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In this paper the bond proportion model is introduced as a prototype of a system with coupled magnetic and
vibrational degrees of freedom. This model is generalized within the framework of cluster expansions in order
to achieve invariance of the potential energy to a rotation of the crystal. First, the original bond proportion
model is solved in the mean-field approximation and by means of numerical simulations. It has been found that
the temperature and the smoothness of the magnetic phase transition depend on the strength of the magneto-
elastic coupling. For a large enough entropy difference between the magnetic phases the phase transition
becomes first order. This is evidenced by means of the computation of the magnetization, the elastic constants,
and the total entropy. The numerical simulation of the modified bond proportion model has revealed significant
differences with respect to the bond proportion model in the heat capacity around the phase transition and,
consequently, in the entropy difference between the magnetic phases. Small differences in the elastic constants
are also detected.
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I. INTRODUCTION

In any solid at finite temperature, atoms are not fixed at
any given lattice position, but rather they oscillate around
these positions. In spite of the fact that in typical situations
the amplitudes of these lattice vibrations are small �com-
pared with the averaged lattice parameter�, they enable us to
deal with the basic thermal properties of solids as shown in
any textbook on solid-state physics or statistical mechanics.1

Nevertheless, they are rarely taken into account when prop-
erties arising from other degrees of freedom such as configu-
rational, magnetic, etc., are studied. There are, however, a
number of works where the influence of vibrations on such
properties have been considered. These studies are essen-
tially aimed at two different problems. On the one hand, the
study of the critical behavior of compressible Ising lattices
has been considered.2 In this case, positional variables are
included in an Ising spin model and the lattice parameter is
allowed to fluctuate. This yields an effective Hamiltonian
with renormalized exchange coupling constants. Results in-
dicate that the universality class of these models can be dif-
ferent from the corresponding Ising class2,3 and even that the
transition can become first order.4 Indeed, these models are
relevant for Monte Carlo simulation studies in the
isothermal-isobaric ensemble.5

On the other hand, there has been some interest in the
study of the influence of lattice vibrations on the phase sta-
bility of substitutional alloys.6 This category of problems,
which emphasizes more on the vibrational features of the
studied system, has generated increasing interest since the
early 1990s due to the possibility of measuring the vibra-
tional contribution to the entropy change between ordered
and disordered phases in alloys.7–9 This has led to a consid-
erable amount of literature, which, to a large extent, has been
reviewed in Ref. 6.

In the present paper we mainly adopt the latter viewpoint.
The influence of vibrational degrees of freedom on the phase
stability of systems that can be described by means of a
generic Ising model is studied. This includes, among others,

magnetic systems and substitutional alloys. Therefore we ex-
pect that our results are of general interest and useful for a
deeper understanding of phase stability in a wide class of
systems.

In addition to the more usual weak-coupling limit for
which the contribution of the vibrational entropy is small, we
will also consider the strong-coupling limit with a dominant
contribution of this term. This is an interesting situation,
where, for instance, antiferromagnetism �ferromagnetism�
can be stabilized due to lattice vibrations in systems with
ferromagnetic �antiferromagnetic� coupling. This situation
gives rise to the so-called vibrational entropy-driven transi-
tions between ordered phases, for which the high-
temperature phase is stabilized due to its larger vibrational
entropy.10

Vibrational effects are introduced in the high-temperature
harmonic approximation within the framework of the bond
proportion model11 �BPM�. In this model antiparallel spins
are assumed to have a different stiffness than parallel spins.
At a phase transition, the proportion of each type of bonds
changes and the average stiffness of the system is modified.
Typically vibrational degrees of freedom are integrated in
order to obtain an effective Ising model. In contrast, in the
present work vibrational degrees of freedom are explicitly
modeled. While being more computationally demanding, this
approach is the natural way which enables the explicit cal-
culation at finite temperature of the change of the vibrational
properties between the phases occurring in the system, as
reflected by the behavior of the elastic constants �in general,
phonon dispersion curves�. This is interesting since experi-
mental evidence of such changes have been reported for
order-disorder12 and magnetic transitions.13–15 These results
provide a direct proof of the coupling between vibrational
and magnetic or configurational degrees of freedom.

The simplicity of the BPM is very appealing, but unfor-
tunately this model does not properly take into account the
required invariance relations to be satisfied by the free en-
ergy. In particular, if bending forces are present, invariance
to rotations is not conveniently established.16 In general, vio-
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lation of this invariance may give rise to unphysical behavior
of the calculated thermodynamic quantities such as elastic
constants, heat capacity, etc. Therefore in the present paper
we propose a modification of the BPM in order to achieve
rotation invariance of the free energy. Since the BPM has
been widely used in the literature,6 we solve this model first,
and afterwards, we analyze the differences between the ther-
modynamic quantities obtained from this model and the
modified bond proportion model �MBPM�.

The paper is organized as follows. In the next section we
introduce the BPM and the MBPM. The mean-field solution
of both models for the ferromagnetic and antiferromagnetic
cases is given in Sec. III. In the next section numerical simu-
lations which combine a Monte Carlo method for the mag-
netic degrees of freedom and a Langevin technique for the
vibrational degrees of freedom is presented in the ferromag-
netic case. Comparison of simulation results for the non-
rotational invariant model and for the generalized model is
shown. Finally, in Sec. V we summarize and conclude.

II. MODELING

The BPM is described in detail in Ref. 6. In this section
we develop this model within a more general framework: the
spin cluster expansion of a force constants model. Within this
framework it is straightforward to generalize the BPM by
introducing additional terms in the expansion in such a way
that all the required invariance relations are satisfied. This is
done in Sec. II B.

A. Bond proportion model

In the present work the configurational degrees of free-
dom are localized spin-1 /2 variables Sn that can take values
Sn= ±1, so that the system under consideration is a magnetic
solid. The vibrational variables are defined as the moments,
pn, and displacements of the atoms from their associated
lattice sites un. The index n will label a given atom in the
lattice. The model Hamiltonian is formulated for a simple
�3d� cubic �SC� lattice as a sum of a magnetic �m� and a
vibrational �v� term,

H = Hm + Hv. �1�

The magnetic term is a simple Ising model,

Hm = −
1

2�
nn�

Jnn�SnSn�, �2�

where the summation extends over all the atoms. The vibra-
tional term includes a kinetic energy term and a potential-
energy term. The potential energy term is expanded up to
second order about the lattice sites �not necessarily equilib-
rium sites�. That is,

Hv = �
n

pn
2

2m
+ �

n
�

i

�V

�un
i un

i +
1

2�
nn�

�
ii�

�2V

�un
i � un�

i�
un

i un�
i� ,

�3�

where the indices i , i� denote the components of the atomic
displacement vectors. The coupling of the magnetic and vi-

brational degrees of freedom is introduced through a depen-
dence of the potential-energy expansion coefficients on the
magnetic spin variables. Notice that, in general, this coupling
reduces the symmetry of the vibrational Hamiltonian since
the symmetry of the spin configuration is lower than the
symmetry of the underlying SC lattice. For the sake of sim-
plicity, the linear coefficients of the potential-energy expan-
sion are set to zero. This means that we neglect the atomic
relaxations due to magnetic disorder. Taking into account
cluster expansion theory,17 the force constants are expressed
as the following expansion in spin clusters:

�nn�
ii� �

�2V

�un
i � un�

i�
= �

C

��C�nn�
ii� �

n��C

Sn�, �4�

where the summation extends over all possible spin clusters
in the lattice, and the product extends over all spins in a
given cluster. Within the BPM approximation only the empty
cluster and the pair cluster nn� will be considered in the

computation of the force constant �nn�
ii� with n�n�. That is,

�nn�
ii� � ��0�nn�

ii� + ��nn��nn�
ii� SnSn�, n � n�. �5�

The force constants involving a single site, �nn
ii�, can then be

computed using the relation

�nn
ii� = − �

n��n

�nn�
ii� , �6�

which is the condition of invariance of the potential energy
with respect to a global translation of the crystal. In the BPM

the coupling parameters ��nn��nn�
ii� are taken to be6

��nn��nn�
ii� = ���0�nn�

ii� , �7�

where � is a constant, and the coefficient of the empty clus-

ter, ��0�nn�
ii� , is invariant under the symmetries of the crystal

lattice. Thus the force constants are written as

�nn�
ii� = ��0�nn�

ii� �1 + �SnSn��, n � n�. �8�

�=0 corresponds to the case in which the vibrational and
magnetic degrees of freedom are not coupled. For 0���1 a
disordered magnetic structure is elastically softer than the
ferromagnetic phase, and for −1���0 the disordered phase
is harder than the ferromagnetic phase.

At this point, it is easy to show that the BPM does not
satisfy rotation invariance. For instance, given three aligned
lattice sites �see Fig. 1� with a nonsymmetric magnetic con-
figuration, a rotation of the crystal gives rise to a net force on
the central site, since the bending forces due to the displace-
ment of its neighbors are different. Formally, in the BPM the
condition of invariance to rotation on the force constants18

cannot be satisfied for all magnetic configurations unless the
force constants other than stretching vanish. If a given mag-
netic structure has inversion symmetry, however, in a pure
rotation the nonstretching forces cancel, and rotation invari-
ance holds.16 In a SC lattice this occurs, for example, in
ferromagnetic or antiferromagnetic structures in the absence
of disorder or in the mean-field approximation, where any
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short-range order, apart from what follows statistically from
long-range order, is neglected.

Within the framework of cluster expansions it is straight-
forward to modify the BPM in such a way that it satisfies all
the required invariance relations. The natural way is to in-
clude additional terms in the spin cluster expansion of the
force constants and to impose the invariance conditions on
the generalized model.

B. Modified bond proportion model

Our aim is to correct the BPM by introducing the mini-
mum number of changes. Moreover, if possible, we demand
that the mean-field solution of the modified and the original
bond proportion models be the same for magnetic structures
with inversion symmetry. Therefore we have tried to achieve
rotation invariance by including terms of the spin cluster
expansion that vanish when inversion symmetry is present.
To this end, given a pair of atoms, we transform the coordi-
nate system of the corresponding force constant matrix so
that the z axis is aligned along the segment joining the two
atoms. The diagonal terms, which are the stretching and
bending force constants, are not modified. Concerning the
off-diagonal terms, the ones which vanish when the magnetic
structure has inversion symmetry are written as an expansion
of pair clusters. In this expansion we include the pairs of
spins containing one of the atoms involved in the force con-
stant, n ,n��n�n�� and one of its first or second nearest
neighbors, n�,

�nn�
ii� = �

n�

���nn��nn�
ii� SnSn� + ��n�n��nn�

ii� Sn�Sn�� . �9�

The force constants must be compatible with the symmetries
of the magnetic structure. This reduces the number of inde-
pendent coefficients in Eq. �9�. For example, the expansion
of the force constant �0,100

xy in a simple cubic lattice is re-
duced to

�0,100
xy = ��0,010�0,100

xy S0�S010 − S01̄0� + ��0,011�0,100
xy S0�S011 + S011̄

− S01̄1 − S01̄1̄� + ��0,110�0,100
xy S0�S110 − S11̄0�

+ ��0,1̄10�0,100
xy S0�S1̄10 − S1̄1̄0� + ��100,110�0,100

xy S100�S110

− S11̄0� + ��100,111�0,100
xy S100�S111 + S111̄ − S11̄1 − S11̄1̄�

+ ��100,010�0,100
xy S100�S010 − S01̄0�

+ ��100,210�0,100
xy S100�S210 − S21̄0� , �10�

where the indices of the lattice sites, n, n�, are expressed in
terms of the position coordinates, xnynzn, xn�yn�zn� of the
sites.

Next, we impose the condition of invariance of the poten-
tial energy to an infinitesimal rotation,18

�
n

�nn�
ii� rn

k = �
n

�nn�
ki� rn

i , �11�

where rn are the vector positions of the lattice sites. Simul-
taneously, we require that the on-site force constants matrix,
expressed using Eq. �6�, be symmetric,

�nn
ii� = �nn

i�i. �12�

These conditions must hold for all magnetic configurations.

This sets a system of equations for the coefficients ��nn��nn�
ii�

which imposes that most of them must vanish. The coeffi-
cients that remain are related to the parameters of the BPM
or are new parameters of the model.

We have solved this problem for a simple cubic crystal
structure with interactions up to second nearest neighbors.
After cumbersome but straightforward algebra we obtain the
following set of force constants:

�0,100
xx = ��0�0,100

xx �1 + �S0S100� ,

�0,100
yy = ��0�0,100

yy �1 + �S0S100� ,

�0,100
xy = �S0	1

4
��0�0,100

yy �S010 − S01̄0�

+ 
��0�0,110
xx − ��0�0,110

xy −
1

2
��0�0,110

zz ��S110 − S11̄0�� ,

�0,110
xx = ��0�0,110

xx �1 + �S0S110� −
�

8
�S0 − S110����0�0,100

yy �S010

− S100� + ��0�0,110
zz �S011 + S011̄ − S101 − S101̄��,

�0,110
xy = ��0�0,110

xy �1 + �S0S110� +
�

8
�S0 + S110����0�0,100

yy �S010

− S100� + ��0�0,110
zz �S011 + S011̄ − S101 − S101̄��,

�0,110
zz = ��0�0,110

zz �1 + �S0S110� ,

�0,110
xz =

�

4
��0�0,110

zz S0�S101 + S011 − S101̄ − S011̄� , �13�

where there are no additional free parameters in relation to
the BPM.

We remark that if the magnetic structure has inversion
symmetry, all the additional terms that we have introduced
vanish. Therefore for magnetic structures with this symmetry
the mean-field solution of the MBPM is equal to the mean-
field solution of the BPM. Notice also that the new terms

FIG. 1. Three aligned lattice sites with a nonsymmetric mag-
netic configuration as an example of system where the BPM does
not satisfy rotation invariance. Up �down� magnetic spins are shown
as white �black� circles. The displacements of atoms due to a rota-
tion ui are indicated by arrows, as well as the bending forces acting
on the central atom due to these displacements, fi �see text for more
details�.

COUPLING BETWEEN LATTICE VIBRATIONS AND… PHYSICAL REVIEW B 73, 054401 �2006�

054401-3



depend only on force constants of the BPM other than
stretching. Therefore if the original BPM is a stretching force
constants model, no correction is made.

III. MEAN-FIELD APPROXIMATION

In this section we solve the BPM in the mean-field ap-
proximation for the magnetic degrees of freedom,1 whereas
the vibrational part is treated in the high-temperature limit
without any additional approximation. To simultaneously ac-
count for both ferromagnetic and antiferromagnetic cases, we
separate the system into two sublattices, � and �, and con-
sider only nearest-neighbor interactions in both the magnetic
and elastic degrees of freedom. The mean-field approxima-
tion is based on the assumption that the spins in the lattice
are uncorrelated. Therefore all the properties of the magnetic
configurations will depend only on the number of up ��� and
down �−� spins at each sublattice, N�

+, N�
−, N�

+, and N�
−, that is,

on the staggered magnetizations, M��2�N�
+ −N�

−� /N and
M��2�N�

+ −N�
−� /N of the sublattices. In particular, the force

constants between a pair of nearest-neighbor atoms will be
given by

�nn�
ii� �M�,M�� = ��0�nn�

ii� �1 + �M�M�� . �14�

Within this approximation the canonical partition function is

Z = �
M�

�N/2�!
N�

+ ! N�
−!

�
M�

�N/2�!
N�

+ ! N�
−!

� exp
1

2
�JzNM�M��Zv�M�,M�� , �15�

where �=1/kBT, z is the nearest-neighbor coordination num-
ber and J is the corresponding magnetic exchange constant.
The partition function associated with the vibrational degrees
of freedom Zv is the partition function of a set of 3N har-
monic oscillators, which in the high-temperature limit is

Zv�M�,M�� = �
k=1

3N
1

� 	 
k�M�,M��
, �16�

where 	 is the Planck constant and 
k�M� ,M�� are the fre-
quencies of the vibrational normal modes.

Since in the thermodynamic limit only the equilibrium
value of the magnetization contributes to the partition func-
tion, the Helmholtz free energy, F=−kBTlnZ, can be written
as F=Fm+Fv, where

Fm =
NkBT

2
	
1 + M�

2
�ln
1 + M�

2
� + 
1 − M�

2
�ln
1 − M�

2
�

+ 
1 + M�

2
�ln
1 + M�

2
� + 
1 − M�

2
�ln
1 − M�

2
��

−
1

2
JzNM�M�, �17�

and

Fv = kBT�
k=1

3N

ln� 	 
k�M�,M��� . �18�

The next step is to obtain the dependence of 
k on the stag-
gered magnetizations. The square of the frequencies of the
normal modes are the eigenvalues of the dynamical matrix,
which is defined as

Dii��q� ,M�,M�� �
1

m
�
nn�

�nn�
ii� �M�,M��expjq� · �R� n� − R� n�� .

�19�

The dynamical matrix can be rewritten as

Dii��q� ,M�,M�� = �1 + �M�M��Dii��q� ,M� = 0,M� = 0� .

�20�

Therefore the dependence of its eigenvalues on the staggered
magnetizations is


2�q� ,M�,M�� = �1 + �M�M��
2�q� ,M� = 0,M� = 0� ,

�21�

and the contribution to the Helmholtz free energy of the
atomic vibrations is

Fv =
3

2
NkBTln�1 + �M�M��

+ kBT�
k=1

3N

ln� 	 
k�M� = 0,M� = 0�� . �22�

The equilibrium magnetization can be found by minimizing
the Helmholtz free energy with respect to the staggered mag-
netizations M�, M�. This leads to the equations

1

2
ln
1 + M�

1 − M�
� −

JzM�

kBT
+

3�M�

1 + �M�M�

= 0,

1

2
ln
1 + M�

1 − M�
� −

JzM�

kBT
+

3�M�

1 + �M�M�

= 0, �23�

which are solved numerically. From an analysis of the solu-
tions of Eq. �23� together with the evaluation of the corre-
sponding free energy, we obtain the temperatures of first- and
second-order phase transitions. The phase diagram of the
system is shown in Fig. 2 for ferromagnetic �J�0� and an-
tiferromagnetic �J�0� interactions simultaneously. If the
magnetic and vibrational degrees of freedom are not coupled
��=0�, we obtain a single second-order phase transition from
the low-temperature ferromagnetic �F� or antiferromagnetic
�AF� phase to the high-temperature paramagnetic �P� phase.
For negative values of � sgn�J� the transition temperature is
higher than in the absence of coupling since the low-
temperature phase is elastically softer than the paramagnetic
phase and thus the vibrational entropy increases its thermo-
dynamic stability. For � sgn�J��−1/3 the vibrational en-
tropy difference between the magnetically ordered and para-
magnetic phase cannot be balanced by the corresponding
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magnetic entropy difference and the ordered phase is stable
at all temperatures.

For positive values of � sgn�J� the paramagnetic phase is
elastically softer than the ordered low-temperature phase and
therefore the transition temperature is lower than in the ab-
sence of coupling. For � sgn�J��1/3, due to the large en-
tropy difference between both phases, the phase transition
becomes first order. Moreover, an antiferromagnetic phase
for J�0 and a ferromagnetic phase for J�0 are stabilized at
a high enough temperature by vibrational entropy, since this
phase is elastically softer than any other magnetic structure.
The stability range of the paramagnetic phase decreases with
increasing � sgn�J� and for � sgn�J��0.771 there exists a
direct phase transition from the ferromagnetic to the antifer-
romagnetic phase.

An analytical expression of the transition temperatures for
second-order phase transitions is also obtained,

Tc
F−P��� =

1

1 + 3�

Jz

kB
, J � 0,

Tc
AF−P��� =

− 1

1 − 3�

Jz

kB
, J � 0. �24�

The total entropy of the system is obtained from the free
energy using the general expression S=−�F /�T. Then, we
can estimate the total entropy difference between the mag-
netic phases. To this end, we characterize the ferromagnetic
phase by M�=M�� ±1, the paramagnetic phase by M�

=M��0, and the antiferromagnetic phase by M�=−M�

� ±1. The estimated entropy differences are

SF→P � NkBln 2 +
3

2
NkBln�1 + �� + 3NkB ln
TP

TF� ,

SP→AF � − NkBln 2 −
3

2
NkBln�1 − �� + 3NkBln
TAF

TP � ,

SF→AF � −
3

2
NkBln
1 − �

1 + �
� + 3NkBln
TAF

TF � , �25�

where TF, TP, and TAF are the temperatures at which the
entropy is evaluated in the ferromagnetic, paramagnetic, and
antiferromagnetic phases, respectively.

A convenient measure of the vibrational properties of the
system is given by the elastic constants. Defining

ik, jl� � −
1

2�
�
n�

�nn�
ik �rn�

j − rn
j ��rn�

l − rn
l � , �26�

where � is the atomic volume, in a Bravais lattice in the
absence of stress the second-order elastic constants are re-
lated to the force constants through the equation19

Cijkl = ik, jl� + kj,il� − kl,ij� . �27�

Therefore, using Eq. �14�, the temperature dependence of the
elastic constants in the mean-field approximation can be es-
timated through the temperature dependence of the staggered
magnetizations,

Cijkl�T� = �1 + �M�M��Cijkl�M� = M� = 0�

=
1 + �M�M�

1 + � sgn�J�
Cijkl�T = 0� . �28�

In Fig. 3 we plot the temperature dependence of both the
elastic constants and the staggered magnetizations for �
=13/27 and J= +1. The different stiffness of the magnetic
phases due to magnetoelastic coupling is evidenced.

FIG. 2. �Color online� Temperature vs coupling constant,
� sgn�J�, phase diagram in the mean-field approximation. Three dif-
ferent magnetic phases are thermodynamically stable: ferromag-
netic �F�, antiferromagnetic �AF�, and paramagnetic �P�. The con-
tinuous line is a second-order phase transition and discontinuous
lines correspond to first-order phase transitions.

FIG. 3. �Color online� Temperature dependence of the staggered
magnetizations and second-order elastic constants for �=13/27 and
J= +1.
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IV. NUMERICAL SIMULATIONS

This section is aimed at computing the thermodynamic
properties of the BPM and the MBPM by means of numeri-
cal simulation techniques. The differences obtained from
both models will be emphasized. In these calculations the
range of the force constants is extended up to next-nearest
neighbors. In this way, the models are able to fit the three
independent elastic constants of a cubic crystal.

The units of energy, mass, length, and temperature are set
to be the nearest-neighbors exchange interaction J, the par-
ticle mass m, the lattice parameter a, and J /kB, respectively.
All the results are given in these units. The next-nearest
neighbors exchange interaction is set to J2=2−3/2, and the
coefficients of the cluster expansion are fixed to ��0�0,100

xx

=−5�103/ �1+��, ��0�0,100
yy =−1�103/ �1+��, ��0�0,110

xx =−2
�103/ �1+��, ��0�0,110

xy =−3�103/ �1+��, and ��0�0,110
zz =−1

�103/ �1+��. The cluster expansion coefficients are defined
in terms of the coupling parameter � in such a way that the
force constants of the low-temperature phase do not depend
on �. With this choice of model parameters the low-
temperature magnetic phase is ferromagnetic.

The simulations are performed in a simple cubic structure
with 10�10�10 sites with periodic boundary conditions.
Since the model Hamiltonian has two well-defined classes of
degrees of freedom �magnetic and vibrational� and each has
its own characteristic time scale, the dynamics is imple-
mented to each class of degrees of freedom in an indepen-
dent way. The model dynamics implemented onto the mag-
netic variables is the spin-flip Metropolis Monte Carlo
method, and the time evolution of the vibrational degrees of
freedom is simulated by means of Langevin dynamics using
the stochastic differential equation,20

�pn
i

�t
= − �

n�
�
i�

�nn�
ii� un�

i� − �pn
i + D�n

i �t� ,

m
�un

i

�t
= pn

i , �29�

where �n
i �t� is a Gaussian distributed stochastic variable of

zero mean and white in time, ��n
i �t���n

i �t��=��t− t��.
The strength of the dissipative force is set to �=50 and

the strength of the stochastic force D is related to the strength
of the dissipative force � through the fluctuation-dissipation
theorem, D=�kBT. The Langevin equation is integrated us-
ing a second-order predictor corrector algorithm21 with an
integration time step t=5�10−4.

The relation adopted in the simulations between the time
scale of the magnetic variables and the time scale of the
vibrational degrees of freedom is the following. For each
single magnetic spin-flip attempt, five full integration steps
of the Langevin equation are performed. The results pre-
sented below are obtained as an average over 5�105 inte-
gration steps after an equilibration period of 15�105 inte-
gration steps.

A. Bond proportion model

In this subsection we present the simulation results corre-
sponding to the BPM which are compared with mean-field
results.

1. Magnetization

In Fig. 4 we show the temperature dependence of the
magnetization for different values of the coupling constant �.
The results from the numerical simulations �open symbols�
are shown together with the results of the mean-field ap-
proximation taking into account second-nearest neighbor in-
teractions �lines with filled symbols�. It is clear that depend-
ing on the sign of the coupling constant � the transition
temperature increases or decreases and the transition is
smoother in the former case and sharper in the latter. For
large enough values of the coupling constant, the magnetic
phase transition becomes first order.

2. Phase diagram

From the temperature dependence of the magnetization,
we obtain the magnetic phase diagram of the system �Fig. 5�.
We restrict ourselves to the ferromagnetic order parameter.
Therefore in relation to the phase diagram presented in Fig. 2
we have not analyzed the possibility of stabilizing antiferro-
magnetic order at high temperature by vibrational entropy.
Nevertheless, we expect that the coupling of the second-
nearest-neighbor force constants to magnetism will substan-
tially reduce the stability range of this phase in relation to the
result presented in Fig. 2.

3. Elastic constants

The isothermal second-order elastic constants are com-
puted using the fluctuation expression22

FIG. 4. �Color online� Magnetization vs temperature curves for
different values of the coupling constant �. Open symbols corre-
spond to the results obtained from the numerical simulations and
lines with filled symbols are the results of the mean-field
approximation.
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1

kBTV
	� �U

��ij

�U
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�� �U

��kl
�� +

NkBT

V
��il� jk + �ik� jl� , �30�

where U is the internal energy and �ij are the components of
the elastic strain tensor.

The simulation results of the elastic constant C11 are plot-
ted in Fig. 6 together with the results of the mean-field ap-
proximation. The temperature behavior of the elastic con-
stants C12 and C44 is rather similar. It is clear that the
presence of magnetic disorder has a strong influence on the
elastic constants due to magnetoelastic coupling. Depending
on the sign of the coupling constant �, magnetic disorder
increases or decreases the stiffness of the system. Similar
behavior has been observed experimentally in order-
disorder12 and magnetic transitions.13–15

4. Entropy

The entropy is computed using the thermodynamic rela-
tion

dS =
CM

T
dT , �31�

where the heat capacity at constant magnetization is obtained
from the fluctuation formula

CM =
1

kBT2 ��U2� − �U�2� , �32�

where U is the total energy, including both vibrational and
magnetic contributions, U=Uv+Um. If the variance of the
total energy is expanded, we obtain

CM =
1

kBT2 ��Uv
2� − �Uv�2 + 2��UvUm� − �Uv��Um��

+ �Um
2 � − �Um�2� . �33�

The first term is the variance of the energy of a set of 3N
harmonic oscillators, which in the high-temperature limit can
be computed analytically,

�Uv
2� − �Uv�2 = 3N�kBT�2. �34�

Since the equilibrium energy of an isolated harmonic oscil-
lator does not depend on its frequency, and the time scale of
the magnetic degrees of freedom is much slower than the
time scale of the atomic vibrations, the vibrational energy of
the present model is not coupled to the magnetic degrees of
freedom. Thus the second term in Eq. �33� vanishes,

�UvUm� − �Uv��Um� = 0. �35�

The effect of coupling between vibrational and magnetic de-
grees of freedom on the heat capacity is therefore contained
in the variance of the magnetic energy. Nevertheless, notice
that the effect of magnetoelastic coupling on the entropy is
contained in the vibrational entropy term since it depends on
the frequencies of the normal modes of oscillation, which, in
turn, depend on magnetic order, Sv=�kkB�1+ln�kBT / 	
k��.
Thus we finally obtain

dS = 
3NkB

T
+

1

kBT3 ��Um
2 � − �Um�2��dT . �36�

FIG. 5. �Color online� Temperature vs coupling constant �,
magnetic phase diagram showing the ferromagnetic and paramag-
netic phases. Circles correspond to the numerical simulations and
the line is the result of the mean-field approximation. A second-
order phase transition is represented by a continuous line and filled
circles, whereas a first-order phase transition is represented by a
dashed line and open circles.

FIG. 6. �Color online� Temperature dependence of the isother-
mal second-order elastic constant C11 for different values of the
coupling constant �. Symbols and lines are the same as in Fig. 4.
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In Fig. 7 we plot the temperature dependence of the total
entropy. The dominant behavior is the logarithmic depen-
dence that arises from the first term of Eq. �36�. Close to the
magnetic phase transition a substantial increase of the total
entropy is observed. This is due to the contribution of the
magnetic entropy together with the change in the vibrational
entropy due to magnetoelastic coupling. In order to visualize
the entropy change at the phase transition, in Fig. 8 we plot
the total entropy after subtracting the logarithmic contribu-
tion from the vibrational term. It is clear that the total en-
tropy change at the phase transition depends on the coupling
parameter � and the transition is smoother for negative val-
ues of � and sharper for positive values. This is indicative

that for negative values of � the vibrational entropy of the
ferromagnetic phase is larger than the vibrational entropy of
the paramagnetic phase, and thus the total entropy change is
smaller than in the absence of magnetoelastic coupling. On
the other hand, for positive values of �, the vibrational en-
tropy of the paramagnetic phase is larger than the vibrational
entropy of the ferromagnetic phase. Note that if the total
entropy difference between both phases is large enough, the
phase transition becomes first order, whereas if the total en-
tropy difference is small enough, the ferromagnetic phase is
stable at all temperatures �see the magnetic phase diagram in
Fig. 5�.

B. Modified bond proportion model

In this subsection we present the simulation results of the
MBPM and analyze the differences obtained in relation to
the BPM. All the results correspond to �=1/7.

In Fig. 9 we show the temperature dependence of the heat
capacity at constant magnetization. The difference between
both models is significant around the phase transition. Since
the models have the same adjustable parameters and lead to
the same result when inversion symmetry is present, this
discrepancy is indicative that the internal inconsistency of
the BPM may be relevant when computing thermodynamic
quantities, and that it can give rise to unphysical results. The
discrepancy in the heat capacity curves leads to a discrep-
ancy in the entropy difference between the magnetic phases,
computed as the integral of the heat capacity over the tem-
perature. This is shown in Fig. 10, where we plot the tem-
perature dependence of the total entropy except for the loga-
rithmic contribution of the vibrational term. Notice that the
entropy of the paramagnetic phase given by the MBPM is
30% larger than the entropy given by the BPM.

Finally, in Fig. 11 we show the temperature dependence
of the elastic constant C11. The differences between the BPM

FIG. 7. �Color online� Temperature dependence of the total en-
tropy for different values of the coupling constant �. Symbols and
lines are the same as in Fig. 4.

FIG. 8. �Color online� Temperature dependence of the total en-
tropy except for the logarithmic contribution of the vibrational term
for different values of the coupling constant �. Symbols and lines
are the same as in Fig. 4.

FIG. 9. �Color online� Temperature dependence of the heat ca-
pacity of the bond proportion model �triangles� and the modified
bond proportion model �circles� obtained from numerical simula-
tions at �=1/7. The line is the result of a purely vibrational system.
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and MBPM are given in the inset. Again, the largest differ-
ences are observed around the phase transition, and to a
lesser extent, within the paramagnetic phase. As expected, in
the ferromagnetic phase both models give rise to the same
result.

V. SUMMARY AND CONCLUSIONS

In this paper we have demonstrated that it is possible to
develop a harmonic model with coupled configurational and
vibrational degrees of freedom that satisfy all the required
invariance relations. We have started from the Taylor expan-
sion of the potential energy of a set of N atoms in a lattice.
The coefficients of such an expansion are then expanded in
clusters of the configurational variables. This method is com-
pletely general and turns out to be very powerful.

The bond proportion effect is introduced through the clus-
ter expansion of the force constants. Moreover, atomic relax-
ations could also be taken into account through the cluster
expansion of the linear coefficients of the Taylor expansion.
Within this framework we first derive the standard bond pro-
portion model, which does not satisfy the invariance of the
potential energy to a rotation of the crystal. We have fixed
this problem by including some extra terms in the cluster
expansion of the force constants and we have developed a
modified bond proportion model. The extra terms choosen
are terms that vanish when the magnetic structure has inver-
sion symmetry. In this way, for magnetic structures with this

symmetry the mean-field solution of the standard and the
modified bond proportion model are equivalent. Both models
are solved by means of numerical simulations and it is
shown that the bond proportion model gives rise to different
results in relation to the modified bond proportion model in
the specific heat around the magnetic phase transition, and
consequently in the entropy difference between magnetic
phases. This is indicative that the bond proportion model
may give rise to unphysical results when computing thermo-
dynamic quantities.

Since there is no reason to impose that all the coupling
constants of the modified bond proportion model are equal,
as assumed in the bond proportion model, the number of
independent coefficients of such a model is larger. Therefore
the framework of cluster expansions seems to be the ideal
candidate to develop configurational independent force con-
stants models that reproduce the vibrational properties of real
materials and, at the same time, satisfy all the required in-
variance relations.
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