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We study the microscopic structure and the stationary propagation velocity of �1+1�-dimensional solid-on-
solid interfaces in an Ising lattice-gas model, which are driven far from equilibrium by an applied force, such
as a magnetic field or a difference in �electro�chemical potential. We use an analytic nonlinear-response
approximation �P. A. Rikvold and M. Kolesik, J. Stat. Phys. 100, 377 �2000�� together with kinetic Monte
Carlo simulations. Here we consider interfaces that move under Arrhenius dynamics, which include a micro-
scopic energy barrier between the allowed Ising or lattice-gas states. Two different dynamics are studied: the
standard one-step dynamics �OSD� �H. C. Kang and W. Weinberg, J. Chem. Phys. 90, 2824 �1992�� and the
two-step transition-dynamics approximation �TDA� �T. Ala-Nissila, J. Kjoll, and S. C. Ying, Phys. Rev. B 46,
846 �1992��. In the OSD the effects of the applied force and the interaction energies in the model factorize in
the transition rates �soft dynamics�, while in the TDA such factorization is not possible �hard dynamics�. In full
agreement with previous general theoretical results we find that the local interface width under the TDA
increases dramatically with the applied force. In contrast, the interface structure with the OSD is only weakly
influenced by the force, in qualitative agreement with the theoretical expectations. Results are also obtained for
the force dependence and anisotropy of the interface velocity, which also show differences in good agreement
with the theoretical expectations for the differences between soft and hard dynamics. Our results confirm that
different stochastic interface dynamics that all obey detailed balance and the same conservation laws never-
theless can lead to radically different interface responses to an applied force.
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I. INTRODUCTION

To understand the properties of materials one has to un-
derstand surfaces and interfaces: materials interact with their
environment through their surfaces, and material properties
are profoundly influenced by internal interfaces. Processes
related to surfaces and interfaces therefore play a critical role
in nature and in a variety of technological applications, such
as electronic, magnetic, and optical devices, sensors, cata-
lysts, coatings, and many other industrial systems and
processes.1,2 Surfaces also play a vital role in biology and
medicine, since most biological reactions occur at surfaces
and interfaces. The applications of surface science in medi-
cine range from the growth of biocompatible surfaces for
tissue cultures, through medical implants, to the design of
innumerable medical devices.3,4 It is therefore crucial to un-
derstand the fundamental processes occurring at surfaces and
interfaces in order to provide means of controlling and ma-
nipulating such systems. The large-scale properties of grow-
ing interfaces have been the object of an enormous amount
of work in recent years,5,6 but much less attention has been
paid to interfacial structure on a microscopic scale. This is
unfortunate because many important interface properties,
such as mobility and catalytic and chemical activity, are
largely determined by the microscopic interface structure.

The microscopic structure limits the interfacial propagation
velocity under an external driving force, such as an external
field for a magnetic or dielectric domain wall, or a difference
in chemical potential between the bulk phases for a crystal
surface.

Since the detailed microscopic mechanism of the interface
motion is often not known, one standard way to gain insight
into the process is by constructing a stochastic model that
mimics its essential features. Dynamics that conserve the or-
der parameter, or ones that do not, must be chosen according
to the physical characteristics of the system. Once this is
decided, there are several dynamics in each category to
choose among. It is well established that structures arising
from different dynamics that obey detailed balance and re-
spect the same conservation laws exhibit universal
asymptotic large-scale features. However, recent studies7–10

show that there are important differences between the micro-
structures of field-driven interfaces obtained with different
dynamics and that these differences very significantly influ-
ence important interface properties such as mobility. A mean-
field, nonlinear-response theory developed in Refs. 7 and 8
indicates that there are two different classes of nonconserva-
tive dynamics that lead to significantly different surface mi-
crostructures. These are the soft dynamics, in which the
single-site transition rates can be factorized into one part that
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depends only on the applied force and a second part that
depends only on the interaction energies, and the hard dy-
namics, for which this factorization is not possible.11 By this
classification, the widely used Glauber and Metropolis dy-
namics are hard. Soft dynamics are appropriate for solidifi-
cation or adsorption problems where the driving force is a
chemical-potential difference.12,13

In previous papers7,8 two of us introduced a dynamic
mean-field approximation for the microstructure, based on
the Burton-Cabrera-Frank solid-on-solid �SOS� approxima-
tion.14 For soft dynamics, interface structures should remain
independent of the applied force, while there should be a
clear dependence on the force for hard dynamics. Monte
Carlo �MC� simulation results with soft Glauber8 and stan-
dard hard Glauber dynamics8–10 confirm these predictions.
Moreover, SOS surfaces generated with hard Glauber dy-
namics exhibit a skewness that is absent for soft Glauber
dynamics. Since the mean-field results depend on the ab-
sence of short-range correlations along the interfaces, it re-
mains an open question as to which extent these characteris-
tics are shared by all soft and hard dynamics.

For the present study we have considered two dynamics
that include a local energy barrier representing a transition
state inserted between individual Ising or lattice-gas states.
Such Arrhenius dynamics, as they are often called, are ap-
propriate in kinetic MC simulations of discrete Ising or
lattice-gas models in which the discrete states serve as ap-
proximations for high-probability configurations in an under-
lying continuous potential.15,16 Examples are the study of
diffusion in a lattice-gas model in a continuous corrugation
potential,17 the relaxation process from the high-spin state of
molecular bistable solids,18–20 or the approximation of a con-
tinuous spin model with strong uniaxial anisotropy by an
Ising model.21,22 When applied to kinetic Ising lattice-gas
models, Arrhenius dynamics give nucleation rates quite dif-
ferent from the ones given by the standard Glauber
dynamics,23 another warning about the importance of choos-
ing the right dynamics for specific physical or chemical sys-
tems.

The two Arrhenius dynamics that we consider here are the
common one-step-dynamics24,25 �OSD� and the two-step
transition dynamic approximation16,26 �TDA�. The OSD dy-
namics are soft and the TDA dynamics are hard, according to
the definitions given above. Their transition rates are defined
in Sec. II. The OSD dynamics are commonly used in studies
of adsorption, such as the electrosorption of halides on
single-crystal silver electrodes.27–29 Among the experimental
systems that have been described with the TDA dynamics are
the diffusion of H atoms on single-crystal tungsten
surfaces.26

SOS surfaces belong to the Kardar-Parisi-Zhang �KPZ�
dynamic universality class,5,30 in which the macroscopic, sta-
tionary distribution for flat, moving interfaces is Gaussian,
corresponding to a random walk with independent incre-
ments. Nevertheless, the step heights in several discrete
models in this class are correlated at short distances.31,32 In
the mean-field approximation used here, these short-range
correlations are ignored. The resulting discrepancies will be
apparent when we compare the theoretical results with ki-
netic MC simulations.

The remainder of this paper is organized as follows. In
Sec. II we introduce the SOS interface model and give the
transition rates for the TDA and OSD dynamics. In Sec. III
we summarize the mean-field approximation for the time
evolution of the single-step probability density function
�PDF�, as well as its stationary form. We also give expres-
sions for the class populations and interface velocity in terms
of the applied force, the temperature, and the angle of the
interface relative to the lattice axes. In Sec. IV we compare
simulations and analytical predictions for the detailed sta-
tionary interface structure, including the asymmetry of the
simulated nonequilibrium interfaces. A summary and conclu-
sion are provided in Sec. V.

II. MODEL AND DYNAMICS

The SOS interfaces are described by the nearest-neighbor
S=1/2 Ising Hamiltonian with anisotropic, ferromagnetic in-
teractions Jx and Jy in the x and y directions, respectively:

H = − �
x,y

sx,y�Jxsx+1,y + Jysx,y+1 + H� , �1�

where sx,y = ±1, �x,y runs over all sites, and the applied field
H is the driving force. The interface is introduced by fixing
sx,y = +1 and −1 for large negative and positive y, respec-
tively. Without loss of generality we take H�0, such that the
interface on average moves in the positive y direction. This
Ising model is equivalent to a lattice-gas model with local
occupation variables cx,y � �0,1�.33,34 Specifically, we iden-
tify s= +1 with c=1 �occupied or “solid”� and s=−1 with
c=0 �empty or “fluid”�. The interactions in the Ising model,
J�, are related to the ones in the lattice-gas model, ��, as
J�=�� /4, and the applied field is related to the lattice-gas
chemical potential � as H= ��−�0� /2, where �0=−4�Jx

+Jy�=−��x+�y� is the coexistence value of �. Here we will
use Ising or lattice-gas language interchangeably as we feel it
makes a particular aspect of the discussion clearer.

The SOS model considers an interface in a lattice-gas or
S=1/2 Ising system on a square lattice of unit lattice con-
stant as a single-valued integer function h�x� of the x coor-
dinate, with steps ��x�=h�x+1/2�−h�x−1/2� at integer val-
ues of x. A typical SOS interface configuration is shown in
Fig. 1. In this paper the two possible states of the site �x ,y�
are denoted by the two “spin” values sx,y = ±1. �In order that
the step positions and the interface heights be integer as
stated above, we place the spins at odd half-integer values of
x and y—i.e., at the centers of the unit cells separated by
dotted lines in Fig. 1.�

The interface will be made to evolve under two different
dynamics that contain a microscopic energy barrier against
individual spin flips. These are the TDA16,26 and the
OSD.24,25 The barrier represents a transition state which is
inserted between the states allowed in the Hamiltonian, such
as a saddle point in a corrugation potential for particle
diffusion15,17,26 or a high energy associated with a transi-
tional spin state that is not along one of the two directions
allowed by the Ising Hamiltonian.21,22

Here we express the transition-state energy by the
approximation16,24–26
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ET =
Ei + Ef

2
+ U , �2�

where Ei and Ef are the initial and final energies and U is the
bare, microscopic energy barrier. In electrochemical applica-
tions, such as electron- or ion-transfer reactions, this corre-
sponds to the symmetric Butler-Volmer approximation.35 The
construction corresponding to Eq. �2� is illustrated in Fig. 2.

Both the TDA and OSD are single-spin-flip �nonconser-
vative� dynamics that satisfy detailed balance. This ensures
the approach to equilibrium, which in this case is a uniformly
positive phase with the interface pushed off to positive infin-
ity. Such dynamics are defined by a single-spin transition rate
W�sx,y→−sx,y�=W���E ,�U�. Here � is the inverse of the
temperature T �Boltzmann’s constant is taken as unity�, �E
=Ef −Ei is the energy change corresponding to a successful

spin flip, and U determines the energy barrier between the
two states through Eq. �2�. The detailed-balance condition
�valid for transitions between allowed states� is expressed as
W���E ,�U� /W�−��E ,�U�=e−��E, where the right-hand
side is independent of U.

The transition rates for the TDA and OSD dynamics with
the transition-state energy ET given by Eq. �2� are defined
as16,17,26

WTDA =
1

1 + exp���ET − Ei��
1

1 + exp���Ef − ET��
�3�

and24,25

WOSD = exp�− ��ET − Ei�� = exp�− �U�exp�− ��E/2� ,

�4�

respectively.
Notice that the TDA transition rate cannot be factorized

into one part that depends only on the interaction energy and
another that depends only on the applied field; thus, it be-
longs to the class of dynamics defined as hard.11 The OSD
dynamics can be factorized this way and thus is classified as
soft.11 Another important difference between the TDA and
OSD is that WTDA is restricted to be between 0 and 1, while
there is no upper bound on WOSD. As a consequence, the
same difference is observed for the propagation velocities.
One may, however, question the physical realism of cases in
which the transition-state energy ET is below the initial en-
ergy Ei so that WOSD�1. In order to preserve the SOS con-
figuration at all times, flips are allowed only at sites which
have exactly one broken bond in the y direction.

With the Ising Hamiltonian there are only a finite number
of different values of �E. The spins can therefore be divided
into classes,36–39 labeled by the spin value s and the number
of broken bonds between the spin and its nearest neighbors
in the x and y directions, j and k, respectively. The ten spin
classes consistent with the SOS model are denoted jks with
j� �0,1 ,2� and k� �0,1�. They are shown in Fig. 1 and
listed in Table I.

In the SOS model the heights of the individual steps are
assumed to be statistically independent and identically dis-
tributed. The step-height probability density function �PDF�
is given by the interaction energy corresponding to the ���x��
broken Jx bonds between spins in the columns centered at
�x−1/2� and �x+1/2� as

p���x�� = Z���−1X���x��e	�����x�. �5�

The factor X determines the width of the PDF, and 	��� is a
Lagrange multiplier which maintains the mean step height at
an x-independent value, 	��x�
=tan �, where � is the overall
angle between the interface and x axis. In equilibrium, X is
simply the Boltzmann factor e−2�Jx. The partition function is

Z��� = �
�=−


+


X���e	���� =
1 − X2

1 − 2X cosh	��� + X2 , �6�

where 	��� is given by

FIG. 1. A short segment of an SOS interface y=h�x� between a
positively magnetized phase �or “solid” phase in the lattice-gas pic-
ture� below and a negative �or “fluid”� phase above. The step
heights are ��x�=h�x+1/2�−h�x−1/2�. Interface sites representa-
tive of the different SOS spin classes �see Tables I and II� are
marked with the notation jks explained in the text. Sites in the
uniform bulk phases are 00− and 00+. This interface was randomly
generated with a symmetric step-height distribution, corresponding
to �=0. From Ref. 8.

FIG. 2. Schematic picture of the transition barrier in the sym-
metric Butler-Volmer approximation, used to calculate the TDA and
OSD transition rates. After Ref. 23.
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e	��� =
�1 + X2�tan � + ��1 − X2�2tan2 � + 4X2�1/2

2X�1 + tan ��
�7�

�see details in Refs. 7 and 8�. Simple results are obtained for
�=0, which yields 	�0�=0 and

Z�0� = �1 + X�/�1 − X� , �8�

and for �=45� �see Ref. 8�.
The mean spin-class populations 	n�jks�
 are all obtained

from the product of the independent PDF’s for ��x� and
��x�1�. Symmetry of p���x�� under the transformation
�x ,� ,��→ �−x ,−� ,−�� ensures that 	n�jk− �
= 	n�jk+ �
 for
all j and k. Numerical results illustrating the breakdown of
this up-down symmetry for large H are discussed in Sec. IV.
The general expressions for the class populations are given
in the second column of Table II; details of the calculation
can be found in Ref. 7. The results for each of the dynamics
are obtained by substituting their respective values of X,
which will be calculated in the next Section.

Whenever a spin at the interface flips from −1 to +1, the
corresponding column of the interface advances by one lat-
tice constant in the y direction. Conversely, a column �not
necessarily the same one� recedes by one lattice constant
when a spin at the interface flips from �1 to −1. The mean
velocity of the interface in the y direction, 	vy
, is the differ-
ence between the rates of forward and backward steps, aver-

aged over the whole interface. The energy changes corre-
sponding to the flips are given in the third column in Table I.
The sum over x that gives the average velocity can be rear-
ranged into a sum over the spin classes of transition rates,
weighted by the average class populations. Since the spin-
class populations on both sides of the interface are equal in
this approximation, the contribution to 	vy
 from sites in the
classes jk− and jk+ therefore becomes

	vy�jk�
 = W„��E�jk − �,�U… − W„��E�jk + �,�U… . �9�

The mean propagation velocity perpendicular to the interface
becomes

	v��T,H,��
 = cos���	vy
 = cos����
j,k

	n�jks�
	vy�jk�
 ,

�10�

where the sum runs over the classes included in Table II. It
has been shown in Ref. 7 that Eq. �10� reduces to the results
for the single-step36,40–42 and polynuclear growth40,43,44 mod-
els at low temperatures for large and small �, respectively.

III. NONLINEAR RESPONSE

With X=e−2�Jx—i.e., independent of H—the results in
Table II correspond to a linear-response approximation for
the velocity. In previous papers7,8 an expression for a field-

TABLE I. The spin classes in the anisotropic square-lattice SOS model. The first column contains the
class labels jks. The second column contains the total field and interaction energy for a spin in each class,
E�jks�, relative to the energy of the state with all spins parallel and H=0, E0=−2�Jx+Jy�. The third column
contains the change in the total system energy resulting from reversal of a spin from s to −s, �E�jks�. The
fourth and fifth columns contain ET−Ei and Ef −ET, respectively. The first three classes have nonzero popu-
lations in the SOS model, and flipping a spin in any of them preserves the SOS configuration. The other two
classes �marked †� also have nonzero populations in the SOS model, but flipping a spin in any of them would
produce an overhang or a bubble and is therefore forbidden. Note that in this table, s represents the spin value
before the spin flip.

Class, jks E�jks�−E0 �E�jks� ET−Ei Ef −ET

01s −sH+2Jy 2sH+4Jx sH+2Jx+U sH+2Jx−U

11s −sH+2�Jx+Jy� 2sH sH+U sH−U

21s −sH+2�2Jx+Jy� 2sH−4Jx sH−2Jx+U sH−2Jx−U

10s † −sH+2Jx 2sH+4Jy sH+2Jy +U sH+2Jy −U

20s † −sH+4Jx 2sH−4�Jx−Jy� sH−2�Jx−Jy�+U sH−2�Jx−Jy�−U

TABLE II. The mean populations for the spin classes of the SOS interface, with the corresponding contributions to the interface velocity
under the TDA and OSD dynamics. The first column contains the class labels jks. The second column contains the mean spin-class
populations for general tilt angle �, with cosh	��� from Eq. �7�. The third and fourth columns contain the contributions to the mean interface
velocity in the y direction from spins in classes jk− and jk+, Eq. �9�, using the SOS-preserving TDA and OSD dynamics, respectively. For
the TDA dynamics, X=X�T ,H� is given by Eq. �12�, and for the OSD dynamics, X is independent of H and is given by Eq. �13�. In the third
column A= �cosh�2�Jx�cosh��H�+cosh ��U�� and B=sinh�2�Jx�sinh��H�.

Class, jks 	n�jks�
 	vy�jk�
TDA 	vy�jk�
OSD

01s �1−2X cosh	���+X2� / �1−X2�2 e−2�Jx�A sinh��H�+B cosh��H�� / �A2−B2� e−��U+2Jx�2 sinh��H�
11s 2X��1+X2�cosh	���−2X� / �1−X2�2 sinh��H� / �cosh��H�+cosh ��U�� e−�U2 sinh��H�
21s X2�1−2X cosh	���+X2� / �1−X2�2 e2�Jx�A sinh��H�−B cosh��H�� / �A2−B2� e−��U−2Jx�2 sinh��H�
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dependent X�T ,H� was obtained, based on a dynamic mean-field approximation for the equation of motion for the single-step
PDF together with a detailed-balance argument for the stationary state. This improved nonlinear response approximation gives
�see Ref. 8 for details of the calculation�

X�T,H� = e−2�Jx� e−2�HW���− 2H − 4Jx�,�U� + e2�HW���2H − 4Jx�,�U�
W���− 2H − 4Jx�,�U� + W���2H − 4Jx�,�U� �1/2

, �11�

which is independent of 	���. Here W���E ,�U� are the
transition rates associated with the reversal of a single spin.
The values of �E, ET−Ei, and Ef −ET are given in Table I for
the different spin classes.

Equation �11� shows that X�T ,H� depends on the specific
dynamics, except for H=0, where it reduces to its equilib-
rium value, X�T ,0�=e−2�Jx. It is easy to see from the equa-
tion that for soft dynamics, where the field and interaction
contributions to the transition rates factorize, the H depen-

dence in Eq. �11� cancels out. In Ref. 9 it was demonstrated
that the soft Glauber dynamics yields an SOS interface that
is identical to the equilibrium SOS interface at H=0 and the
same temperature, regardless of the value of H. Hard dynam-
ics, such as the standard Glauber and Metropolis dynamics
and the TDA, lead to a nontrivial field dependence in X.

Inserting the transition rates corresponding to the TDA
and OSD dynamics, defined by Eqs. �3� and �4�, respectively,
into Eq. �11�, we explicitly get

XTDA�T,H� = e−2�Jx� e2�Jxcosh�2�H� + e−2�Jx + 2cosh��U�cosh��H�
e−2�Jxcosh�2�H� + e2�Jx + 2cosh��U�cosh��H��1/2

�12�

and

XOSD�T,H� = e−2�Jx = X�T,0� . �13�

We note that XTDA is similar, but not identical, to the one for
the standard Glauber dynamics, Eq. �18� of Ref. 8. The spin-
class populations listed in Table II can now be calculated
explicitly for each of the dynamics by replacing X with its
corresponding value. The expressions for the contributions to
the mean velocity in the y direction, Eq. �9�, for each class in
the TDA and OSD dynamics are given in the third and fourth
columns of Table II, respectively.

In the next section we show that the nonlinear-response
approximation gives good agreement with MC simulations
of driven, flat SOS interfaces evolving under the TDA and
OSD dynamics for a wide range of fields and temperatures.

IV. COMPARISON WITH MONTE CARLO
SIMULATIONS

We calculated the step-height distributions, propagation
velocities, and spin-class populations, analytically and by ki-
netic MC simulations, for both the TDA and OSD dynamics
in the isotropic case, Jx=Jy =J. The details of our particular
implementation of the n-fold way, rejection-free MC
algorithm37,38 are essentially the same as described in Ref. 7,
except for two points. The first is that only transitions from
the classes with one broken y bond �k=1� are allowed, so as
to preserve the SOS interface structure. The second differ

ence is that the present code uses continuous time45 to ac-
commodate the large transition rates that are possible with
the OSD dynamics. By keeping only the interface sites in
memory, the algorithm is not subject to any size restriction in
the y direction and simulations can be carried out for arbi-
trarily long times.

The numerical results presented here are based on MC
simulations mostly at the two temperatures T=0.2Tc and 0.6
Tc �Tc=−2J / ln�2−1��2.269J is the critical temperature
for the isotropic, square-lattice Ising model46�, with Lx

=10 000 and fixed � between 0 and 45�. The microscopic
transition barrier U �see Eq. �2�� is chosen to be 0.5J. This is
the same value used in a previous study of nucleation with
the OSD and TDA dynamics.23 From Eq. �4� it is clear that
for the OSD dynamics U only appears in a temperature-
dependent scaling factor in the transition rate. It thus has no
influence on the interface structure. For the TDA dynamics,
on the other hand, an increase in U leads to a decrease in the
local interface width and consequently in the propagation
velocity. Also, the observed skewness increases, suggesting
increasing short-range correlations between the step heights.
These results are discussed in detail in a separate paper.47

In order to ensure stationarity we ran the simulation for
50 000 n-fold way updates per updatable spin �UPS� before
taking any measurements. Stationary class populations and
interface velocities were averaged over 50 000 UPS. For the
stronger fields at T=0.2Tc we used 10 times as many UPS.
Adequate statistics for one- and two-step PDF’s were en-
sured by the large Lx.

MICROSTRUCTURE AND VELOCITY OF FIELD-DRIVEN… PHYSICAL REVIEW B 73, 045437 �2006�

045437-5



A. Stationary single-step probability densities

Stationary single-step PDF’s were obtained by MC simu-
lation at T=0.2Tc and 0.6Tc for �=0 and several values of
H. The simulation data and the theoretical results for p��� are
shown in Figs. 3 and 4 for the TDA and OSD dynamics,
respectively. The theoretical results are calculated with Eq.
�5�, with X�T ,H� from Eq. �12� for the TDA dynamics and
from Eq. �13� for the OSD dynamics. For the TDA dynam-
ics, Fig. 3, the agreement is excellent at the higher tempera-
ture for all the values of H analyzed �up to H /J=4�. How-
ever, at the lower temperature the agreement is not very good
for fields above H /J=2.5. For the OSD dynamics, Fig. 4
shows that, contrary to the theoretical mean-field results,
p��� depends somewhat on H. This dependence is stronger
for small fields and at the lower temperature. However, al-
though not absent as expected from the mean-field approxi-
mation, the field dependence is much weaker than for the
TDA dynamics.

Another way to compare the analytical and simulation
results is by calculating 	�� � 
 by summation of Eq. �5�,
	�� � 
=2X / �1−X2�, with X from Eq. �12� for the TDA dynam-

ics or X from Eq. �13� �independent of H� for the OSD, and
comparing these values with the simulated ones. The simu-
lation values for 	�� � 
 can be obtained in two ways: directly
by summation over the numerically obtained PDF and also
from the probability of zero step height as 	�� � 
= �p�0�−1

− p�0�� /2. This latter expression is obtained by observing
that p�0�= �1−X� / �1+X� for �=0, then solving this for X,
and inserting the result into the above equation for 	�� � 
 in
terms of X. The results are shown in Fig. 5 for both dynam-
ics, for �=0 at T=0.2Tc and 0.6Tc calculated theoretically
�solid lines� and by MC simulation �symbols�. The agree-
ment between the simulation and theoretical results for the
TDA is excellent except at the low temperature, where for
intermediate fields a slight deviation can be seen. The results
are similar to those obtained with the standard Glauber dy-
namics. �See Fig. 5�a� of Ref. 8.� Again the results for the
OSD dynamics show that, contrary to the theoretical predic-
tion, there is a clear, albeit weak, dependence of the step
height on the field. The theoretical and simulation results for
the OSD dynamics only coincide at H /J=0.

FIG. 3. �Color online� MC �data points� and analytical �solid
lines� results for the stationary single-step PDF calculated with the
TDA dynamics, shown on a logarithmic scale vs �, for the values of
H /J given in the legend. �a� T=0.2Tc. �b� T=0.6Tc. The symbols
�and colors� have the same interpretations in �a� and �b�.

FIG. 4. �Color online� The stationary single-step PDF calculated
with the OSD dynamics, shown on a logarithmic scale vs �. The
data points indicate MC results, and the straight lines are the theo-
retical predicted values �independent of H�. The values of H /J are
given in the legend. �a� T=0.2Tc. �b� T=0.6Tc. The symbols and
colors have the same interpretations in �a� and �b�. Note the very
different scales from Fig. 3.
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The difference between the two dynamics is evident: the
step heights for the OSD dynamics are weakly dependent on
H, particularly for low values of H, in contrast with the very
strong H dependence obtained for the TDA dynamics. This
behavior is typical for differences expected between soft and
hard dynamics.9

B. Stationary interface velocities

In this section we compare the interface velocities ob-
tained for the TDA and OSD dynamics. In each case the
velocities are calculated with the analytical approximation,
Eq. �10�, and by simulations. Figures 6�a� and 6�b� show the
normal velocity versus H for �=0 for the TDA and OSD
dynamics, respectively. There is excellent agreement be-
tween the MC results and the nonlinear-response theory for
the TDA dynamics, except for a slight disagreement seen at

0.2Tc between H /J=1.5 and 2.5. The results are very similar
to those obtained with the standard Glauber dynamics. �See
Fig. 6 of Ref. 8.� However, for the OSD dynamics at the
lower temperature, the nonlinear-response approximation un-
derestimates the velocity, especially at higher fields. One of
the main differences between the two dynamics is clearly
seen in Fig. 6: the velocity is bounded by unity for the TDA
while it increases exponentially with H for the OSD.

The dependence of the normal velocity on the tilt angle �
is shown in Figs. 7 and 8, for the TDA and OSD dynamics,
respectively. We show results for several values of H /J at
T=0.2Tc and T=0.6Tc. For the TDA dynamics, the agree-
ment between the theoretical results and simulations is ex-
cellent. The results are qualitatively similar to those obtained
with the standard Glauber dynamics. �See Fig. 7 of Ref. 8.�
For the OSD, the agreement between theory and simulation
is excellent at the higher temperature. However, at the lower
temperature and higher fields the agreement is only good at
large values of �.

In both cases it is seen that at T=0.2Tc in weak fields the
velocity increases with �, in agreement with the polynuclear

FIG. 5. Average stationary step height 	�� � 
 vs H for �=0 at
T=0.2Tc and 0.6Tc. The curves represent the theoretical results. The
MC data were obtained directly by summation over the simulated
single-step PDF’s �asterisks and crosses� and from the probability
of zero step height �circles and squares�. See the text for details.
Curve with circles and asterisks: T=0.2Tc. Curve with squares and
crosses: T=0.6Tc. �a� TDA dynamics, shown on a logarithmic ver-
tical scale. �b� OSD dynamics, shown on a linear vertical scale. In
this and all the following figures, the statistical uncertainty is much
smaller than the symbol size.

FIG. 6. The average stationary normal interface velocity 	v�
 vs
H for �=0. The MC results are shown as data points, circles for
T=0.2Tc and squares for T=0.6Tc, and the theoretical results as
solid curves. �a� TDA, shown on a linear vertical scale. �b� OSD,
shown on a logarithmic vertical scale.
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growth model at small angles and the single-step model for
larger angles. However, for strong fields the TDA dynamics
change gradually to the reverse anisotropy of Eden-type
models.48,49 No such change is observed for the OSD dy-
namic. At T=0.6Tc, on the other hand, both models behave
very similarly. The velocity is nearly isotropic for weaker
fields, while becoming Eden-like for stronger fields.

The temperature dependence of the normal interface ve-
locity is shown in Fig. 9 for several values of H /J. For the
TDA dynamics, Fig. 9�a�, the agreement between the simu-
lations and analytical results is excellent almost everywhere,
except for a small discrepancy at intermediate T and H. This
discrepancy is expected from the results shown in Fig. 6.
This figure shows that at low T, the velocity changes steeply
from zero to unity at some value between H /J=2 and H /J
=2.5, developing a step discontinuity in H at T=0. The re-
sults are qualitatively similar to those obtained with the stan-
dard Glauber dynamics. �See Fig. 8 of Ref. 8.� For the OSD,
Fig. 9�b�, the theoretical and simulation results agree only
when the temperature is higher than a minimum value that
increases as the field increases. In this case the velocity also

has a step discontinuity at T=0: for H /J below 1.5 the ve-
locity goes to zero. For stronger fields the velocity at T=0
increases dramatically with H and decreases very rapidly as
the temperature increases. As can be seen from Eq. �10� and
Table II, the mean-field theory predicts that the contributions
to the propagation velocity from each of the classes at low T
is proportional to exp�−��2Jx+U−H��. Thus, there is a dis-
continuity at T=0 for H=2Jx+U—i.e., for H /J=2.5 for our
selection of U=0.5J. Beyond this value of H, the velocity
diverges to infinity as T→0. Such a divergence at T=0 is not
present for the soft Glauber dynamics, where the velocity
vanishes at T=0 for all values of H.10

C. Spin-class populations and skewness

Since the analytical predictions for the class populations
are based on the assumption that different steps are statisti-
cally independent, a comparison with the simulation results
gives a way of testing this assumption. The six mean class

FIG. 7. The average stationary normal interface velocity 	v�
 vs
tan �, calculated with the TDA dynamics, for H /J=0.1 �up tri-
angles�, 0.5 �circles�, 1 �squares�, 1.5 �diamonds�, and 2.0 �left tri-
angles�. The symbols represent MC data and the solid curves ana-
lytical results. �a� T=0.2Tc. �b� T=0.6Tc.

FIG. 8. The average stationary normal interface velocity 	v�
 vs
tan �, calculated with the OSD dynamics, for H /J=0.1 �up tri-
angles�, 0.5 �circles�, 1 �squares�, 1.5 �diamonds�, and 2.0 �left tri-
angles�. The symbols represent MC data and the solid curves ana-
lytical results. �a� T=0.2Tc. �b� T=0.6Tc. Note the difference in the
vertical scales.
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populations 	n�01s�
, 	n�11s�
, and 	n�21s�
 with s= ±1 – for
�=0 at T=0.2Tc and 0.6Tc are shown versus H in Figs. 10
and 11 for the TDA and the OSD dynamics, respectively. For
the TDA at both temperatures, Fig. 10, the analytical ap-
proximations follow the average of the populations for s=
+1 and s=−1 quite well. However, at intermediate fields the
simulations show that the population in front of the surface
�s=−1� is quite different from the one behind it �s= +1�. The
mean-field approximation seems to reproduce better the
population behind the surface. The results are qualitatively
similar to those obtained with the standard Glauber dynam-
ics. �See Fig. 9 of Ref. 8.� For the OSD, Fig. 11, the mean-
field approximation predicts that the mean class populations
should be independent of H �since X is independent of H�,
while the simulation indicates a weak H dependence. For
small fields there is a clear dependence of the population on
the field, but as the field increases, the populations tend to
fixed values independent of the field. The H dependence is

consistent with the results for 	�� � 
 and X�T ,H�, shown in
Fig. 5�b�.

The short-range correlations between neighboring steps
are responsible for the skewness between the spin popula-
tions on the leading and trailing edges of the interface that
appears in the simulation results. This phenomenon is com-
monly observed in driven interfaces. It occurs even when the
long-range correlations vanish as they do for interfaces in
the KPZ dynamic universality class, to which the present
models belong for all finite, nonzero values of H. Skewness
has also been observed in several other SOS-type models,
such as the body-centered SOS model studied by Neergaard
and den Nijs,31 the model for step propagation on crystal
surfaces with a kink-Ehrlich-Schwoebel barrier studied by
Pierre-Louis et al.,50 and a model for the local time horizon
in parallel kinetic MC simulations studied by Korniss et al.32

No skewness was observed for the SOS model with the soft
Glauber dynamics.9 However, a small skewness was ob-
served for the Ising model �whose interfaces include bubbles
and overhangs� with soft Glauber dynamics �about two or-
ders of magnitude smaller than the skewness observed for

FIG. 9. �Color online� The average stationary normal interface
velocity 	v�
 vs T for �=0 and H /J between 0.5 and 3.5. MC data
are represented by data points and analytical results by solid curves.
From below to above, the values of H /J are 0.5 �circles�, 1.0
�squares�, 1.5 �diamonds�, 2.0 �up triangles�, 2.5 �left triangles�, 3.0
�down triangles�, and 3.5 �right triangles�. Online, the colors of the
curves and symbols match. �a� TDA, on a linear vertical scale. �b�
OSD, on a logarithmic vertical scale.

FIG. 10. Mean stationary class populations 	n�jks�
 vs H /J for
�=0, calculated for the TDA dynamics. The simulation results are
indicated by symbols and the analytic approximations by solid
curves. �a� T=0.2Tc. �b� T=0.6Tc. The symbols have the same in-
terpretations in �a� and �b�. Note the different vertical scales in the
two parts.
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the hard Glauber dynamics�.10 The correlations associated
with the skewness generally lead to a broadening of protru-
sions on the leading edge �“hilltops”�, while those on the
trailing edge �“valley bottoms”� are sharpened,31 or the other
way around.32 In terms of spin-class populations, the former
corresponds to 	n�21− �
� 	n�21+ �
 and 	n�11+ �
� 	n�11
− �
. The relative skewness can therefore be quantified by the
two functions31

� =
	n�21 − �
 − 	n�21 + �

	n�21 − �
 + 	n�21 + �


�14�

and8

 =
	n�11 + �
 − 	n�11 − �

	n�11 + �
 + 	n�11 − �


. �15�

These two skewness parameters are shown together in Fig.
12�a� for the TDA and in Fig. 12�b� for the OSD. For both
dynamics the relative skewness is seen to be considerably
stronger at the lower temperature. The temperature depen-

dence is especially pronounced for �, due to the low concen-
tration of sites in the class 21� at low temperatures. The
OSD results contrast with previous results that showed that
an SOS interface with soft Glauber dynamics does not
present skewness.9 In the present case, the SOS interface
evolving under the soft OSD dynamics presents stronger
relative skewness at lower temperature than the one evolving
under the hard TDA dynamics.

Another way to visualize the skewness is to consider the
joint two-step PDF p���x� ,��x+1��. Logarithmic contour
plots of this quantity for both dynamics at different values of
H, for �=0 at T=0.6Tc, are shown in Figs. 13 and 14. It is
clearly seen that in both dynamics the contours change with
H. For H�0 a symmetric diamond shape with equidistant
contours indicates statistical independence with single-step
PDF’s given by Eq. �5�. This equilibrium result is correctly
observed in both the TDA dynamics, Fig. 13�a�, and the OSD
dynamics, Fig. 14�a�. However, for nonzero fields the dy-
namics show different behavior. For the TDA, at stronger
fields, the shapes are convex in the second quadrant ���x�
�0,��x+1��0�, Figs. 13�c� and 13�d�. This shape indicates
that large negative ��x� tend to be followed by large positive

FIG. 11. Mean stationary class populations 	n�jks�
 vs H /J for
�=0 calculated for the OSD dynamics. The simulation results are
indicated by the symbols, and the straight lines indicate the theoret-
ical predicted values �independent of H�. �a� T=0.2Tc. �b� T
=0.6Tc. The symbols have the same interpretations in �a� and �b�.
Note the different vertical scales in the two parts.

FIG. 12. The two relative skewness parameters � �circles� and 
�squares�, defined in Eqs. �14� and �15�, respectively. The param-
eters are shown vs H for �=0, at T=0.2Tc �open symbols� and at
T=0.6Tc �solid symbols�. �a� TDA. �b� OSD. Note the different
vertical scales in the two parts.
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FIG. 13. Contour plots of log10p���x� ,��x+1�� for �=0 at T
=0.6Tc for the TDA dynamics. �a� H /J=0. �b� H /J=1.0. �c� H /J
=2.0. �d� H /J=3.5. Note the different scales in the four parts. See
discussion in the text.

FIG. 14. Contour plots of log10p���x� ,��x+1�� for �=0 at T
=0.6Tc for the OSD dynamics. �a� H /J=0. �b� H /J=1.0. �c� H /J
=2.0. �d� H /J=2.5. See discussion in the text.
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��x+1� �sharp valleys�. For weak fields, the TDA shows a
weak skewness of the opposite sign, as seen in Fig. 13�b�.
For the OSD dynamics, for all nonzero fields, the shapes are
concave in the second quadrant, Figs. 14�b�–14�d�. This
shape indicates that large negative ��x� tend to be followed
by smaller positive ��x+1� �rounded valleys�. For both dy-
namics the field dependence in the fourth quadrant, corre-
sponding to the shape of “hilltops,” is much weaker that in
the second quadrant. As expected, the contour plots for in-
terfaces with �=0 are always symmetric about the line ��x
+1�=−��x� for both dynamics.

V. DISCUSSION AND CONCLUSIONS

In this work we have continued our studies of the micro-
structure of an unrestricted SOS interface driven far from
equilibrium by an applied field. Previous studies indicate that
different dynamics can lead to important differences in the
microstructure of the moving interface and that extreme care
therefore must be taken in selecting stochastic dynamics ap-
propriate for the specific physical system of interest.7–10

For this study we have considered two dynamics that in-
clude a local energy barrier representing a transition state
inserted between the individual Ising or lattice-gas states.
Such Arrhenius dynamics, as they are often called, are ap-
propriate in kinetic MC simulations of discrete Ising or
lattice-gas models in which the discrete states serve as ap-
proximations for high-probability configurations in an under-
lying continuous potential.

The two Arrhenius dynamics that we considered are the
commonly used OSD24,25 and the two-step TDA.16,17,26 The
OSD belongs to the class of dynamics known as soft and the
TDA to the class known as hard.11

We studied the microstructure and velocity of the SOS
interface by kinetic MC simulations and by a nonlinear
mean-field theory developed in previous papers.7,8 We calcu-
lated the interface velocity as a function of the driving field,
temperature, and angle of the interface relative to the lattice
axes. We also studied the local shape of the interface in terms
of the spin-class populations, the average height of a step,
and the probability density for individual steps in the inter-
face. The theory predicts significant differences between in-
terfaces moving under hard and soft dynamics. For soft dy-
namics, interface structures should remain independent of
the applied field, while there must be a clear dependence on
the field for hard dynamics.

For the TDA dynamics we found generally very good
agreement between the theoretical predictions and the MC
simulations. However, for the OSD dynamics we found that,
contrary to the theoretical prediction, there is a weak but
clear dependence of the interface structure on the field. This
dependence is manifest in the average stationary step height
and in the mean stationary class populations, which both
show a weak dependence with the field that saturates for
strong fields. As a consequence of this dependence, the the-
oretical results for the velocities do not match very closely
the simulated results for low temperatures, particularly for
strong fields and small angles.

The interfaces moving under the hard TDA dynamics
present similar characteristics to those evolving under a hard
Glauber dynamics. However, we found significant differ-
ences between the structure of surfaces evolving under the
soft OSD dynamics and the soft Glauber dynamics studied in
Ref. 9. The velocities under the OSD dynamics present a
discontinuity at T=0 that is not observed for the soft Glauber
dynamics. More interesting is the existence of strong skew-
ness in the OSD model. This indicates that lack of skewness
is not a necessary characteristic of soft dynamics, as earlier
results seemed to suggest.9,10

Within the mean-field approximation used here, indi-
vidual steps of the interface are assumed to be statistically
independent. Short-range correlations are not taken into ac-
count by this approximation. The skewness between the spin
population on the leading and trailing edges of the interface
is a consequence of such short-range correlations. For both
the TDA and OSD dynamics, the interfaces undergo a
gradual breakdown of up-down symmetry for increasing
fields, which has also been observed in other examples of
driven interfaces.31,32,50 This breakdown is clearly evident for
the OSD model, and it is probably the reason why the mean-
field approximation misses the weak field dependence in the
OSD interface structure.

It is obviously important to note and eventually to under-
stand the discrepancies between the theoretical mean-field
predictions and the simulation results for the OSD dynamics.
However, on a qualitative level the theory predicts quite ac-
curately the differences between the structures generated by
the two dynamics. The average step height for the TDA in-
creases dramatically with increasing field, as accurately pre-
dicted by the theory. For the OSD, the step height does in-
crease somewhat with H, in contrast to the theoretical
prediction of H independence, but the increase is very small.
In comparison with the TDA, the OSD surface remains very
smooth, with an average step height well below unity.

As in previous studies, our results indicate strong differ-
ences between interfaces moving under different dynamics,
emphasizing the need for extreme care in selecting the ap-
propriate dynamics for the physical system of interest. Even
in cases where soft dynamics are the more appropriate
choice, as for solidification or adsorption problems where the
driving force is a chemical-potential difference,12,13,27–29 the
results can depend significantly on which soft dynamics are
chosen.
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