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Gap exponent of the XXZ model in a transverse field
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We have calculated numerically the gap exponent of the anisotropic Heisenberg model in the presence of a
transverse magnetic field. We have implemented the modified Lanczos method to obtain the excited states of
our model with the same accuracy as the ground state. The coefficient of the leading term in the perturbation
expansion diverges in the thermodynamic limit (N— o). We have obtained the relation between this diver-
gence and the scaling behavior of the energy gap. We have found that the opening of the gap in the presence
of a transverse field scales with a critical exponent which depends on the anisotropy parameter (A). Our
numerical results are in good agreement with the field theoretical approach in the whole range of the anisotropy

parameter —1 <A<1.
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I. INTRODUCTION

The effect of a transverse magnetic field on low-
dimensional spin systems has been attracted much interest
recently from experimental and theoretical points of view.
The experimental observations'> on the quasi-one-
dimensional spin-1/2 antiferromagnet Cs,CoCl, are a real-
ization of the effect of a noncommuting field on the low-
energy behavior of a quantum model. This shows a quantum
phase transition from the spin-flop phase (ordered antiferro-
magnetically in the y direction) at the low magnetic field to a
paramagnet for high fields. Moreover unusual-behavior has
been observed in the specific heat close to the quantum criti-
cal point.> A connection between the ground state properties
of the anisotropic Heisenberg model (XXZ) in the transverse
field to the reported quantum phase transition has been given
by the quantum renormalization group approach.’ In addi-
tion, a recent mean-field approach for the weakly coupled
chains* has given a very good agreement on the finite-
temperature phase diagram of the two-dimensional model
with the observed experimental data.!

The spin—(s= %) Hamiltonian of the XXZ model in a trans-
verse field on a periodic chain of N sites is

N
H=JY, (5787, + 878ty + Asiss, — hs)), (1)
i=1

where J>0 is the exchange coupling in the XY easy plane,
—1 <A< is the anisotropy in the Z direction, and # is pro-
portional to the transverse field. The spin (s;) on site n is
represented by %o-ff, a=x,y,z, in terms of Pauli matrices.
This model is a good candidate for explaining the low-
temperature behavior of Cs,CoCl,. However, since the inte-
grability of the XXZ model will be lost in the presence of a
transverse field, more intensive studies from the theoretical
point of view are needed.

When h=0, the XXZ model is known to be solvable and
critical (gapless).” The Ising regime is governed by A>1
while for A<-1 it is in the ferromagnetic phase. The mag-
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netic field in the anisotropy direction commutes with the
Hamiltonian at 2=0 and extends the gapless region (quasi-
long-range order) to a border where a transition to the para-
magnetic phase takes place. The model is still integrable and
can be explained by a conformal field theory with central
charge c=1 (Ref. 6 and references therein).

Adding a transverse field to the XXZ model breaks the
U(1) symmetry of the Hamiltonian to a lower, Ising-like,
symmetry which develops a gap. The ground state then has
long-range anti-ferromagnetic order (-1 <A <1). However,
due to nonzero projection of the order parameter on the field
axis it is a spin-flop Néel state. In fact at a special field
[h,=+2(1+A)] the ground state is known exactly to be of
the classical Néel type.”® The gap vanishes at the critical
field h., where the transition to the paramagnetic phase oc-
curs. The classical approach to this model reveals the mean-
field result,” which is exact at s — . The implementation of
the quantum renormalization group® shows that the transition
at h. is in the universality class of the Ising model in a
transverse field (ITF). The phase diagram of the XYZ model
in transverse field has also been presented in Ref. 3. The
scaling of the gap, phase diagram, and some of the low ex-
cited states at h. of the XXZ model in the transverse field
have been studied in Ref. 10. In this approach the scaling of
the gap is given by the scaling of the operator s* which is
read from the asymptotic form of the correlation function'!
({s7s7,,»). This correlation function contains two terms, an
oscillating and a nonoscillating one. Each part defines a spe-
cific scaling exponent for s* which depends on the anisotropy
parameter (A).

Exact diagonalization'? and density matrix renormaliza-
tion group'® (DMRG) results give us some knowledge on
this model but not on the scaling of gap. A bosonization
approach to this model in certain limits leads to a nontrivial
fixed point and a gapless line which separates two gapped
phases,'* moreover, the connection to the axial next-nearest
neighbor Ising model has been addressed. The applicability
of the mean-field approximation has been studied by com-
paring with the DMRG results of magnetization and struc-
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ture factor.!> Recently the effect of a longitudinal magnetic
field on both the Ising model in transverse field'® and the
XXZ model in the TF has been discussed.!”

Here, we are going to present our numerical results on the
low-energy states of the XXZ model in the transverse field
which has been obtained by the modified Lanczos method
introduced in Sec. II. It is believed that in this approach the
accuracy of the excited state energies is the same as the
ground state energy. In Sec. III, we will apply a scaling ar-
gument presented in Ref. 18 to our model and examine it by
the numerical results to obtain the gap exponent. We have
then applied a perturbative approach in Sec. IV to study the
divergent behavior of the coefficient in the leading term of
the perturbation expansion. The gap exponent has been ob-
tained by the relation to the exponent of the diverging term.
The gap exponent depends on the anisotropy parameter in
agreement with the field theoretical results.'” Finally, we will
present the summary and discussion on our results.

II. MODIFIED LANCZOS METHOD

The theoretical investigation of numerous physical prob-
lems requires an appropriate handling of matrices of very
large rank. Even if in many applications the matrix is sparse,
the problem cannot be solved by means of a direct diagonal-
ization by standard routines. The Lanczos method and the
related recursion methods,'®?> possibly with appropriate
implementations, have emerged as one of the most important
computational procedures, mainly when a few extreme ei-
genvalues (largest or smallest) are desired. Grosso and Mar-
tinelli have presented a relevant implementation of the Lanc-
zos tridiagonalization scheme,?? which allows one to obtain a
very fast convergence to any excited eigenvalue and eigen-
function of H, overcoming memory storage difficulties. To
explain this method briefly, let us consider an operator H,
with unknown eigenvalues E; and eigenfunctions |¢;). Any
auxiliary operator A=f(H) commutes with H, and thus
shares with it a complete set of eigenfunctions corresponding
to the eigenvalues A;=f(E;). In order to obtain the nearest
excited state of H to any a priori chosen trial energy E,, we
consider the auxiliary operator A in the form A=(H-E,)%. In
a completely different context, this form is suggested by nu-
merical analysis?* to solve the Schrodinger equation within
any desired energy. Now, we are faced with the solution of
the following eigenvalue equation:

A| )= (H- Et)2| ) = 7\i| ). (2)

Our strategy to solve Eq. (2) is based on the Lanczos algo-
rithm. We briefly summarize some basic features of the
Lanczos procedure in its standard formulation.

Let us denote with ¢,(i=1,2,...,N) a complete set of
basis functions, for the representation of the operator H (and
hence of A). Starting from a seed state |u), given by what-
ever chosen linear combination of the ¢;, a set of orthonor-
mal states |ug)|u,), ...,|uy) is constructed via successive ap-
plications of the operator A as follows:
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|U) = (A = ag)|ug),

ag = (uglAlug). 3)
In general

|Un+1>=A|un>_an|un>_bn|un—l>’ n>1. (4)

The (non-normalized) state |U,,,) allows us to determine the
coefficients b,,; and a,,; of the (n+1)th iteration step, via
the procedure

b2 <Un+l|Un+]>’

n+l =

<Un+1|A|Un+l>
<Un+1|Un+l> '

where by=0 is the initial condition. After normalization of
the state |u,,)=(1/b,,;)|U,.,) the steps (4) and (5) are re-
peated with n replaced by n+1. In the new basis |u,), the
operator A is represented by a tridiagonal matrix 7,,, whose
elements a, and b, are explicitly known for m=<N. The di-
agonalization of the tridiagonal matrix 7T, gives the eigenval-
ues \;=(E,—E,)%.

The transformation to the tridiagonal matrix is truncated
at some stages because of the round-off error. However, the
ground state energy can be obtained up to some significant
digits. The accuracy of the excited energies is lost in the
usual Lanczos method (A=H) by the round-off error. The
modified Lanczos method explained above allows us to get
the higher energy levels with the same accuracy as the
ground state energy. We can select the tuning parameter E, in
the range of accuracy of our method to get the excited energy
levels. By choosing the appropriate E,, we got the energy gap
of the model presented in Eq. (1) up to eight digits.

(5)

Apy1 =

III. THE SCALING ARGUMENT AND GAP EXPONENT

The XXZ model is integrable and its low-energy proper-
ties are described by a free massless boson field theory. In
the transverse magnetic field, Dimitriev et al. considered'’
the perturbed action for the model as

S=So+hfdt dx S*(x,1), (6)

where S is the Gaussian action of the XXZ model. The time-
dependent correlation function of the XXZ chain for |A| <1
has the following asymptotic form:!!

(= 1)'A, A,
(x2 + Uzq,z)a/z - (x2 + v27,2)(0/2+1/20)’
(7)

where A; and A, are known constants,” 7=if is the imagi-
nary time, v is the velocity, and

(§%(x,7)5%(0,0)) ~

arccosA

0=1- . (8)

T

The exponent of the energy gap (G) has been estimated'® by
using the long-distance contribution of the oscillating part to
the action via the scaling of $*
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1

G~h* = .
K=o

)

If the scaling of S$* is read from the nonoscillating part of
(8*(x,7)8%(0,0)) the contribution to the action gives the fol-
lowing scaling for the energy gap:>%-’

2

G~h, v=—"T—1.
4-60-1/0

(10)
The smaller value of w and v defines the leading order of the
dependence of gap on the transverse field, the gap exponent.
Thus, w is the gap exponent for —1<<A<0 and v for 0<A
<.

We have implemented the modified Lanczos algorithm on
finite-size chains (N=8,10,12,...,24) by using periodic
boundary conditions to calculate the energy gap. We have
computed the energy gap for different values of —1 <A <1
and the chain lengths. The energy gap as a function of the
chain length (N) and the transverse field (k) is defined as

G(N,h) = E;(N,h) — Eo(N,h), (11)

where E, is the ground state energy and E, is the second
excited state one. The first excited state crosses the ground
state N/2 times for a finite chain and the last crossing occurs
at the classical point'® z.,,=2(1+A). These two states form
a twofold-degenerate ground state in the thermodynamic
limit where E;—E|, vanishes.

In the case of h equals zero, the spectrum of the XXZ
model is gapless. The gap vanishes in the thermodynamic
limit proportional to the inverse of the chain length,

1imG(N,h:0)—>§. (12)
N—os N
The coefficient B is known exactly from the Bethe ansatz
solution.?® We consider this equation as the initial condition
for our procedure.'® Adding the transverse field to the Hamil-
tonian, a nonzero gap develops. The presence of the gap can
be characterized by the following expression:

G(N,h)
= 1 + s 13
G(N.0) fx) (13)
in the combined limit
N— o, h—0, (14)

where x=Nh® is fixed and f(x) is the scaling function. Thus,
the gap at finite /# can be defined

G(N,h) = ]% + %f(x) = ]%+ g(N)R®, (15)

where g(N) is a function of only N. It is imposed that the
function g(N) approaches a nonzero constant value in the
thermodynamic limit: limy_,..g(N)=const= C,. The regime
where we can observe the scaling of the gap is in the ther-
modynamic limit (N— o) and a very small value of i (h
<1). This means that the scaling behavior is observable at
large x (x=Nh®>1). The asymptotic behavior of g(N) for
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N— o defines that the large-x behavior of f(x) must be pro-
portional to x,
N C.
ﬂﬂ=%¥ﬁihﬂﬂ=;% (16)

x>1

Thus, if we consider the asymptotic behavior of f(x) as

flx) ~x2, (17)

the ¢ exponent must be equal to 1 (¢p=1). If we multiply
both sides of Eq. (15) by N we get

lim NG(N,h) =B+ C.x. (18)
N—oo(x>1)
Equation (18) shows that the large-x behavior of NG(N,h) is
linear in x where the scaling exponent of the energy gap is €.
We have plotted the values of NG(N,h) versus Nh® for
A=0.5,-0.5 in Fig. 1. The reported results have been com-
puted on a chain of length N=18,20,22,24 with periodic
boundary conditions. According to Eq. (18), it can be seen
from our numerical results presented in Figs. 1(a) and 1(b)
that the linear beahavior is very well satisfied by £=2.0. But
the data do not show a scale invariance plot for different N,
which is expected from the scaling behavior. We have also
implemented our numerical tool to calculate the exponent of
the energy gap at A=0,0.25,-0.25. Again, the plot of
NG(N,h) versus Nh® shows a linear behavior for £=2.0.
However, we should note that the horizontal axes pre-
sented in Fig. 1 are limited to very small values of x=Nh®
<0.0024. Thus, we are not allowed to read the scaling ex-
ponent of the gap which exists in the thermodynamic limit
(N— or x> 1). We have been limited to consider the maxi-
mum value of N=24, because for the present model [Eq. (1)]
the total S* does not commute with the Hamiltonian and we
should consider the full Hilbert space of 2" in our computa-
tions. Moreover, to avoid the effect of level crossings, we
should consider very small values of 2<<0.01. Therefore, the
value of x cannot be increased in this method. We will face
the same problem even if the calculation is done by density
matrix renormalization group. In that case we can extend the
calculation for larger sizes, N~ 100, but the first level cross-
ing happens for a smaller value of 4. The position of the first
level crossing is proportional to N2 which will be ex-
plained in the next sections. This is the level crossing be-
tween the higher excited states, in this case between the sec-
ond and third ones. Thus, we have to find the scaling
behavior from the small-x data.

IV. PERTURBATIVE APPROACH

According to our computations where N =24, the small
-x regime is equivalent to very small / values. In this case,
the energy gap of the finite-size system is basically repre-
senting the perturbative behavior. Thus, Eq. (15) is rewritten
in the form

aMm:%+£ﬂmE§+gmw, (19)

to a very good approximation, because the first-order pertur-
bation correction is zero in the transverse field and the lead-
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FIG. 1. The product of energy gap and chain length (NG) versus
Nh®. A=(a) 0.5 and (b) —0.5. A linear behavior is obtained by
choosing £=2.0 for all different chain lengths N=18,20,22,24.
The solid lines are guides for the eye.

ing nonzero term is A% In this way we get g(N)
=Bf(x)/Nh?. If the small-x behavior of the scaling function
is defined by f(x) ~x® we find that

g(N) = BN\ Dpe¢=2), (20)

Since g(N) is a function of only N we end up with

ep,=2. (21)

Multiplication of both sides of Eq. (19) by N leads to
NG(N,h)=B+Bx”¢. This shows that in the small-x regime,
NG(N,h) is a linear function of x**. This is in agreement
with our data in Fig. 1 where ¢,=1 and according to Eq.
(21), the value of ¢ is found to be £=2.
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The function g(N) in Eq. (19) is actually the coefficient of
the first nonzero correction in the perturbation expansion for
the energy gap of a finite chain,

G(N,h) = G(N,0) + g(N)R*> + - -+ + g, (N)R*"
B
=yt SN + -+ + g, (N)R*" (22)

where m is an integer. The effect of higher-order terms can
be neglected for £#<0.01 to a very good approximation.
Now, let us consider that the large-N behavior of g;(N) is

llmgl(N) = a]Na. (23)
N—so0
We find that
B +17,2
G(N,h) = ]T](l +bN“"'h ), (24)

where b;=a,;/B=const. We can write Eq. (24) in terms of the
scaling variable (x=Nh®),
G(N,h)

W ~1 +Na+1—2/ax2/s. (25)

For the large-N limit, Eq. (25) should be independent of N.
This imposes the following relation:

2
a+1--—=0. (26)
€

This equation defines the relation between « and &,

2
a+1’

e= (27)
The above arguments propose to look for the large-N behav-
ior of g;(N). For this purpose, we have plotted in Fig. 2 the
following expression versus N:

G(N,h) - G(N,0)
h? ’

for fixed values of /4 (0.001<4<0.01) and A=0.5,-0.5. The
results have been plotted for different sizes, N
=12,14,...,24 to derive the a exponent defined in Eq.(23).
In Fig. 2(a) we have considered the case of A=0.5 and found
the best fit to our data for a=0.88+0.02. Therefore, ¢
=1.06+0.02 which shows a very good agreement with Eq.
(10), epr=v=12/11=1.09. Moreover, our data for different /
values fall perfectly on each other, which shows that our
results for g;(N) are independent of /& as we have expected.
We have also plotted the results for A=—0.5 in Fig. 2(b) and
found a=0.55+0.02. Then we obtain £€=1.29+0.02 which
can be compared with Eq. (9), epp=u=6/5=1.2. This shows
a slight deviation which is the result of numerical computa-
tions and also the limitation on the size of system. Moreover,
the magnitude of the energy gap is smaller for A=—0.5 than
in the case of A=0.5, which implies less accuracy. However,
the results for different A, give once more a unique g,(N) in
agreement with its definition to be independent of A.

We have extended our numerical computations to con-
sider other values of A. The results have been presented in

g1(N) = (28)

054410-4



GAP EXPONENT OF THE XXZ MODEL IN A...

— 0.14
Z - (a)
% [ | —B=— n=0.004
[ | —A— h=0.005
o2k | —— n=0.006
| —-Pp—— h=0.007
| —<&— h=0.008
[ | —&— h=0.009
[ | —&— h=0.010
0.1
: A=0.5
- @=0.88 0.02
0.08 N
R e=1.06, 0.02
: e=12/11
BT
0.06
- 1 1 1 1 1 1 1 1 | L L 1 1 1
10 15 20 25
N
Z 06l tb)
& [ —&— h=0.004
B —A— h=0.005
- —F— h=0.006
| —bp— h=0.007
0.5 N
i ——
5 S
5 A=-0.5
04 @=0.55:0.02
: €=1.29:0.02
5 e=6/5
Fr
0.3
[ 1 1 1 1 1 1 1 1 | 1 1 1 1 1
10 15 20 25
N

FIG. 2. The value of g;(N) versus the chain length (N). A=(a)
0.5 and (b) —0.5. Data for different transverse fields 0.004<h
=<0.01 fall exactly on each other.

Table I.We have listed «, the resulting & that is obtained from
Eq. (27), and the result of the field theoretical approach (&p7)
for different values of A. Our numerical results show very
good agreement with the exponents derived in the field the-
oretical approach.'?

V. DISCUSSION AND SUMMARY

We have studied the opening of the excitation gap of the
XXZ chain by breaking the rotational symmetry. We have
implemented the modified Lanczos method to get the excited
state energies at the same accuracy as the ground state one.
The convergence of this method is fast for the low-energy
states but gets slower for higher-energy ones. The reason is
related to the condensation of states in a fixed interval of
energy by going to higher states. Thus the method will be
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TABLE I. The « exponent defined in Eq. (23), the related gap
exponent (g), and the corresponding value &7 obtained by the field
theoretical approach for different anisotropy parameters (A).

A a € err
0.70 0.96 1.02 1.04
0.50 0.88 1.06 1.09
0.25 0.70 1.17 1.18
0.0 0.65 1.21 1.33
-0.25 0.60 1.25 1.26
-0.50 0.55 1.29 1.20
-0.70 0.59 1.25 1.14

very sensitive to the initial parameter E, [Eq. (2)]. However,
for the tenth lowest-energy state we got fast convergence. We
have been limited to consider the maximum N=24, because
for the present model [Eq. (1)] the total ¢ does not commute
with the Hamiltonian. Thus, we should consider the full Hil-
bert space of 2V in our computations.

We have tried to find the scaling of the energy gap in the
presence of the transverse field by introducing the scaling
function in Eq. (13). According to this approach, the energy
gap scales as G~h® where e defines x=Nh?®, the scaling
variable. The right scaling exponent gives a linear behavior
of NG(N,h) versus x for large x. To find the large-x behavior
we have faced a serious problem. To see the scaling behavior
we have to consider very small values of /4 to avoid the effect
of level crossing between the excited state that defines the
gap and the upper states. The position of the first level cross-
ing is roughly proportional to the inverse of the chain length.
Thus, we were not able to get the large-x behavior and be far
from the crossing point at the same time.

The limitation to very small & values states that our re-
sults are representing the perturbative ones. We are then led
to get the scaling behavior by finding the divergence of
g1(N)~N¢ in the thermodynamic limit (N— ). The func-
tion g,(N) is the coefficient of the leading term in the pertur-
bation expansion [Eq. (22)]. Based on the formulation pre-
sented in the previous section the gap exponent is related to
the divergence of g;(N) by e=2/(a+1). Our numerical re-
sults presented in Fig. 2 show that g,(N) is independent of /
and its divergence versus N is defined by Eq. (23). Moreover,
the gap exponent that has been obtained by our numerics
(listed in Table I) is in very good agreement with the results
obtained by the field theoretical approach.'®

We might also find the gap exponent by finding the pre-
cise location of the first level crossing between the second
and third excited states, which we call h;. The slope of
log(h,) versus log(N) is —1/&. In the small-k regime where
Eq. (22) is approximated up to the quadratic term, we can
write two different expressions for the energy of the third
and second excited states, namely,

E5(N,h) — Eo(N,h) = G5(N,h = 0) + g (N)n?,

E(N,h) — Eo(N,h) = G,(N,h = 0) + g P(N)R. (29)
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The subtraction of the two terms give the difference of Ej
—E, which is a function of the terms presented in the right
sides of Eq. (29). The zero-field terms are proportional to N~!
and the coefficients of the quadratic terms obey Eq. (23).
Thus, the scaling of %, in terms of the lattice size is like
~N~Y2, However, the preceise determination of &, defines
the accuracy of this approach.
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