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We apply density-matrix renormalization-group methods to study the phase diagram of the quantum axial
next-nearest-neighbor Ising model in the region of low frustration where the ferromagnetic coupling is larger
than the next-nearest-neighbor antiferromagnetic one. By finite-size scaling on lattices with up to 80 sites we
locate precisely the transition line from the ferromagnetic phase to a paramagnetic phase without spatial
modulation. We then measure and analyze the spin-spin correlation function in order to determine the disorder
transition line where a modulation appears. We give strong numerical support to the conjecture that the
Peschel-Emery one-dimensional line actually coincides with the disorder line. We also show that the critical
exponent governing the vanishing of the modulation parameter at the disorder transition is �q=1/2.
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The axial next-nearest-neighbor Ising �ANNNI� model is
an axial Ising model with competing next-nearest-neighbor
antiferromagnetic coupling in one direction. It is a paradigm
for the study of competition between magnetic ordering,
frustration, and thermal disordering effects. Its phase dia-
gram displays indeed a rich variety of phases. In the most
realistic three-dimensional �3D� case, it describes several
physical systems from magnetic materials like CeSb to bi-
nary alloys or dielectrics like NaNO2.1 In the more academic
one-dimensional case, it is exactly solvable and several gen-
eral properties can be rigorously proved about its phase
diagram.2

The two-dimensional case is nontrivial and not solvable,
but its phase structure is much simpler than in the 3D case.
The model is believed to display five phases:3 ferromagnetic
↑↑↑↑, antiphase ↑↑↓↓, paramagnetic with or without modu-
lation, and floating phase with algebraically decaying spin
correlations. This picture is supported by various analytical4

and numerical5 investigations based on a variety of approxi-
mations. However, lacking an exact solution, the precise lo-
cation of the various transitions is not known beyond ap-
proximate treatments. Actually there is no rigorous proof of
the existence of all the above phases. In particular the very
existance of the floating phase has been recently under
debate.6

To further simplify the analysis, the 2D case can be stud-
ied in the Hamiltonian limit which is a one-dimensional
quantum spin S=1/2 chain with next-nearest-neighbor cou-
pling. The chain interacts with an external field playing the
role of the temperature and triggering phase transitions. The
Hamiltonian limit, also called the transverse ANNNI model
�TAM� is very interesting in itself, being a simple example
where several complicated quantum phase transitions do oc-
cur with drastic changes in the qualitative features of the
ground state.7

The accurate numerical study of the TAM is challenging

notwithstanding its relative simplicity. In this Brief Report
we address an open conjecture concerning its disorder line
by employing density-matrix renormalization-group meth-
ods.

To illustrate the problem, we introduce the TAM Hamil-
tonian with open boundary conditions, which reads

H = − J1�
i=1

L−1

�i
z�i+1

z − J2�
i=1

L−2

�i
z�i+2

z − B�
i=1

L

�i
x. �1�

We shall present our results in terms of the adimensional
ratios �=−J2 /J1 and B /J1 which are the only parameters that
describe the properties of the ground state.

The qualitative phase diagram of the TAM is quite differ-
ent in the two regions ��1/2 or ��1/2. For ��1/2, the
model is in a ferromagnetic phase at low magnetic field B. At
Bc,1, a transition in the Ising class makes the ground state
paramagnetic with exponentially decaying spin-spin correla-
tion functions. Further increasing the external field we expect
a new transition for B�Bc,2�Bc,1 where the model is still
gapped but with a correlation function whose exponential
decay has also a spatial modulation. In this phase the
asymptotic correlation function in the bulk is conveniently
parametrized for large spin separation d by the functional
form

Czz�d� = ��i
z�i+d

z � � c0e−d/r cos��qd + �� , �2�

with r and q being functions of B and �.
The modulation parameter q�B ,�� vanishes at B=Bc,2���

with a certain exponent �q,

q�B,�� � A�B − Bc,2�����q as B ↘ Bc,2��� . �3�

The critical line B=Bc,2��� is known as a disorder line2,8 �see
also Ref. 9 for a different definition�.
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The region ��1/2 is much more complicated. At low B
the ground state is in a so-called antiphase with typical spin
configuration ↑↑↓↓¯. On increasing the magnetic field one
expects to observe a first transition to a disordered phase
with algebraically decaying Czz �the floating phase� followed
by a final transition to the asymptotic paramagnetic phase,
i.e., the unique high-temperature phase in the original 2D
statistical model. The numerical data in this region are con-
troversial and the size of the floating phase is not clear, being
possibly zero.6

In this Brief Report, we shall be concerned with the �
�1/2 region only. For simplicity, we shall denote this region
as the low-frustration region �LFR�. In the LFR, there is
general consensus about the phase diagram, although only at
the qualitative level, i.e., with large variations due to the
various approximation employed in its calculation.

Remarkably, the TAM can be solved exactly on a critical
line in the LFR, called the Peschel-Emery one-dimensional
line �ODL�.10 The spin correlation decays exponentially on
the ODL which is immersed in the paramagnetic phase.
Little is known analytically of the ODL due to the the very
tricky nature of the solution. It is still a conjecture that the

ODL is indeed the disorder line and that therefore

Bc,2/J1 = Bc
PE/J1 	 � −

1

4�
. �4�

The conjecture is compatible with the numerical simulations
of the TAM. However, the agreement Bc,2=Bc

PE is valid at
not more than about 20% accuracy along the line.

The aim of this Brief Report is precisely to give a numeri-
cal proof with good accuracy of this conjecture. As a by-
product we also determine the unknown exponent �q.

A detailed analysis of the quantum ANNNI model can be
found in Ref. 11. The accuracy of the results is poor because
of the small considered lattices with fewer than ten sites.
Another interesting approach is described in Ref. 12 where
an effective Hamiltonian is proposed allowing a considerable
reduction of the Hilbert space. Systems up to 32 sites long

FIG. 1. Finite-size scaling analysis of L�L�� ,B� at �=0.3.

FIG. 2. Extrapolation of the finite-size scaling crossing estima-
tor Bc,1

�L�. �=0.3 and L=10,20,…,80.

FIG. 3. Finite-size scaling analysis at �=0.4. The left plot in-
cludes the data obtained with the infinite-size DMRG algorithm and
labeled L=	.

FIG. 4. B dependence of the squared modulation parameter q2 at
�=0.3. The fit is performed on the leftmost points near the critical
point.
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can be treated, but the approximation is valid only near �
=1/2.

A more recent numerical analysis of the LFR is Ref. 13,
where the ferromagnetic-paramagnetic Ising transition is
analyzed by combining finite-size scaling �FSS� with exact
diagonalization of short chains with no more than ten sites.

Here we present a study of the model with higher accu-
racy and much larger lattices by means of the density-matrix
renormalization-group �DMRG� algorithm.14 Nowadays, this
method appears to be the natural choice for one-dimensional
quantum spin chains.

We have implemented the finite-size version of the
DMRG algorithm computing the two lowest levels E0,1 and
the energy gap �=E1−E0. The algorithm results are very
stable when more than 80 states are kept in the block Hamil-
tonians. In practice the numerical error on � is at the level of
the machine precision.

For several lattice sizes L of order 102 and various frus-
tration ratios �, we have computed the scaled energy gap
L�L�� ,B�. The crossing of the associated curves as a func-
tion of B at fixed � is a finite-size estimate of the ferromag-
netic critical field Bc,1

�L����. As an example, we show in Fig. 1
our results at �=0.3. We have determined the crossing point
between the curves associated with a certain L and L+10.
We expect Bc,1

�L�→Bc,1��� as L→	 with algebraic corrections

in 1/L.15 We show in Fig. 2 the finite-size crossing field
plotted as a function of x=1/ �L+10� which is the most con-
venient variable to extrapolate our �L ,L+10� crossings. In-
deed, the fitting function a+bx2+cx3 gives a very good 
2 of
about 10−11. The results for all the considered � are collected
in Table I where we also show �when available� the analo-
gous results from Ref. 13. These are obtained on small lat-
tices crossing L with a fixed L=4. This is at most an estimate

of Bc,1. Table I reports also B̃c,1 which is obtained from the
vanishing of the gap at second order in B,10 and is defined by

1 + 2� =
B̃c,1

J1
+

�

2�1 + ��

 B̃c,1

J1
�2

. �5�

In principle, it is possible to determine Bc,1 directly in the
infinite-size limit by using the infinite-lattice version of the
DMRG algorithm. We show in Fig. 3 the result of such a
procedure at �=0.4. The result for Bc,1 is fully consistent
with the FSS analysis. Also, the exponent �=1 which gov-
erns the vanishing of the mass gap is very clear at L=	. For
the other values of � we have preferred to avoid the infinite-
size algorithm since it is known that it can fail when the
phase structure is complicated.16 From Table I we see that
the DMRG estimate Bc,1

DMRG and the results of Ref. 13 are

globally similar and slightly below the approximation B̃c,1,
especially at large ��−1/2�. The value from Ref. 13 at �
=0.4 is somewhat away from the common values of Bc,1

DMRG

and B̃c,1.
After the determination of the ferromagnetic-

paramagnetic Ising transition, we studied Bc,2��� and the
critical behavior of the modulation q. We have computed by
the DMRG algorithm the spin correlation Czz on large lat-
tices compared to the correlation length r appearing in Eq.
�2�. In practice, L=40 is enough in all the considered cases.
The critical behavior of q�B� is shown in Fig. 4 for �=0.3.
The vanishing of q2 is linear in B−Bc,2. The modulation
parameter vanishes with exponent �q=1/2. The critical field
Bc,2 coincides with the Peschel-Emery value10 with high ac-
curacy.

We have repeated the analysis for �=0.15, 0.2, 0.25, 0.35,
and 0.4, finding always a very good agreement. The agree-
ment at small frustration is remarkable. From the point of
view of the disorder line the next-nearest-neighbor coupling
J2 is a singular perturbation with Bc,2→	 in the isotropic

FIG. 5. Phase diagram in the LFR showing the agreement be-
tween the disorder line computed with DMRG and the exact one-
dimensional line by Peschel-Emery. See Table I for numerical
values.

TABLE I. Comparison of the ferromagnetic and disorder critical fields Bc,1−2 /J1. The DMRG columns are

our data. B̃c,1 is obtained from the vanishing of the gap at second order in the magnetic field. The data from
Ref. 13 have been interpolated at �=0.15,0.35.

� Bc,1
DMRG/J1 Bc,1 /J1 �Ref. 13� B̃c,1 /J1 Bc,2

DMRG/J1 Bc,2 /J1 �Ref. 10�

0.15 0.73405�4� 0.7327�2� 0.74956 1.5168�2� 1.51667

0.20 0.6393�1� 0.6407�4� 0.65336 1.0500�1� 1.05

0.25 0.5403�3� 0.5388�4� 0.55051 0.75001�2� 0.75

0.30 0.43669�4� 0.4368�2� 0.44183 0.53337�5� 0.53333

0.35 0.32821�2� 0.3298�3� 0.32917 0.36428�5� 0.36429

0.40 0.216090�3� 0.2068�3� 0.21548 0.22498�2� 0.225
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Ising limit �→0. We remark that it is nontrivial to extend the
calculation of Ref. 10 off the one-dimensional line to prove
rigorously that the one-dimensional line is the disorder line.
Indeed, the only analytic insight in this direction is the analy-
sis in Ref. 17 where the ODL is proved to be the disorder
line, but only mapping the initial S=1/2 spin chain into a
dual spin T=1/2 chain and taking the T→	 limit.

Our results for Bc,2 are also summarized in Table I to-
gether with the Peschel-Emery value. In Fig. 5 we plot the
final phase diagram as determined by our DMRG simula-
tions.

In conclusion, we have shown that a DMRG analysis of

the quantum ANNNI model provides strong numerical sup-
port to the conjecture that the Peschel-Emery ODL is actu-
ally the disorder line. Also, the critical exponent governing
the vanishing of the modulation at the disorder transition is
�q=1/2.

A natural extension of this work concerns the DMRG
study of the region ��1/2, which requires much larger lat-
tices to analyze the slow algebraic decay of the spin correla-
tion functions in the would-be floating phase.

We acknowledge conversations with G. F. De Angelis, W.
Selke, P. Fendley, and V. Rittenberg.
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