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A general problem in particle-based modeling is one of showing the various configurations which emerge
from simulations. A particular problem is to determine the local coordination, distinguishing fcc, hcp, bcc, and
other relatively close-packed structures. Here we describe an approach to this problem, which attempts to
optimize the differentiation between different structure. The method is then applied to differentiate dynamically
stabilized phases from mechanically stable ones in bcc crystals, and to identify dislocation defects in random
hexagonal close-packed colloidal suspensions, in each case extracting much more information from the raw
data than had previously been possible.
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I. INTRODUCTION

In systems as diverse as hard sphere colloids and metallic
nanostructures, materials form closely packed structures. To
aid in the interpretation of particle-position datasets from
molecular dynamics1 or confocal microscopy,2,3 it is com-
monly desirable to determine the local environment, assign-
ing it as fcc, bcc, hcp or some other structure. While this
assignment is not unique in relation to crystallography, sev-
eral schemes have been devised to pick out particular atoms
as possible nuclei, defects, or nanocrystals, and color them
appropriately. Commonly used coloring methods in atomistic
simulation are to color images by cohesive energy,4 coordi-
nation, common neighbor analysis or centrosymmetry,5–8

while in colloidal materials bond orientation order
parameters9,10 are widely used. In simulations of many mil-
lions of atoms, for example in radiation damage studies,4 it is
becoming important to have an efficient method for screen-
ing on the fly for those particles whose environments are
atypical, so that a manageable amount of data is stored.

Most such methods attempt to match a local structure to
an idealized one, and measure how closely they fit. Here we
adopt an alternate approach, recognizing that only a finite
number of local arrangements will be of interest in a given
application, we concentrate on measures which distinguish
between them, rather than measures which determine abso-
lute similarity to templates.

Here we report on applications based on a heuristic algo-
rithm to define and analyze the local structure of simulated
solids and display the results by color coding particles to
reveal regions with bcc, fcc, or hcp crystal structure. The
method uses only data routinely calculated in molecular dy-
namics simulations �i.e., neighbor lists and interatomic vec-
tors� and can readily be incorporated into existing molecular
dynamics codes. We present applications of the method to
molecular dynamics simulations of martensitic phase transi-
tions and confocal microscopy data of hard sphere colloids.

The challenge is to find an efficient way of defining a
local crystal structure from an arrangement of atoms. For
correctness this definition must be consistent with the crys-
tallographic definition in terms of periodic repeats, and for
usefulness it must assign a local structure to a majority of
particles in the system. It must avoid errors arising from the
displacement of particles from their symmetry positions,

without using an average over millions of atoms to obtain
sharp Bragg peaks. It should also define the orientation of the
crystal structure.

II. DISTINGUISHING CRYSTAL TYPES: bcc, fcc, and hcp

We take advantage of the preknowledge of the local co-
ordinations which might occur—body centered cubic �bcc�,
face centered cubic �fcc�, and hexagonal close packed �hcp�.
To determine whether it is realistic to distinguish between
these using local separations or angular distributions, we
made a large number of samples in each crystal structure and
randomly displaced each particle from its perfect lattice site
�Fig. 1�. This shows that bcc can be distinguished from hcp
and fcc by its 14 neighbors, �the two nearest neighbor shells
may overlap�. fcc and hcp are indistinguishable from near-
neighbor analysis; however, the cosines of the angles be-
tween the bonds gives a clear distinction.

Previous work used these radial and angular histograms to
compare with each ideal crystal type in turn, and then choose
the closest fit to assign a crystal structure to a given
particle.5–7,9,10 We attempted this by directly comparing an-
gular distribution to template structure,1 or fitting the profile
with Laguerre polynomials and comparing coefficients to
templates. We found these methods relatively unsuccessful
because there are many similarities between all three distri-
butions �e.g., fcc has no unique peaks in either radial or
angular distribution functions�, and so many regions of the
histogram contribute only noise to the difference between
types. The radial distribution can usually provide the number
of near neighbors, but even here any definition avoiding the
fcc second neighbors occasionally fails to count a bcc neigh-
bor when the structure is highly distorted, e.g., at high tem-
perature, so it is desirable that the bcc structural determina-
tion is robust against missing a neighbor. If neighbors are
missed some other methods �e.g., common neighbor
analysis5–7� will fail. Measures involving “bond order param-
eters,” which are invariant combinations of spherical
harmonics,8,9 are less sensitive to missed neighbors but are
relatively slow to calculate.

Since the intention of our work is to provide a practical
and efficient method for assigning local crystal structure, we
eschew mathematical elegance, and concentrate on heuristics
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which can be rapidly implemented using the information
readily available in the radial and angular histograms. Thus,
the angular distribution function is described by eight num-
bers ��i�, the number of angles in regions of � jik chosen to
reflect angles actually present in the most likely phases �see
Fig. 1 and Table I�. Distinctive characteristics of combina-
tions of the �is were then sought which directly measure

differences between the possible structures, and are persis-
tent even under significant deformation.

We examined numerous different configurations to deter-
mine the appropriate characteristics—some apparently prom-
ising candidates were unsuccessful, e.g., 14 neighbors char-
acterizes bcc, but if two particles stray outside the neighbor
range, as may happen at a high temperature, there will be 12
neighbors left: the same as both fcc and hcp, while for fcc
and hcp, there may be one or two overlaps between the first
and second neighbors. Furthermore, some defect configura-
tions �bcc vacancy, fcc self-interstitial, and atoms in disloca-
tion cores� have different coordinations.

�0 �three atoms in a straight line� is a useful measure,
since most perfect crystal structures have higher local sym-
metry than defects. For bcc �0 is seven, assuming all 14
neighbors are found; however, if one of the six second neigh-
bors falls outside the “near neighbor” catchment, �0 is re-
duced to six or even five; the most persistent difference be-
tween fcc/hcp and bcc turns out to be the ratio of �4 �the 90°
peak� to everything with lower angles. In fcc/hcp it is 1:2. In
bcc it is 1:3 which increases if a second neighbor particle is
missed. Even this may fail if the 90° peak broadens beyond
the definition of �4, so the algorithm incorporates other heu-
ristics �Table II�, e.g., if a particle has �0=7, N=14 it is
almost certainly bcc, though the converse is not true.

In order to define defects, some particles should not be
assigned a structure, e.g., if there are any very acute angles
��7�0� or the number of neighbors is far removed from the
expected value. In these cases adjusting the neighbor radius
may be appropriate. This occasionally finds a fit, but often
discrepancies in the angle remain and the particle structure is
unassigned.

Distinguishing fcc from hcp is the most difficult chal-
lenge. The obvious difference is the �2 peak in hcp; however,
if it is wide it may overlap two other peaks, so it cannot
always be resolved. A more significant identifier is �0. The
heuristic examines both ��0 ,�0+�1+�2�, expected for fcc to
be �6,6� and for hcp �3,9�; we use ��0+�1+�2� rather than
just �1 because this reduces the effect of overlap. Once these
heuristics were decided, we optimized the regions of the his-
togram assigned to each peak according to their ability to
resolve structures generated by random displacements from
ideal positions.

Such definitions are necessary, but since there is no pre-
cise definition of the “bccness”, “fccness” or “hcpness,” the
real test of this method is the insight gained from applying it
to real data.

Close-packed fcc-hcp-bcc are the most difficult structures
to resolve, and we have concentrated on these here; however,
the method is straighforward to apply to any set of crystal
structures. For example, the lower panel of Fig. 1 shows the
angular distribution for three tetrahedral structures: cubic
diamond, hexagonal diamond, and amorphous. We do not
have interesting experimental datasets to analyze for which
these are clearly the only options, and so we have not at-
tempted to optimize the �i regions. However, the amorphous
region can readily be distinguished by the region of �5, while
the wurtzite and diamond can be separated by considering
the ratios of �1+�3 to �2+�4+�6.

FIG. 1. �Color online� Angular distribution functions; these are
frequency distributions of angle cosines among the immediate
neighbors of a given particle. They were constructed by randomly
moving each particle away from a perfect lattice site within a
sphere of radius equal to 0.1 interparticle separations, from its mean
“ideal crystal” position. Using the square of the radius saves time
calculating roots,21 while the cosine of the angle is calculated by a
simple dot product. The area under each graph is normalized to
N0�N0−1� /2, but since the number of measured nearest neighbors
will not always be the same for large displacements the y axis is left
dimensionless. �top� bcc shown as the solid line, fcc shown as the
dotted line, and hcp shown as the dashed line. Triangles show po-
sitions of optimized boundaries between �i regions which are used
for analysis as described in Table I. �Bottom� a comparison of crys-
tal and amorphous tetrahedral structures, with rij �1.8r0 to include
around 16 neighbors: dots represent the cubic diamond structure,
dashes represent the hexagonal diamond, and the solid line is a
standard “bc8” model for amorphous silicon �Ref. 22�. � regions in
the lower panel are indicative only, and have not been precisely
optimized.
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A. Orientation of crystal structure

The orientation of the local crystal structure can also be
calculated. This is most likely to be of interest in the case of
hcp, which has a unique c axis, or in any study of grain
boundaries or where a specific orientation of crystals arises
from a phase transformation.12 To define hcp orientation we

use atoms in the basal planes “above” and “below” the atom,
related by the characteristic hcp angle measured by �2. Their
separation vector does not define the c axis, but the line
between the mean position of the three particles above and
the three below does. To determine which are above and
which are below we arbitrarily choose one pair, and label the
first particle above. The other is therefore below, its other

TABLE I. Definition of eight regions of bond angle cosines �Ref. 21� in which the weights �i are
calculated, and the number of such angles in the perfect crystal of bcc, fcc, and hcp �cf. Fig. 1�. cos � jik is the
angle between rij and rik with rij ,rik�1.204r0. The table also lists the combinations � which were optimized
to differentiate structures.

Minimum Maximum Ideal

cos � jik cos � jik bcc fcc hcp

�0 −1.0 −0.945 7 6 3

�1 −0.945 −0.915 0 0 0

�2 −0.915 −0.755 0 0 6

�3 −0.755 −0.705 36 24 21

�4 −0.195 0.195 12 12 12

�5 0.195 0.245 0 0 0

�6 0.245 0.795 36 24 24

�7 0.795 1.0 0 0 0

�bcc 0.35�4 / ��5+�6+�7−�4�

�CP 0.61 �1−�6 /24�
�fcc 0.61���0+�1−6 � +�2� /6

�hcp ���0−3 � + ��0+�1+�2+�3−9 � � /12

TABLE II. Series of rules implemented to differentiate fcc, hcp, and bcc.

�i� Evaluate mean squared separation r0
2= �

j=1

6

rij
2 /6 for nearest six particles to i.

�ii� Find N0 near neighbors with rij
2 �1.45r0

2 and N1 with rij
2 �1.55r0

2.

�iii� Evaluate bond angle cosines �Ref. 14� cos � jik between all N0�N0−1� /2 neighbor
pairs of atom i.

�iv� From bond angle cosines, determine �i �Table I�.

�v� Assign any atom with N0�11 or �0�0 as an unknown.

�vi� If�0=7, particle is bcc, if �0=6, particle is fcc, if �0=3, particle is hcp.

�vii� From the angle cosines, define deviations from the expected angular distribution �
�Table I�.

�viii� If no ��0.1, then structure is unassigned.

�ix� If �bcc��CP and 10�N1�13 assign bcc.

�x� If N0�12 the structure is unassigned, otherwise �hcp�� fcc implies hcp and
� fcc��hcp gives fcc.
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partner forming a �2 angle is above, and so forth. This has
the advantage that it averages out any small displacements
over six particles.

As we shall see, this algorithm is able to correctly identify
the instantaneous c axis for all the hcp particles in the high
temperature zirconium simulation.

B. Comparison and combination with common neighbor
analysis

In this section we compare our present method with one
of the methods used in the past. The method chosen is that of
common neighbor analysis �CNA�.6,7 Precise timings are ar-
bitrary, as coding efficiency will vary; however, for reason-
able implementation neither method is as expensive as a
typical molecular dynamics �MD� force analysis. Compared
with the present method, the CNA method requires addi-
tional a computation as follows.

CNA deals a priori with the crystal structure around a
bond, not an atom and does not contain explicitly the posi-
tions of the particles. Having done the CNA analysis on each
bond �for each atom in our method, there are 6/7 bonds for

CNA to analyze�, the local structure at an atom can be found
by further analyzing the bonds around that atom. Only then
is it possible to identify an atomic level structure. The accu-
racy of our method and CNA is similar, depending primarily
on reliable identification of the neighbors. Whether CNA can
find the orientation of hcp regions is debatable; it does not
use positional vectors, and none of the CNA bonds point
along the hcp c axis hence any orientational information re-
quires considerable analysis “beyond” CNA.

It might be possible to determine the orientation within
CNA by adopting the following procedure combining our
ideas and those of CNA:

�i� Identify the HCPness of each bond using CNA and
project this onto each atom to define an atomic HCPness.

�ii� Re-examine the nearby 421-type6 bonds to identify
what we call the above and below neighbors.

�iii� Distinguish between above and below by a further
CNA on each of the above atoms �they are common neigh-
bors of each other, but not of below ones�.

�iv� Finally, return to the atomic coordinates as in our
method.

III. APPLICATIONS

We have made preliminary images from a number of ap-
plications to illustrate how the method can be applied. While
statistically significant detailed results from each application
will require considerably more data, the images already sug-
gest interesting ideas. Figure 2 shows some slices through
configurations analyzed by the method.

Molecular dynamics

1. Point defect in iron

The interstitial defect in iron is unusual in that it is ori-
ented along the �011� direction rather than the more typical
�111� adopted by other bcc materials. These defects are gen-

FIG. 2. �Color online� �a� A slice through a snapshot of molecu-
lar dynamics of simulated bcc iron �blue squares� with a vacancy in
one corner of the cell free boundary conditions. The boundary �sur-
face� atoms are largely unidentified �open circles�, although occa-
sionally the 12-fold coordination leads to a misidentification as fcc
�green triangles�. �b� Rotated view of �a� applying a halo from
periodic boundary conditions enables all atoms to be correctly as-
signed, and the vacancy �and its periodic images� indicated by its
unassigned neighbors.

FIG. 3. �Color online� Snapshot from molecular dynamics on
simulated bcc zirconium—showing the changing mosaic of fcc
�green triangles� and hcp �red hexagons� structures—the data are a
cluster cut from the simulation, so surfaces of the data cannot typi-
cally be assigned. The zirconium slices show an ever changing pat-
tern of equal amounts of fcc and three different hcp orientations
�see also Fig. 5�.
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erated in large quantities in radiation damage, and for imag-
ing simulations of large scale radiation damage cascades it is
desirable to pick out only the defective sites from among
millions of perfect lattice sites.

The bcc iron configuration with an interstitial was gener-
ated in constant pressure molecular dynamics using the
MOLDY code at 200 K with an embedded-atom-type potential
derived for use in radiation damage studies for iron11 which
is stable in the bcc structure. The resulting bulk configura-
tions are correctly identified as bcc, despite the thermal vi-
brations, and the interstitial defect is readily identified from
the particles which cannot be assigned to any of the trial
structures. It would be possible to generate an angle template
for �011� and �111� interstitials using the present method, and
reoptimize the algorithm to differentiate them from fcc/hcp/
bcc but for illustrative purposes the “unidentified” label is
clearly sufficient.

The effect of boundaries is shown in Fig. 2 for a bcc iron
configuration with a vacancy in one corner. If the positions
from the MD cell are used directly, the boundary atoms are
missing neighbors and cannot be identified. If the defect is in

this region it will be missed. Adding a halo of additional
atoms generated from the periodic boundary condition is suf-
ficient to locate the defect and identify all atoms.

2. Temperature-induced phase transition in zirconium

A more demanding test is a high temperature molecular
dynamics run performed using an embedded atom-type zir-
conium potential.13

This potential gives a stable hcp structure, but has a high
temperature bcc phase. It has been widely studied14–17 and
there is some controversy about the phase transition tempera-
ture which is different depending on how one considers an
harmonic terms and the effects of microstructure.17

The MD simulation was set up in the bcc phase and al-
lowed to equilibrate at 1100 K. A snapshot cluster cut from
the molecular dynamics simulation was analyzed �Fig. 3�.
Surprisingly, the local structure analysis reveals that most
atoms can be characterized as fcc or hcp. This is in contrast
to a simulated x-ray diffraction pattern �i.e., a Fourier trans-
form of the entire MD block�, which shows that the material
has long-range bcc symmetry. Subsequent analysis of the
same region showed a similar pattern, but with hcp and fcc
regions in different positions, and a movie made from a se-

FIG. 4. �Color online� The orientation of hcp “crystallites” in
zirconium MD. �a� A snapshot from the MD simulation similar to
Fig. 4 �b� Orientation plot: lines show the c axis indicating a mul-
tiply microtwinned structure, with fcc occurring where we presume
that the orientation of the hcp does not permit a low energy inter-
face. Recall that these crystallites are short lived, and the long-range
crystal structure in this simulation �determined by simulated x-ray
scattering� is bcc. The discrepancy between long- and short-range
crystal structure arises from the dynamic instability of the bcc Zr
structure.

FIG. 5. �Color online� Crystal formed by hard spheres in which
the coordinates have been read in using confocal microscopy. Most
atoms are assigned fcc �green triangles� or hcp �red hexagons�. �a�
The view of the crystal down the c axis and images of two close-
packed layers. Regions of two hcp, two fcc, and one of each can be
seen. �b� The view perpendicular to the c axis, showing stacking
sequence.
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quence of such snapshots shows a continuous changing of
the structure. The ability of our method to resolve the quali-
tative difference between globally stable bcc iron and dy-
namically stabilized bcc zirconium shows its value as a com-
pliment to simulated diffraction.

The orientation analysis �Fig. 4� finds boundaries between
differently oriented hcp, and indicates that the inter-hcp
boundaries are reflection planes �i.e., twins�. Moreover, the
analysis reveals that the thermodynamically unfavorable fcc
structure appears at locations where it can remove the need
for nonreflection plane high-energy hcp-hcp boundaries, in-
stead continuing the stacking of close-packed planes �e.g.,
ABABABCABC� to form a very low energy interface.

3. Confocal microscopy images

A final application is to the experimental data taken from
the confocal microscopy of PMMA �polymethylmethacry-
late� hard spheres crystallizing in an index-matched solution
in a “random hexagonal close packed” structure.2,3 Data
from this experiment is collected in the form of three-
dimensional position coordinates.18 Previous analysis on this
type of configuration has been done by light scattering which
determines long range order �equivalent to x-ray diffraction
in iron� and by a laborious process of counting stacking
faults in appropriately oriented “zigzag” crystals �i.e., viewed
along a �-1100� hcp direction�.19 In Fig. 5 our method reveals
that regions of local hcp and fcc order appear to be corre-
lated, i.e., although over a large region similar amounts of
hcp and fcc layers are seen. An “hcp” layer is more likely to
be next to another hcp layer. We also show that partial basal
dislocations �indicated by a stripe of one color terminating
and becoming the other� are commonplace and can readily
be identified, even in the random hexagonal close-packed
case. The candidates for screw dislocations are particles
which appear in projection to be in ordered positions but are
“unassigned” by the analysis, and form columns as one scans
downward. Here, the dislocations are often located between
an hcp and an fcc layer �i.e., they are partial dislocations�.
The blue circle in the center of Fig. 3�b� is a bcc-coordinated
atom at the center of a curious defect spanning three layers.
It is likely that the motion of these defects is significant in
the ripening process since their motion converts ABA stack-
ing to ABC.

Our analysis also identifies an few missing particles and
an amorphous “glassy” region in the center of Fig. 3�a� and a

near-spherical void �bottom left�. In a hard sphere crystal
there is no way for a void to be metastable since particles can
increase their entropy by moving into it, so it is likely that
this “void” is in reality a dust particle which has not been
imaged.

In the preceding applications, we did not consider the
option of a particle being in an icosahedral cluster �ICO�,
which may be the stable ordered cluster freezing out of the
liquid phase.20 The angular distribution for ICO is the sim-
plest of all, with six angles at �0 and 30 at �3 and �6. Ap-
plying a heuristic which tests for N0=12 and low values of
�4 relative to �3 and �6 is sufficient to resolve icosahedral
particles in icosahedral clusters.

IV. CONCLUSIONS

We have developed a heuristic approach to defining local
crystal structure which fulfills the requirements of being fast
to implement within an MD code, giving a low incidence of
misassigned or unassigned particles and reproducing the
long-range crystal structure for stable perfect crystals. The
criteria for defining local crystal structure are necessarily ar-
bitrary, but have been optimized with these features in mind.
The approach can be implemented within any application
which produces a set of particle positions. In tests it appears
to be faster, and to give fewer false positives and negatives
than previous methods.

We have tackled the hcp-fcc case which is probably the
most difficult, and extensions to other crystal structures are
relatively straightforward, as was briefly illustrated for tetra-
hedral structures. The power of the method in analyzing im-
ages is illustrated in three applications, two from simulation
and one from experiment. The simulation data involved find-
ing a single point defect in iron, and the more complex study
of the local close-packed, strain-compensating nature of dy-
namically stabilized bcc zirconium. From confocal micros-
copy data we have shown the existence of voids and
dislocation-type defects in random hexagonal close-packed
hard sphere crystals.
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