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We address two finite-size effects in perpendicular transport through multilayers of ferromagnetic and
normal metal layers: �i� the transport properties depend on the magnetic layer thickness when of the order or
thinner than the spin-flip diffusion length and �ii� magnetic layers with thickness approaching the magnetic
coherence length become transparent for spin currents polarized perpendicular to the magnetization. We use
magnetoelectronic circuit theory to investigate both effects on angular magnetoresistance �aMR� and spin-
transfer torque in perpendicular spin valves. We analyze recent aMR experiments to determine the spin-flip
diffusion length in the ferromagnet permalloy as well as the Py�Co interface spin-mixing conductance and
propose a method to measure the ferromagnetic coherence length.
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I. INTRODUCTION

Since the discovery of the giant magnetoresistance
�GMR�,1 electron transport in magnetic metallic heterostruc-
tures has been studied intensively and with considerable
progress. The field developed from studies of large area mul-
tilayers of ferromagnetic �F� and normal metals �N� in which
the current flows in the plane of the interfaces �CIP� to nano-
structures with current perpendicular to the planes �CPP�.2
Current-induced magnetization excitation has been predicted
for perpendicular F �N �F spin valves3,4 and subsequently
observed.5–8 In these experiments applied currents excite a
spin accumulation in the normal metal spacer that exerts a
torque on the ferromagnets. When this torque overcomes the
damping, the magnetization starts to precess coherently, pos-
sibly leading to a complete magnetization reversal.9 By fits
of the parameters of the diffusion equation10 to a wealth of
experimental data of the GMR in CPP structure, the spin-
dependent interface and bulk material resistances of the most
important transition metal combinations are well known by
now.2,11 First-principles calculations in general agree well
with the experimental values.12 Also in view of possible ap-
plications for switching purposes in magnetic random access
memories, a comparably accurate modeling of the spin
torque as a function of material combinations and applied
bias is desirable.

Physically, the spin-transfer torque is a consequence of
angular momentum conservation when a spin current polar-
ized transverse to the magnetization direction is absorbed at
the magnetic interface.13 The transverse spin current can pen-
etrate the ferromagnet up to a skin depth equal to the ferro-
magnetic coherence length �c=� / �k↑

F−k↓
F�. In transition met-

als �c is much smaller than all other length scales such as
spin-diffusion length or mean-free path.14–16 When the ferro-
magnetic layer thickness dF��c the spin-transfer torque is a
pure interface property governed by the so-called spin-
mixing conductance,17 which is accessible to first-principles
calculations.18

An excellent method to measure the torque and mixing
conductance is the normalized angular magnetoresistance

�aMR� of perpendicular F �N �F spin valves19–21

aMR��� =
R��� − R�0�
R��� − R�0�

, �1�

where R��� is electric resistance when the two magnetiza-
tions are rotated by an angle � with respect to each other.
Deviations of the aMR as a function of cos � from a straight
line are proof of a finite mixing conductance.22 Systematic
new measurements of the aMR have been carried out re-
cently by Urazhdin et al.23 on permalloy �Py��Cu spin valves
as a function of the Py thicknesses.

Interesting effects such as nonmonotonic aMR, change of
sign of the spin-transfer torque, and strongly reduced critical
currents for magnetization reversal have been predicted for
asymmetric spin valves.24–26 Asymmetry here means that the
two ferromagnets in the spin valve are not equivalent for
spin transport. This can be achieved by different thicknesses
of the magnetically active regions of otherwise identical fer-
romagnetic contacts, but only when the spin-flip diffusion
length in the ferromagnet lsd

F is of the order or larger than one
of the magnetic layer thicknesses. The magnetically soft Py
is the material of choice, but its spin-flip diffusion length is
only lsd

F �5 nm.11 Urazhdin et al.23 investigated spin valves
with ultrathin dF� lsd

F , which means that the analysis of these
experiments requires solution of the spin and charge diffu-
sion equation in the ferromagnet.

Detailed calculations for transition metals16,27 confirm
that a transverse spin current can penetrate the ferromagnet
over distances �1 nm as a consequence of incomplete de-
structive quantum interference. Urazhdin et al. investigated
spin valves with Py layers of such thicknesses, claiming to
observe an effect of this transverse component on the aMR.
In weak ferromagnets like CuNi or PdNi alloys in which �c
may become larger than the scattering mean-free path, the
transverse component of spin current and accumulation can
be treated semiclassically.28 It is shown below that an effec-
tive conductance parameter �“mixing transmission”� can be
introduced to parametrize transport in both regimes.
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In this paper we treat the size effects related to dF� lsd
F

�Sec. II� and dF��c �Sec. III� �but �c much smaller than the
spin diffusion length�. In Sec. II we apply magnetoelectronic
circuit theory17 combined with the diffusion equation to the
F �N �F �N spin valves studied by Urazhdin et al. We demon-
strate that the angular magnetoresistance provides a direct
measure for the mixing conductance22 and find that the non-
monotonicity in the aMR is indeed caused by the asymmetry
as predicted. For F �N �F �N �F structures, that are also of in-
terest because of their increased spin torque,29,30 we obtain
several analytical results. The approach from Sec. II is gen-
eralized in Sec. III, allowing us to treat ultrathin ferromag-
netic layers or weak ferromagnets.31,32,27 We find that there
should be no measurable effects of �c on the aMR in
F �N �F �N structures, but predict that the torque acting on the
thin layer is modified. We proceed to conclude that the co-
herence length should be observable in the aMR of
F �N �F �N �F structures. Finally, we propose a setup to mea-
sure the ferromagnetic coherence length in a three-terminal
device.

II. MAGNETOELECTRONIC CIRCUIT THEORY AND
DIFFUSION EQUATION FOR SPIN VALVES

In this section we assume that �c�dF. In Sec. II A we
recapitulate some old results: the magnetoelectronic circuit

theory for spin valves, with emphasis on the inclusion of the
spin-flip diffusion in the ferromagnetic layers when the fer-
romagnetic layer thickness dF is of the same order as the
spin-flip diffusion length in the ferromagnet lsd

F . In Sec. II B
we apply these results to recent experiments by Urazhdin et
al. in which we can disregard spin-flip in the Cu spacers. In
Sec. II C we present results for symmetric F �N �F �N �F struc-
tures.

A. Magnetoelectronic circuit theory and diffusion equation

Magnetoelectronic circuit theory14 has been designed to
describe charge and spin transport in disordered or chaotic
multiterminal ferromagnet-normal metal hybrid systems with
noncollinear magnetizations. The material parameters of the
theory are the bulk and interface spin-dependent conduc-
tances, as well a the so-called interface spin-mixing conduc-
tance G↑↓. For spin valves, circuit theory can be shown to be
equivalent to a diffusion equation when Im G↑↓�0, which is
usually the case for intermetallic interfaces.24 When the
thickness of the ferromagnetic metal layer d� lsd

F , the layer
bulk resistance can be effectively replaced by that of a mag-
netically active region close to the interface of thickness lsd

F .
When connected to a reservoir or other type of spin sink, the
effective thickness becomes lsd

F tanh�dF / lsd
F �.24

The aMR for general N �F �N �F �N structures with
Im G↑↓=0 as derived previously24 reads

R��� = R↑↓ + R1 + R2 −
R↑↓�R1− + �R2−�2 + �1 − �2��R1−

2 R2 + R2−
2 �R1 + R↑↓��

�R↑↓ + R1��R↑↓ + R2� − �2R1R2
, �2�

with �=cos �, 4R1�2�=1/G1�2�↑+1/G1�2�↓−2R↑↓, 4R1�2�−
=1/G1�2�↑−1/G1�2�↓, P1�2�=R1�2�− /R1�2�, and 2R↑↓
=1/G1↑↓+1/G2↑↓, where G1�2�↑ and G1�2�↓ are conductances
of the left �right� ferromagnet including the left �right� nor-
mal layer, and G1↑↓ and G2↑↓ are mixing conductances of the
middle normal metal with adjacent ferromagnet interfaces as
shown in Fig. 1. The torques felt by the first and second
ferromagnetic layers become

�1/I0 =
	

2e

1 + R↑↓/R1 − �P1/P2

�1 + R↑↓/R1��1 + R↑↓/R2� − �2 �3�

�2/I0 =
	

2e

1 + R↑↓/R2 − �P2/P1

�1 + R↑↓/R1��1 + R↑↓/R2� − �2 . �4�

When we approximate the mixing conductance 1/R↑↓ by the
Sharvin conductance of the normal metal, Eqs. �3� and �4�
coincide with the expressions in Ref. 33 for asymmetric
N �F �N �F �N spin valves with 
L�R�

2 �2R1�2� /R↑↓+1,
PL�R�
L�R�

2 =2R1�2�− /R↑↓.

B. Extraction of the mixing conductance from experiment
and asymmetric spin valves

Most material parameters in circuit theory are those of the
two-channel resistor model. They can be determined for the
collinear magnetic configurations, i.e., via the �binary� GMR.
The only additional parameters for the noncollinear transport
are the interface mixing conductances Gi↑↓

r , assumed here to
be real. These can be found from a single parameter fit of the
experimental aMR or from band structure calculations. A
symmetric F �N �F structure is most suitable to carry out this
program. The thus obtained Gi↑↓

r should be transferable to
other �asymmetric� structures grown by equivalent tech-
niques. Urazhdin et al. fitted their experimental results for

FIG. 1. Definition of conductances G1�2�↑�↓� and mixing conduc-
tances G1�2�↑↓ for N �F �N �F �N structure.
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the normalized aMR by the simple formula21 that follows
from circuit theory14

aMR��� =
1 − cos �

��1 + cos �� + 2
. �5�

For symmetric junctions we identify �=2R /R↑↓ �see Eq. �18�
in Ref. 24�.

Urazhdin et al.23 used the structures Nb�150�Cu�20�
FeMn�8�Py�d1�Cu�10�Py�d2�Cu�20�Nb�150�, where the
numbers in parentheses are the thicknesses in nm. The
exchange bias antiferromagnet FeMn is treated as a perfect
spin sink, which means that the effective thickness of
the left Py layer becomes lsd

F tanh�d1 / lsd
F �=0.8lsd �d1=6 nm,

lsd
F =5.5 nm�. Note that this device is not exactly symmetric

when d2� lsd
F as d1 is not much larger than lsd

F , but the calcu-
lated deviations from the fitted mixing resistances are
smaller than the experimental error bars. When we replace d1
by lsd

F and d2� lsd
F the sample is symmetric and the aMR is

well represented by Eq. �5� with �=1.96 �see Fig. 2�.23

We can use the measured value of � to derive the mixing
conductance 1/ �AR↑↓� of an interface with area A by
R↑↓=2R /�. For comparison with first-principles calculations
for point contacts based on the scattering theory of
transport,18 the Sharvin resistance of the normal metal should
be added,22

R↑↓
pc = R↑↓ + Rsh.

Using the notation

AR = lsd�Py
* + ARPyCu

* − AR↑↓/2,

AR− = lsd�Py
* 
Py + ARPyCu

* � ,

we may substitute the well-established material parameters
for bulk and interface resistances of Cu�Py34 lsd�Py

*

=1.4 f� m2, lsd=5.5 nm, ARPyCu
* =0.5 f� m2, 
Py=0.7,

�=0.7, disregarding the small bulk resistance of Cu which
led us to AR↑↓=1.3 f� m2 and �=1.49. This value of the
mixing resistance is larger than the Sharvin resistance
ARsh=1/G=0.878 f� m2 of Cu used by Xiao et al.33 The
point-contact mixing resistance of the Cu�Py interface that
should be compared with band structure calculations is

AR↑↓
pc.=2.2 f� m2, somewhat smaller than that found in Ref.

22 �2.56 f� m2�. Both results are close to the band structure
calculations18 of the point-contact mixing resistance for the
disordered Cu�Co interface �2.4 f� m2�.

In Fig. 2 we compare plots of Eq. �2� with experimental
aMR curves for symmetric and asymmetric F �N �F �N
multilayers,35 identifying the following relations between pa-
rameters:

AR1 = lsd�Py
* + ARPyCu

* − AR↑↓/2,

AR2 = d2�Py
* + ARPyCu

* + ARPyNb − AR↑↓/2,

AR1− = lsd�Py
* 
Py + ARPyCu

* � ,

AR2− = d2�Py
* 
Py + 2ARPyCu

* � .

We assume that the spin current into the superconductor van-
ishes. The resistance between the right ferromagnet and the
right reservoir was taken to be ARPyNb=5 f� m2. This is
larger than the ARPyNb=3 f� m2 reported in Ref. 34, but
gives better agreement with the experiment. We observe
good fits in Fig. 2, nicely reproducing the nonmonotonic
behavior around zero angle.

In Fig. 3 we plot the angular magnetoresistance for differ-
ent thicknesses of the right Py layer, all relative to the par-
allel configuration, but not normalized to a relative scale as
above. The lower curve was obtained from Eq. �2�, the others
were calculated numerically solving the bulk layer spin-
diffusion equation in the ferromagnet. The nonmonotonic an-
gular magnetoresistance disappears when the right ferromag-
netic layer becomes thicker and therefore the sample more
symmetric. For the set of parameters in Fig. 3 the nonmono-
tonic behavior is rather weak but with circuit theory we can
readily propose samples that maximize the effect. The mini-
mum of the angular magnetoresistance Eq. �2� at finite �1
that coincides with a zero of the spin-transfer torque on the
left ferromagnet24,25

FIG. 2. aMR of the F �N �F �N structure for two thicknesses of
the right ferromagnetic layer d2=0.27lsd, 2.2lsd �d1� lsd�. The filled
�large d2� and open �small d2� squares are the experimental data
Ref. 23.

FIG. 3. Angular magnetoresistance R���−R�0� of the F �N �F �N
structure for different thicknesses of the right ferromagnetic layer
d2=0.27lsd, 0.5lsd, 2lsd, 2.5lsd and � �starting from the lower curve
respectively �d1� lsd

F , ARPyNb=3 f� m2��.
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cos �1 =
�R↑↓ + R1�R2−

R1−R2
. �6�

To observe the effect clearly, cos �1 should be small, which
can be achieved by increasing R2, e.g., by the resistance of
the right-most normal metal �within the spin-flip diffusion
length�. In Fig. 4 we plot the angular magnetoresistance Eq.
�2� and the spin-transfer torque on the left ferromagnet Eq.
�3� when the resistance of the right contact is ARPyNb→�.

C. Analysis of symmetric F 	N 	F 	N 	F structures

Our approach offers analytic results for symmetric
F �N �F �N �F structures when the outer layers are thicker than
lsd
F . In Fig. 5 we plot the angular magnetoresistance when the

magnetizations of the outer layers are kept parallel for mate-
rial parameters that are the same as above and close to setup
B from Ref. 23. When the middle layer thickness d3� lsd

F , the
angular magnetoresistance is equal to that of two symmetric
F �N �F structures in series. The analytical formula for the
angular magnetoresistance in the regime d3� lsd

F is presented
in the Appendix. For d3�0.3lsd

F we cannot disregard spin flip
in the middle layer and compute the resistances numerically.

A symmetric F �N �F �N �F setup with antiparallel outer
layers can increase the torque.29 Enhancement by a factor of
2 was reported by Nakamura et al.30 This result can be ob-

tained from the magnetoelectronic circuit theory.38 With a
current bias I0, assuming d3� lsd

F , we derived a simple for-
mula �note the similarity with the torque on the base contact
of the three-terminal spin-flip transistor22�,

�/I0 =
	

2e

2R−�sin ��
R↑↓ + R sin2 �

, �7�

without invoking the parameters of the middle layer. When
d3� lsd we can divide system into two F �N �F spin valves in
series. Taking into account Eq. �3�, the torque can be written
down immediately,

�/I0 = �FNF���/I0 + �FNF�� − ��/I0

=
	

2e

R−�sin ��
R↑↓ + R�1 + cos ��

+
	

2e

R−�sin ��
R↑↓ + R�1 − cos ��

. �8�

In Fig. 6 we plot results of these two analytic formulas as
well as results of numeric calculations for the case
d=0.8lsd. Note that these curves are symmetric with respect
to �=� /2. By the dashed line we plot the torque for the
corresponding symmetric F �N �F structure.

III. COHERENT REGIME

The intentions of Urazhdin et al.23 to search for coherence
effects in ultrathin magnetic layers encouraged us to study
the regime dF��c. In this section we formulate the magne-

FIG. 4. Angular magnetoresistance R���−R�0� and spin-transfer
torque on the left ferromagnet for the F �N �F �N structure with right
F-layer thickness d2=0.27lsd �ARPyNb→�, �0= I0	 /2e�.

FIG. 5. Angular magnetoresistance R���−R�0� of the
F �N �F �N �F structure for the middle F layer thicknesses
d=0.27lsd, 0.5lsd, 2lsd, 2.5lsd and � �starting from the lower curve,
respectively�. The parallel resistance is subtracted.

FIG. 6. The spin-transfer torque on the middle ferromagnet for
the F �N �F �N �F structure for the thickness of the middle layer
d=0.27lsd, 0.8lsd and 10lsd starting from the lower curve respec-
tively �by bold line�, the same for the corresponding symmetric
F �N �F structure �by dashed line�, �0= I0	 /2e.

FIG. 7. A contact through a thin ferromagnet between two nor-
mal metals nodes. The current is evaluated in the node 2.
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toelectronic circuit theory that includes coherence effects in
this regime in two and three terminal multilayer structures.
Since �c is only a couple of monolayers, we are allowed to
disregard spin-flip and diffuse scattering in the ferromagnetic
material bulk layers.

A. Extended magnetoelectronic circuit theory

We consider an N1 �F �N2 circuit element, choosing the
normal metals as nodes with a possibly noncollinear spin
accumulation and the entire F layer including the interfaces
as resistive element �see Fig. 7�. This allows us to treat the
ferromagnet fully quantum mechanically by scattering
theory. The current through the ferromagnet depends on the
potential drop between and the spin accumulation in each of
the normal metal nodes. Spin Is and charge I0 currents can
conveniently expressed as 2�2 matrices in Pauli spin space

Î= �1̂I0+ �̂ ·Is� /2, where �̂ is the vector or Pauli spin matri-

ces and 1̂ the 2�2 unit matrix. On the normal metal side14 in
the region 2,

Î =
e

h
�nm

�t�̂nmf̂N1�t�̂nm�† − �nmf̂N2 + r̂nmf̂N2�r̂nm�†�� , �9�

where r̂mn is the spin-dependent reflection coefficient for
electrons reflected from channel n into channel m in the node

2, t�̂mn is the spin-dependent transmission coefficient for
electrons transmitted from channel n in the node 1 into chan-
nel m in the node 2 and �nm is the Kronecker delta symbol.

In the absence of spin-flip processes, the matrices r̂mn and

t�̂mn should be diagonal in spin space provided the axis z is
parallel to the magnetization of the ferromagnet �we are free
to chose this frame reference as it is more convenient�. Ex-
pressing the spin-dependent distribution matrices in nodes 1

and 2 via Pauli matrices; f̂N=1̂f0
N+ �̂fs

N and the unit vector
mz parallel to the axis z we obtain for spin and charge cur-
rents in the node N2

I0 = �G↑ + G↓��f0
N + �G↑ − G↓��fs

N · mz, �10�

Is = mz��G↑ − G↓��f0
N + �G↑ + G↓��fs

N�

− 2�mz � fs
N2 � mz�Re G↑↓

rN2�F + 2�fs
N2 � mz�Im G↑↓

rN2�F

+ 2�mz � fs
N1 � mz�Re G↑↓

tN1�N2 − 2�fs
N1 � mz�Im G↑↓

tN1�N2,

�11�

where �f0
N= f0

N1− f0
N2 and �fs

N= fs
N1− fs

N2. This agrees with the
result of Ref. 14 except for the following terms involving the
mixing transmission:27,31,32

G↑↓
rN2�F =

e2

h
�
nm

��nm − r↑
nm�r↓

nm�*�;

G↑↓
tN1�N2 =

e2

h
�
nm

t↑�
nm�t↓�

nm�*.

The torque acting on the magnetization through the interface
adjacent to N2 is the transverse component of the spin cur-
rent flowing into the ferromagnet,

��2 = − 2�mz � fs
N2 � mz�Re G↑↓

rN2�F + 2�fs
N2 � mz�Im G↑↓

rN2�F

+ 2�mz � fs
N1 � mz�Re G↑↓

tN1�N2 − 2�fs
N1 � mz�Im G↑↓

tN1�N2.

�12�

When two opposite direction of the magnetization M
and −M are equivalent for the transport, we obtain
G↑↓

tN1�N2=G↑↓
tN2�N1 as a consequence of time reversibility. This

condition should hold in most cases �e.g., Stoner model is
isotropic in spin space�. The mixing transmission describes
the part of the transverse spin current that is not absorbed by
the ferromagnet and vanishes when the ferromagnetic layer
is thicker than the ferromagnetic coherence length �c.

27 It is
complex, its modulus representing the transmission probabil-
ity and the phase of the rotation of the transverse spin current
by the ferromagnetic exchange field. First-principles calcula-
tions of G↑↓

r and G↑↓
t have been carried out by Zwierzycki

et al.27 showing small variation of the first and nonvanishing
value of the second when the ferromagnetic layer becomes of
the order of several monolayers.

B. Observation of ferromagnetic coherence in transport
experiments

In this section we address coherence effects due to the
transmission of transverse spin currents through ultrathin fer-
romagnetic layers or weak ferromagnets. These effects
should be observable in Py structures when dF�1.5 nm.
Band structure calculations show that in Cu�Co�Cu structures
the mixing transmission can easily reach G↑↓

t �0.1�G↑+G↓�
for such thicknesses.27

We may draw an important conclusion from the extended
magnetoelectronic circuit theory applied to general �asym-
metric� N1 �F1 �N2 �F2 �N3 structures: when the nodes are
chosen in the middle normal metal and in the outer normal
metals at the points that connect to the baths, a possibly
finite-mixing transmission completely drops out of the
charge transport equations, i.e., the expressions remain ex-
actly the same as those presented above for the N �F �N �F �N
structure. For example, the charge and spin currents from N1
�and similarly from N3� into N2 read

I0 = �G↑
N1�N2 + G↓

N1�N2���0
N + �G↑

N1�N2 − G↓
N1�N2���s

N · mz,

�13�

Is = mz��G↑
N1�N2 − G↓

N1�N2���0
N + �G↑

N1�N2 + G↓
N1�N2���s

N�

− 2�mz � �s
N2 � mz�Re G↑↓

rN2�F1

+ 2��s
N2 � mz�Im G↑↓

rN2�F1

+ 2�mz � �s
N1 � mz�Re G↑↓

tN1�N2

− 2��s
N1 � mz�Im G↑↓

tN1�N2, �14�

where ��0
N=�0

N1−�0
N2 and ��s

N=�s
N1−�s

N2 describe the po-
tential and spin accumulation drops between the left and the
middle nodes. By conservation of spin and charge currents in
the center node, expression for aMR can be derived. How-
ever, the mixing transmission does not appear in Eqs. �13�
and �14� since there is no spin accumulation in the outer
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nodes �reservoirs�. Ferromagnets thin enough to allow trans-
mission of a transverse spin current can therefore not be
distinguished from conventional ones in the aMR. Our con-
clusions therefore disagree with the claims of ferromagnetic
coherence effects in aMR experiments on N �F �N �F �N struc-
tures by Urazhdin et al.23

On the other hand, the torque on the thin ferromagnet F2
does change as follows:

��2 = − 2�mz � �s
N2 � mz�Re�G↑↓

rN2�F2 − G↑↓
tN2�N3�

+ 2��s
N2 � mz�Im�G↑↓

rN2�F2 − G↑↓
tN2�N3� .

A parametrization of the torque via a combination
G↑↓

rN2�F2−G↑↓
tN2�N3 was found in Ref. 13 by random matrix

theory, which is equivalent with circuit theory when the
number of transverse channels is large.22 However, these au-
thors did not discuss their results in the limit of thin ferro-
magnetic layers. When Im G↑↓

t �0 and Im G↑↓
r �0, the

torque �coh acting on the thin layer is modified from the
incoherent expression � as

�coh = ��G↑↓
r − G↑↓

t �/G↑↓
r . �15�

Naively one may expect that the reduced absorption of the
transverse spin accumulation diminishes the torque, but this
is not necessarily so �see Fig. 8�. Since the mixing transmis-
sion may be negative, Eq. �15� shows that increased torques
are possible. This can be understood as follows. A spin en-
tering a ferromagnet will precess around an exchange field
normal to its quantization axis. A negative mixing transmis-
sion Re G↑↓

t �0 adds a phase factor corresponding to a rota-
tion over an angle � during transmission. The outgoing spin
then has a polarization opposite to the incoming one. The
magnetization torque, i.e., the difference between in and out-
going spin currents, consequently increases compared to the
situation in which the incoming transverse spin is absorbed
as in thick ferromagnetic layers.

In contrast to N �F �N �F �N structures, we find that it is
possible to observe G↑↓

t in the aMR of F �N �F �N �F devices.
We study here the dependence of the aMR on the mixing
transmission in a Py-based multilayer. In Fig. 9 we present
the aMR for different mixing transmissions in the middle
layer of thickness dF=0.27lsd. Unfortunately, it seems diffi-
cult to obtain quantitative values for the mixing transmission
from experiments since the dependence of the aMR on G↑↓

t is
rather weak.

When the coherence length becomes larger than the scat-
tering mean-free path, which can occur in weak ferromagnets
like PdNi or CuNi, the transverse spin accumulation should
be treated by a diffusion equation.36 The result can be param-
etrized again in terms of a mixing transmission, which can
subsequently be used in our circuit theory.

C. Three-terminal device for observation of coherence effects

Finally, we propose an experiment that should be more
sensitive to ferromagnetic coherence. We suggest the setup
shown in Fig. 10 that is analogous to the spin-torque
transistor37 and the magnetoelectronic spin-echo32 concepts.
A current through the antiparallel ferromagnets F1 and F2
excites a spin accumulation in the normal metal N1. This
spin accumulation can transmit F3 only when its thickness is
less than �c. In that case a spin accumulation is induced in

FIG. 8. The torque on the thin right layer of thickness
d=0.27lsd for F �N �F structure. The left layer has thickness d� lsd

F .
The curves starting from the lower one respectively, Re�1/G↑↓

t �
=5 f� m2, Im�1/G↑↓

t �=�; Re�1/G↑↓
t �=�, Im�1/G↑↓

t �=5 f� m2;
Re�1/G↑↓

t �=�, Im�1/G↑↓
t �=�; Re�1/G↑↓

t �=−5 f� m2, Im�1/G↑↓
t �

=� ��0= I0	 /2e�.

FIG. 9. aMR of F �N �F �N �F structure for the thickness of the
middle layer d=0.27lsd. Outer layers are antiparallel with
d� lsd

F . The curves starting from the lower one respectively,
Re�1/G↑↓

t �=−5 f� m2, Im�1/G↑↓
t �=�; Re�1/G↑↓

t �=�, Im�1/G↑↓
t �

=5 f� m2; Re�1/G↑↓
t �=�, Im�1/G↑↓

t �=�; Re�1/G↑↓
t �=5 f� m2,

Im�1/G↑↓
t �=�.

FIG. 10. An experimental setup to observe the mixing transmis-
sion and measure the ferromagnetic coherence length in ferromag-
net F3. The spin accumulation �� S2 in the normal metal N2 is mea-
sured via the angular dependence of the potential U��� of the
ferromagnet F4 that is weakly coupled to N2.
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the upper normal metal N2 that can be detected as a voltage
depending on the magnetization angle � of the analyzing
ferromagnet F4. We assume here that N1 is smaller than its
spin-flip diffusion length �Cu is a good candidate with spin-
diffusion lengths of up to a micron� such that the spin accu-
mulation is constant under the contact to F3. Otherwise the
signal at the ferromagnet F4 is diminished since part of the
spin accumulation in N1 is lost due to spin-flip processes.

When the G↑↓
t of F3 is smaller than its G↑↓

r and ferromag-
net F4 is not too leaky for the spin current �e.g., connected
via a tunnel junction� the spin accumulation in N2 can be
found from Eqs. �10� and �11� in terms of the spin accumu-
lation in N1,

�S2 =
��S1�

�Re G↑↓
r �2 + �Im G↑↓

r �2

�
 0

Re G↑↓
r Re G↑↓

t + Im G↑↓
r Im G↑↓

t

Re G↑↓
r Im G↑↓

t − Im G↑↓
r Re G↑↓

t � �16�

�
Im G↑↓

r →0 ��S1�
Re G↑↓

r 
 0

Re G↑↓
t

Im G↑↓
t � , �17�

where Eq. �17� holds to a good approximation when the layer
F3 is metallic. The spin accumulation is indeed coherently
rotated by the exchange field in F3. The angle dependence of
the potential in F4 is U�����S1P�G↑↓

t �cos � / �Re G↑↓
r � with

maximum along �S2, where P is the polarization of the con-
tact N2 �F4.

When the G↑↓
t of F3 is not smaller than G↑↓

r �or the spin
current leak into F4 is significant�, the spin accumulation
�S1 is affected by �S2 and the final expressions are more
complicated.

An angle dependence of U��� provides a direct proof of a
finite-mixing transmission. The ferromagnetic coherence
length can be determined by repeating experiments for a
number of layer thicknesses of F3. Such a direct experimen-
tal evidence should help to get a grip on this important pa-
rameter �c.

IV. CONCLUSION

In this paper we extracted the spin-mixing conductance of
a Py�Cu interface from the experimental data of Urazhdin et
al. using material parameters measured independently by the
MSU collaboration.34 We find good agreement with experi-
ments on asymmetric F �N �F �N multilayers, reproducing
quantitatively the nonmonotonic aMR that we predicted
earlier.24–26 Magnetoelectronic circuit theory together with
the diffusion equation is a convenient tool for the data analy-
sis when the spin-flip diffusion length in the ferromagnet is
of the same order as the layer thickness. We suggest carrying
out current-induced magnetization reversal experiments on
samples that display the nonmonotonic aMR since we pre-
dict anomalous magnetization trajectories due to a vanishing
torque at finite magnetization angle.24–26 We also study the
effects of the finite ferromagnetic coherence length in ultra-
thin ferromagnetic films or weak ferromagnets. For this pur-
pose the magnetoelectronic circuit theory is extended to treat
phase coherent transport in the ferromagnet. A coherence
length that is larger than the ferromagnetic layer thickness
does not modify the aMR of N �F �N �F �N structures, but a
small effect should exist in F �N �F �N �F structures. In con-
trast, the spin-transfer torque is affected more strongly and
may even be increased by the spin-coherence when the ex-
change field rotates the transverse spin-current polarization
by the angle �. Finally, we propose a three-terminal device
that should allow experimental determination of the ferro-
magnetic coherence length.
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APPENDIX: ANALYTICAL RESULTS FOR F 	N 	F 	N 	F
STRUCTURE

The aMR of a F�↑� �N �F��� �N �F�↑ / ↓ � CPP pillar can be
described analytically when the thick outer layers are parallel
or antiparallel, respectively.

R��� = 2�R↑↓ + R� + RM −
R↑↓�RM−

2 + 4R−�R− + RM−��� + �2RMR−
2 + RM−

2 R��1 − �2�
�R↑↓ + R��2R↑↓ + RM� − RRM�2 , �A1�

R��� = 2�R↑↓ + R� + RM −
2R−

2�1 − �2�
R↑↓ + R�1 − �2�

−
2RM−

2 �R↑↓ + R�1 − �2��
�R↑↓ + R��2R↑↓ + RM� − RRM�2 , �A2�

where �=cos �, 4R+2R↑↓=1/G↑+1/G↓, 4R−=1/G↑−1/G↓ for the outer layers. The mixing resistance for two interfaces
adjacent to any normal metal R↑↓=1/G↑↓

r �we assume all interfaces identical�. For the middle layer 4RM =1/G↑+1/G↓
−4R↑↓, 4RM−=1/G↑−1/G↓.
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