear, is analogous to the quantity

S−�mz computed via spin-wave theory. Equation �57b� is

FIG. 12. �Color online� DOS of the Heisenberg antiferromag-
netic model in the linear spin-wave approximation for the honey-
comb lattice. The four panels correspond to different dilution levels
x. An energy mesh with spacing 0.01 in units of JS was used. These
results were obtained applying the recursion method to systems
with L=128, and averaging over 200 to 400 disorder realizations.
The dotted line is the clean limit DOS.

FIG. 13. �Color online� Low-energy behavior of the DOS of the
Heisenberg antiferromagnetic model in the linear spin-wave ap-
proximation for the honeycomb �left� and square �right� lattices at
percolation. An energy mesh with spacing 5�10−4 in units of JS
was used. These results were obtained applying the recursion
method to systems with L=128, and averaging over 800 disorder
realizations.
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essentially a structure factor and equivalent to Eq. �10� of
Ref. 5. The factors 2 and 3 in Eqs. �57� are a consequence of
the rotational invariance of the ground state. Their particular

values follow from the averages �d�̂��̂ · ẑ�=4� /2 and

�d�̂��̂ · ẑ�2=4� /3, where �̂ is a vector ranging over the unit
sphere. �Such geometric factors are irrelevant to the spin-
wave case; there the ground state is symmetry broken by
explicit construction.�

As in Ref. 5, we use the straight-forward generalization of
the finite-size scaling form for the clean system,52

� 2

Nc
�M̂z

stagg��
L,x

2

= mQM
2 +

a1

�N̄c

+
a2

N̄c

+ ¯ , �58a�

� 3

Nc
2 �M̂z

stagg�2�
L,x

= mQM
2 +

b1

�N̄c

+
b2

N̄c

+ ¯ . �58b�

	As the discussion in Sec. IV A makes clear, this converges
to L−D/2 power-law behavior at large L, as in Eq. �41�.
 Nu-
merical measurements of the two quantities on the left-hand
side of Eqs. �58a� and �58b� may be fit to the corresponding
functions on the right-hand side either simultaneously—with
parameters mQM, �ai�, �bi�—or separately—with parameters
mQM, �ai� and mQM� , �bi�. Verifying that mQM�mQM� serves as
a consistency check.

In the case of the undiluted honeycomb lattice 	for which
mav�L→���mQM
, we have simulated lattices up to linear
size L=32 �i.e., up to 2�322=2048 sites�. Observables were
computed using a bootstrap analysis53 of 150 bins of 105

samples each �1.5�106 total Monte Carlo sweeps�. Best fits
to the data, shown in Fig. 14, give the thermodynamic limit
mav�L→��=0.2677�6�. This is somewhat smaller than the
square lattice value mav�L→��=0.3070�3�,5 a reduction that
reflects the larger quantum fluctuations on the less mean-
field-like honeycomb lattice.

Note that our value of the staggered magnetization is
larger than �but consistent with� an earlier Monte Carlo mea-
surement due to Reger et al.54 �within 1.6 standard devia-
tions�. It is also, we believe, considerably more accurate. The
Reger group’s value of mav�L→��=0.22�3� was computed
by extrapolating relatively large Trotter errors �0.1���
�0.2� to ��→0 and small systems sizes �4�L�8� to L
→�. Moreover, their analysis supposes that the inverse tem-
perature �=10 is sufficiently cold to extract the ground-state
properties of the system, which is very likely incorrect.5

For the diluted honeycomb lattice, we computed the stag-
gered magnetization as an average over 105 randomly gener-
ated disorder realizations. Simulations of system sizes up to

N̄c�2000 were extrapolated to the thermodynamic limit, as
shown in Fig. 15. The figure inset illustrates the dependence
of mQM on dilution.

In contrast to the spin-wave prediction, we find that LRO
persists right up to the classical percolation threshold. The
magnitude of the staggered magnetization decreases with di-
lution but does not vanish: mQM=0.139�6� at x=1, which
represents a roughly 50% reduction in magnetic moment
over the undiluted �x=0� lattice. This is comparable to the

FIG. 14. �Color online� The staggered magnetization of the un-
diluted honeycomb lattice �x=0, Nc=N=2L2� is extrapolated to the
thermodynamic limit following Eqs. �58a� and �58b�. A simulta-
neous fit of the two data sets yields the value mav�L→��
=0.2677�6�.

FIG. 15. �Color online� The main plot shows an extrapolation to
the thermodynamic limit of twice the z-projected staggered magne-
tization for various dilution levels x �as indicated by the symbols in
the upper-left legend�. The lines drawn through the data points rep-
resent a global fit to Eqs. �58� in which mQM�x� ,a1�x� ,b1�x� , . . ., are
treated as powerseries in x and varied. The resulting function
mQM�x� appears as the solid �pink� line in the figure inset alongside
Monte Carlo results for the square lattice �from Ref. 5� and spin-
wave results for the honeycomb lattice. The �red� errorbars indicate
the values of mQM extrapolated from each fixed-x dataset taken
individually.
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effect seen in the square lattice where mQM�0�=0.3070�3�
falls to mQM�1�=0.150�2�.

We observe that the square- and honeycomb-lattice values
of mQM are remarkably close in the vicinity of x=1. The
likely explanation is that the percolating clusters—retaining
little of the structure of their undiluted parent lattice—are
themselves quite similar. Both have fractal dimension D
=91/48 and a similar nearest-neighbor count: with increas-
ing site dilution, the average coordination number goes from
z̄hc�0�=3 and z̄sq�0�=4 to z̄hc�1�=2.22 and z̄sq�1�=2.52; see
Fig. 16. The Monte Carlo results are consistent with our
understanding that the quantum fluctuations disrupt the LRO
in inverse proportion to the number of nearest neighbors con-
tributing to the local staggered mean field at each site.

V. SUMMARY AND CONCLUDING REMARKS

In this work we studied the magnetic properties for di-
luted Heisenberg models in the honeycomb lattice. Refined
results for the density of states in the square lattice case were
also reported. We have shown that spin-wave theory in di-
luted lattices is quite successful in describing the magnetic
properties of S�1/2 systems. On the other hand, for S
=1/2, spin-wave theory breaks down and one has to ap-
proach the problem using a Monte Carlo method. Contrary to
the linear spin-wave method, the Monte Carlo method does
not allow for the determination of the density of states. Hav-
ing the advantage of being rotationally invariant by construc-
tion, the Monte Carlo method does not face the problem of
the existence of zero-energy modes. We have discussed in
detail the physics associated with these modes. In the ther-
modynamic limit they play the role of Goldstone modes,
working to restore the rotational symmetry of the problem
that was explicitly broken by the spin-wave approximation.

We have shown that in a numerical study these modes cannot
be included in the calculation of operator averages, if sen-
sible physical results are to be obtained. This is because
these modes were already used in the construction of the
broken symmetry state, as was first discussed by Anderson in
his seminal paper on spin waves in nondiluted lattices.26

Our approach allows us to compute both the staggered
magnetization and the Néel temperature as a function of the
dilution concentration. In particular, the combination of spin-
wave analysis and the recursion method allows for the cal-
culation of physical quantities virtually in the thermody-
namic limit. This possibility was not used before in similar
studies on the square lattice.

We have used our results to explain the experimental data
of two Heisenberg honeycomb systems MnpZn1−pPS3 �a di-
luted S=5/2 system� and Ba�NipMg1−p�2V2O8 �a diluted S
=1 system�. In the first case, the available experimental and
theoretical studies in the nondiluted regime suggest that
second- and third-nearest-neighbor interactions play a role in
the physical properties of the system. This can be seen from
the fact that the measured magnetic moment of the samples
is finite beyond the classical site-dilution percolation thresh-
old. Our calculation suggests, however, that at low tempera-
tures and for p� pc the magnetic moment of these samples
can be accounted for on the basis of a single nearest-
neighbor coupling. On the other hand, the calculation of the
Néel temperature using a single nearest-neighbor coupling is
underestimated, as it should be the case based on the fact that
the magnetic order close to the Néel temperature should have
a measurable contribution from the other couplings, which
are not much smaller than the first nearest-neighbor coupling
�the Néel temperature for this system using second- and
third-nearest-neighbor interactions will be studied in a future
publication�. Calculations based on simple �Ising like� mean-
field theories, on the other hand, are very much insensitive,
by construction, to the microscopic details of the system.
Therefore, as long as quantum fluctuations are not important,
good agreement with the experimental data should be ob-
tained. This is the case for MnpZn1−pPS3, but not for
Ba�NipMg1−p�2V2O8 since its smaller spin is much more sus-
ceptible to contributions of quantum fluctuations. In the case
of the system Ba�NipMg1−p�2V2O8, there are, unfortunately,
no measurements of its magnetic moment in the diluted
phase. Nonetheless the Néel temperature as a function of
dilution is known from thermodynamic measurements. Our
results show that in this case, most likely, only the first-
nearest-neighbor coupling �and a very small magnetic aniso-
tropy� are needed to describe the behavior of the Néel tem-
perature upon dilution. It would be important if further
investigations on this system could be performed in the fu-
ture.
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APPENDIX: NUMERICAL DETAILS ON THE
DIAGONALIZATION OF Hsw

1. Cholesky decomposition method

As shown by Colpa,55 as long as the grand dynamical
matrix is positive definite, a simple algorithm exists for de-
termining T. A Hermitian �or symmetric� matrix is positive
definite if all its eigenvalues are positive. By definition the
quasiparticles 
† and �† have positive or zero excitation en-
ergy. As is shown in Sec. III B, the zero energy excitations
are associated with spin rotations, which cost zero energy
due to the spin rotational symmetry of the isotropic Heisen-

berg model. So, provided that ha�1+, all eigenvalues are
positive and the grand dynamical matrix is positive definite.
The algorithm is implemented in three major steps. First, for
D positive definite a Cholesky decomposition can be
performed56 and we have D=Q ·Q†, where Q is an upper
triangular matrix. The existence of a Cholesky decomposi-
tion guarantees that the problem is positive definite. Second,
it can be proved that there exists a unitary transfor-
mation Y such that Y†�Q1p

�ab�Q†�Y=1p
�ab�diag�	1 , . . . ,

	Na
,	Na+1 , . . . ,	Na+Nb

�. And finally, it can be proved that

T−1=Q−1Ydiag��	1 , . . . ,�	Na+Nb
�.

2. Bogoliubov-Valatin transformation method

The nonhermitian eigenproblem defined by Eqs. �18� and
�19� can be solved with standard numerical algorithms. Here
we have used subroutines of the LAPACK library following
the scheme described as an appendix in Ref. 4. The main
difference between their procedure and ours is that we only
need the right eigenvectors, as can be seen from Eqs. �18�
and �19�. Also, we remark that the two zero-energy modes
appearing in Na=Nb clusters must be extracted, as carefully
discussed in Sec. III B.
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