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Nanoribbons �nanographite ribbons� are carbon systems analogous to carbon nanotubes. We characterize a
wide class of nanoribbons by a set of two integers �p ,q�, and then define the width w in terms of p and q.
Electronic properties are explored for this class of nanoribbons. Zigzag �armchair� nanoribbons have similar
electronic properties to armchair �zigzag� nanotubes. The band gap structure of nanoribbons exhibits a valley
structure with streamlike sequences of metallic or almost metallic nanoribbons. These sequences correspond to
equiwidth curves indexed by w. We reveal a peculiar dependence of the electronic property of nanoribbons on
the width w.
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I. INTRODUCTION

Nanometric carbon materials exhibit various remarkable
properties depending on their geometry.1–11 In particular, in-
tensive research has been made on carbon nanotubes3 in the
last decade. Carbon nanotubes are obtained by wrapping a
graphene sheet into a cylinder form. The large interest cen-
ters their peculiar electronic properties inherent to quasi-one-
dimensional systems.

A similarly fascinating carbon system is a stripe of a
graphene sheet named nanographite ribbons, graphene rib-
bon, or nanographene.12–19 We call them carbon nanoribbons
in comparison with carbon nanotubes. They can be manufac-
tured by deposition of nanotubes or diamonds.20–23 Experi-
mental studies have begun only recently.24–27 Nanoribbons
have a higher variety than nanotubes because of the exis-
tence of edges. Wide nanoribbons with zigzag edges have
been argued to possess the flat band and show edge
ferromagnetism.15 Though quite attractive materials, their
too rich variety has made it difficult to carry out a systematic
analysis of carbon nanoribbons.

In this paper we make a proposal to characterize a wide
class of nanoribbons by a set of two integers �p ,q� represent-
ing edge shape and width. The width w is defined in terms of
p and q. We present a systematic analysis of their electronic
property in parallel to that of nanotubes. Carbon nanotubes
are regarded as a periodic-boundary-condition problem while
carbon nanoribbons are as a fixed-boundary-condition prob-
lem. By calculating band gaps they are shown to exhibit a
variety of properties in electronic conduction, from metals to
typical semiconductors. Several sequences of metallic or al-
most metallic �MAM� points are found in the valley of semi-
conducting nanoribbons. We reveal a peculiar dependence of
the electronic properties of nanoribbons on the width w. For
instance, these sequences and equiwidth curves become al-
most identical for wide nanoribbons. We also point out that
the distribution of van Hove singularities as a function of w
shows a peculiar stripe pattern.

This paper is composed as follows. In Sec. II we charac-
terize a wide class of nanoribbons by a set of two integers
�p ,q� and introduce the width w. In Sec. III, making a nu-
merical study, we present an overview of the band gap struc-

ture for this class of nanoribbons. In Sec. IV we compare
nanoribbons with nanotubes. Zigzag nanoribbons, being in-
dexed by �p ,0� with even p, correspond to armchair nano-
tubes; armchair nanoribbons, indexed by �p ,1� with odd p,
correspond to zigzag nanotubes. In Sec. V we discuss se-
quences of metallic points developed in the valley of semi-
conducting nanoribbons, where the metallic points on the
principal sequence are derived analytically. In Sec. VI we
analyze sequences of MAM points more in detail. The
nth sequence starts from the metallic armchair nanotube
�3n−1,1�. It approaches the equiwidth curve with w=n for
wide nanoribbons. In Sec. VII we discuss edge effects. We
take them into account in three ways: the nonuniform site
energy, the nonuniform transfer energy, and the band filling
factor.

II. CLASSIFICATION OF CARBON NANORIBBONS

A carbon nanoribbon is a one-dimensional aromatic com-
pound. We have illustrated a typical structure in Fig. 1�a�. It
consists of carbon atoms of a honeycomb structure. A carbon
on the edge is terminated by a different atom such as a hy-
drogen so that it has no dangling bond. All carbon atoms are
connected by � bonds between sp2 hybridized orbitals of 2s,
2px, and 2py, providing with a framework of honeycomb
lattice. On the other hand, the � bond is formed between two
2pz orbitals. The � bands cross the Fermi energy, while the �
bands are far away from it. Hence it is a good approximation
to take into account only � electrons to investigate electronic
properties of nanoribbons. Each carbon atom has the com-
plete shell and there is one electron per atom.

Embedding them into a honeycomb lattice �Fig. 1�b��, we
classify nanoribbons as follows. An arbitrary lattice point on
a honeycomb lattice is described by the lattice vector

R = xa + yb , �1�

where a and b are primitive lattice vectors while x and y are
integers �Fig. 1�b��. First we take a basic chain of m con-
nected carbon hexagons, as depicted in dark gray. Second we
translate this chain by the translational vector
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T = ± qa + b , �2�

as depicted in light gray, where q is an arbitrary integer
�q�m�. Repeating this translation many times we construct
a nanoribbon indexed by a set of two integers �p ,q�, where
p=m−q. In what follows we analyze the class of nanorib-
bons generated in this way.

The indices p and q specify the type of nanoribbons. The
case with q=0 represents a zigzag nanoribbon with zigzag
edge, while the case with q=1 represents an armchair nan-
oribbon with an armchair edge. The nanoribbons with �1,0�,
�1,1�, and �2,1� are known as polyacene, polyphenanthrene,
and polyperynaphthalene,12,13,20,23,28 respectively �Fig. 2�.

We propose to define the width of the nanoribbon by

w = 2m sin � =
2�p + q�

�3�2q + 1�2 + 9
, �3�

where � is the angle between the basic chain and the trans-
lational vector

tan � =
�3

2q + 1
, �4�

as in Fig. 1�b�. There is a freedom to normalize the width.
We have normalized the width of an armchair nanoribbon
indexed by �p ,1� to be

w =
p + 1

3
�5�

by the reason that becomes clear in Sec. VI. Then, the width
of zigzag nanoribbons indexed by �p ,0� becomes

w =
p
�3

. �6�

The width of a nanoribbon corresponds to the diameter of a
nanotube. Though a nanoribbon is specified by two integers,
we expect that the electronic properties of wide nanoribbons
is mainly controlled by the width w.

The above classification rule is similar to that of nano-
tubes based on the chiral vector or the rolling up
vector,10,11,29 but it is clearly different since some nanorib-
bons cannot be rolled up into nanotubes. We discuss the cor-
respondence between nanoribbons and nanotubes in Sec. IV.

III. ELECTRONIC STRUCTURE OF NANORIBBONS

We calculate the band structure of nanoribbons based on
the nearest-neighbor tight-binding model, which has been
successfully applied to the studies of carbon nanotubes.10

The tight-binding Hamiltonian is defined by

H = �
i

�ici
†ci + �

�i,j�
tijci

†cj , �7�

where �i is the site energy, tij is the transfer energy, and ci
† is

the creation operator of the � electron at the site i. The
summation is taken over the nearest neighbor sites �i , j�. In
the case of nanotubes, constant values are taken for �i and tij
due to their homogeneous geometrical configuration. Fur-
thermore, since there exists one electron per one carbon, the
band-filling factor is 1 /2. In the case of nanoribbons, on the
contrary, they would be modified by the existence of the
edges. �a� The site energy would be modified by the differ-
ence of electronegativity of X, where X represents a different
atom such as hydrogen. �b� The transfer energy would be
modified by a possible lattice distortion near the edge. �c�
The band-filling factor would be modified due to the dipole
moment of C-X bonds. It is our basic assumption that the
carbon nanoribbon can be analyzed based on this Hamil-
tonian together with these three modifications.

FIG. 1. �a� A typical structure of nanoribbons. A solid circle
stands for a carbon atom with one � electron, while an open circle
for a different atom such as a hydrogen. A closed area represents a
unit cell. It is possible to regard the lattice made of solid circles as
a part of a honeycomb lattice. �b� A nanoribbon is constructed from
a chain of m connected carbon hexagons, as depicted in dark gray,
and by translating this chain by the translational vector T= ±qa
+b many times, as depicted in light gray, where q�m. A nanorib-
bon is indexed by a set of two integers �p ,q� with p=m−q. Here we
have taken m=4, q=2, p=2.

FIG. 2. The geometric configuration of �a� the polyacene series
having zigzag edges, �b� the polyphenanthrene series having arm-
chair edges, and �c� the polyperylene series having armchair edges.
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It is convenient to take a unit cell as shown in Fig. 1�a�.
There are �4q+2p+2� carbon atoms in a unit cell of the
nanoribbon indexed by �p ,q�, as implied that the proper
functions of the Hamiltonian H consist of �4q+2p+2� Bloch
wave functions 	�i�. We take overlap integrals as

�� j	�i� = �ij , �8�

where �ij is Kronecker’s �. The � bands of nanoribbon are
derived from the Hamiltonian H�k ; p ,q� with k the crystal
momentum, which is a �4q+2p+2�	 �4q+2p+2� matrix.
The band structure is determined by

det��I − H�k;p,q�� = 0, �9�

where I is a unit matrix due to the overlap integral.
Though the nanoribbon may have different values of �i

and tij for atoms on the edge from the others, as we have
remarked, the difference is expected to be quite small. We
first neglect the difference. Namely, we take the transfer en-
ergy to be t between all the nearest neighbor sites and oth-
erwise to be 0. It is generally taken10 as t=−3.033 eV. We
also neglect the site energy term in the Hamiltonian �7� by
taking all the site energy �i equal. We discuss how the gap
structure is modified by edge corrections in Sec. VII.

We have solved the eigenvalue problem �9� numerically
for �. Typical band structures are shown in Fig. 3. As is seen
in the figures, band structures depend strongly on the parity
of q, but only weakly on p. We also find the following: �a�
For metallic nanoribbons, the Fermi point of even q is at k
=�, and that of odd q is at k=0. �b� For semiconducting
nanoribbons, the band gap minimum of even q is at k=�,
and that of odd q is at k=0.

As a main result we display an overview of the band gap
structure of nanoribbons in Fig. 4. Gapless states �repre-
sented by black squares� are metallic, and gapfull states �rep-
resented by all other squares� are semiconducting. There are
a variety of semiconducting nanoribbons from almost gap-
less ones �represented by dark gray squares� to large gapfull
ones �represented by light gray squares�. We observe clearly
three emergence patterns of metallic points: �a� Metallic
points �p ,0� for all p. �b� Metallic points �p ,1� with p
=2,5 ,8 ,11, . . .. �c� Several sequences of metallic points on
“streams” in valleys. We discuss �a� and �b� in Sec. IV, and
�c� in Sec. V and VI.

IV. NANORIBBONS VERSUS NANOTUBES

It is observed that nanoribbons indexed by �p ,0� are me-
tallic for all p, which are in the polyacene series with zigzag
edges �Fig. 2�a��. Nanoribbons indexed by �p ,1� with p
=2,5 ,8 ,11, . . . are found to be also metallic, which have
armchair edges �Figs. 2�b� and 2�c��. This series has period
3, as is a reminiscence of the classification rules familiar for
nanotubes. The classification rule says that a nanotube is
metallic when n1−n2 is an integer multiple of 3, and other-
wise semiconducting, where �n1 ,n2� is a chiral vector of the
nanotube.

Let us explore the correspondences more in detail. There
is a group of nanoribbons each of which is constructed as a

development of a nanotube by cutting it along the transla-
tional vector. For example, a zigzag nanoribbon �q=0� with
even p may be regarded as a development of the armchair
nanotube whose chiral vector is �p /2 , p /2�. All zigzag nan-
oribbons are metallic, as corresponds to the fact that all arm-
chair nanotubes are metallic. As another example, an arm-
chair nanoribbon �q=1� with odd p may be regarded as a
development of a zigzag nanotube whose chiral vector is
��p+1� /2 ,0�. Armchair nanoribbons are metallic with period
of 3, as corresponds to the fact that metallic zigzag nano-
tubes emerge by period of 3.

The correspondence between these metallic points may be
explained by the absence of spiral currents in carbon nano-
tubes. Namely, currents flowing along the axis of nanotubes
are not affected by cutting along the axis. There is no direct
correspondence between chiral nanotubes and nanoribbons
for q
2.

V. SEQUENCE OF METALLIC NANORIBBONS

It is remarkable that there are series of discrete metallic
points on one-dimensional curves in Fig. 4. These curves
look like streams in valleys. The prominent ones are at �1,0�,
�2,1�, �3,3�, �4,6�, �5,10�, �6,15�, ….We regard them to form
the principal sequence of metallic points of nanoribbons.

FIG. 3. The band structure of nanoribbons. The horizontal axis
is the crystal momentum k, −��k��, while the vertical axis is the
energy �, −3	t	���3	t	 with 	t	=3.033 eV. The band structure de-
pends strongly on the index q for fixed p, but depends on the index
p only weakly for fixed q.
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There are also sequences of metallic points on higher curves.
We are able to derive the principal sequence analytically.

We start with the observation that the density of states at the
Fermi energy is D��F��0, if the band structure of nanorib-
bons are gapless; otherwise, D��F�=0. This follows from the
reflection symmetry around �=0 and the existence of one
electron per one atom. The reflection symmetry is due to a
bipartite lattice structure of graphite.30 Consequently, to in-
vestigate the metallic points, it is enough to analyze

det�H�k;p,q�� = 0. �10�

We have D��F��0 if this equation has a solution, and the
nanoribbon is gapless; otherwise it is gapfull. We find simple
structures at q=0 and for q
 p−1.

At q=0, the determinant �10� is explicitly calculated as

det�H�k;p,0�� = �− 1�p+1t2p+2
2 cos
k

2
�2p+2

. �11�

It vanishes for any p at k=�. Because of this, every zigzag
nanoribbon is metallic. It follows that

lim
p→�

det�H�k;p,0���=0,
2�

3
� 	k	 � �

�0, 	k	 �
2�

3
.  �12�

We have thus verified analytically that the flat band emerges
for 2� /3� 	k	�� when the width of nanoribbons is wide
enough, as confirms a previous numerical result,15 where the
flat band has been argued to lead to edge ferromagnetism.

For q=1 and p=3n−1 with integer n, the determinant
�10� has a factor such that

det�H�k;p,0��  sin2 k

2
, �13�

and the nanoribbon is found to be gapless at k=0.
For q
 p−1, the determinant �10� is calculated as

t−�4q+2p+2��− 1�p+1 det�H�k;p,q��

= p�p + 1�cos 2k + �− 1�q�p2 + p + 2��p + q + 1�cos k

+ �p + q + 1�2 +
p2�p + 1�2

4
+ 1. �14�

We can prove that det�H�k ; p ,q��=0 for a certain k provided
that

q =
p�p − 1�

2
. �15�

Nanoribbons are metallic on the points �p ,q� with integers p
and q with �15�. They constitute the principal sequence of
metallic points.

It is hard to solve det�H�k ; p ,q��=0 analytically for q
� p−1, though the existence of solutions is clear by numeri-
cal analysis as in Fig. 4�a�. In this figure there are only three
metallic points; the two points are �7,2� and �22,11� on the
second sequence, and the last point is �30,8� on the third
sequence.

Metallic points on higher sequences are quite curious in
this respect. We cannot tell how they arise systematically.
However, it may be useless to make efforts to distinguish
between metallic and tiny-gap semiconductors too seriously,
since the simple tight-binding model we have used will not
be accurate enough to predict completely vanishing band
gaps. Nevertheless the valley structure with several
“streams” will be a significant feature. Hence it is more in-
teresting how the sequences made of MAM �metallic or al-
most metallic� points are located in valleys.

VI. WIDTH DEPENDENCE OF NANORIBBONS

We have defined the width w of a nanoribbon by the for-
mula �3�. We now argue that the sequences of MAM points
are indexed by this width.

First, in Fig. 5 we have depicted the band gap as a func-
tion of the width w for each fixed value of q. The band gap
behaves inversely to w. This reminds us that the band gap of
a carbon nanotube is an inverse proportion to the radius. The
characteristic feature is that all band gaps with different q

FIG. 4. The band gap structure of nanoribbons. �a� The horizon-
tal and vertical axes represent the indices p and q, respectively.
Magnitudes of band gaps are represented by gray squares. Dark
�light� gray squares represent small �large� gap semiconductors. Es-
pecially, metallic states are represented by black squares. �b� A
bird’s eye view. The vertical axis is the energy gap � in units of
	t	=3.033 eV. Nanoribbons make a valley structure with stream like
sequences of metallic points in the pq plane.
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take local minima almost at the same values of width w, w
=1,2 ,3 , . . .. It indicates that nanoribbons with similar width
share qualitatively the same electronic properties. The first
local minimum corresponds to the principal sequence, which
may be regarded as an extension of the armchair nanoribbon
indexed by �2,1�. In the same way the nth sequence may be
regarded as an extension of the armchair nanoribbon with
�3n−1,1�.

Solving Eq. �3� for p, we have

p = − q +
w

2
�3�2q + 1�2 + 9. �16�

In Fig. 6 we show the curves described by this equation and
the sequences of MAM points. It is observed that the nth
sequence is almost tangent to the equiwidth curve with w
=n at q=1. We are able to associate the sequences with the
equiwidth curves in this way. These two curves become al-
most identical for sufficiently wide nanoribbons. This result
may be understood as follows. In the case of a continuous
ribbon with no lattice structure, the only parameter is the
width and the electronic properties is determined by this pa-
rameter. We present another indication that the width w is an
interesting parameter. We calculate the density of state of an
arbitrary �p ,q� nanoribbon numerically �Fig. 7�. There are
many van Hove singularities just as in nanotubes because

nanoribbons are also one-dimensional compounds. The glo-
bal structure of the density of state is determined by van
Hove singularities. These peaks can be measured experimen-
tally by Raman scattering.7,24,31,32

We calculate the energies � at which van Hove singulari-
ties develop due to the local band flatness at k=0 for various
�p ,q� nanoribbons. Note that the optical absorption is domi-
nant at k=0 because the dispersion relation �=ck with c the
light velocity. On the other hand the width w is determined
by p and q as in �3�. We show the energy � of this peak as a
function of w in Fig. 8. A peculiar stripe pattern is manifest
there. In particular, the maximum and minimum values take
almost the same values ±3	t	, reflecting the electronic prop-
erties of a graphite.10 The fact that they are on smooth curves
justifies a physical meaning of the width w. This stripe pat-
tern would be accessible experimentally by way of Raman
scattering.

VII. EDGE CORRECTIONS

We finally study how the gap structure is modified by the
existence of edges in a carbon nanoribbon. All carbon atoms
in a carbon nanotube are equivalent in the sense that each of
them is always surrounded by three carbon atoms. In con-
trast, this is not the case for a nanoribbon, where a carbon on
the edge has less neighboring carbon atoms. The presence of
C-X bonds introduces carbon atoms on edge with a different
nature. We assume that the edge effects can be taken into
account by modifying the band-filling factor, the transfer en-
ergy tij and the site energy �i in the Hamiltonian �7�. We take

FIG. 5. The band gaps � in unit of 	t	=3.033 eV as a function of
the width w. The band gap behaves inversely to w. Band gaps take
local minima almost at the same values of the width w for any q.

FIG. 6. Illustration of metallic points, sequences, and equiwidth
curves. Metallic points are denoted by solid circles. Solid curves
represent sequences of MAM points, while dotted curves represent
the points �p ,q� possessing the same width. The nth sequence is
tangent to the equiwidth curve with w=n at q=1. These two curves
become almost identical for sufficiently wide nanoribbons.

FIG. 7. The density of state �DOS� of the �1,0� nanoribbon. The
horizontal axis is the energy �. There are many van Hove singulari-
ties because of one-dimensional structure of nanoribbon.

FIG. 8. Plot of van Hove singularities in the w-� plane. For a
given �p ,q� nanoribbon, we calculate the width w and the energies
� at which van Hove singularities develop. We have plotted the
points �w ,�� for q=1,2 ,3 ,4 and for all p in the region w�3. A
stripe pattern is manifest.
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tij = tedge and �i=�edge for those associated with edge carbons,
and tij = tbulk and �i=�bulk for bulk carbons �Fig. 9�.

First, the band-filling factor is affected by the dipole mo-
ment of C-X bonds. The change of electron numbers is given
at most by the number of C-X bonds and is small for wide
nanoribbons. This effect does not modify the band structure,
but only changes the occupancy of the band. As a result,
semiconducting nanoribbons tend to become metallic nano-
ribbons.

Second, the transfer energy is affected by the change of
the distance between two carbons near the edge. The distor-
tion does not break the inversion symmetry of the band
structure. Recalculating the band structure of various nano-
ribbons, we have found that the difference is hardly recog-
nizable. We show the band structure of the �5,0� nanoribbon
in Fig. 10, assuming a large correction such that tedge
=0.7tbulk to make the difference recognizable.

Finally, the site energy is affected by the difference of
electronegativity of X. The effect is expected to be also very
small because the site energy of � electrons is mainly deter-
mined by carbon atoms. It breaks the inversion symmetry
because the lattice of carbon atoms cannot be resolved into
two sublattices any more.30 For this reason the Fermi energy
is moved from �bulk=0. The recalculated band structure of
zigzag and armchair nanoribbons is given by assuming
a large choice of the edge correction, �edge=�bulk+0.3t, in

Fig. 11. The modification is small as expected, though some
of metallic armchair nanoribbons become semiconducting.

In general the transfer-energy correction must be smaller
than the site-energy correction because the former is due to a
structural distortion while the latter is due to the electrone-
gativity. The transfer-energy correction will be negative by
considering the expansion effect near the surface. On the
other hand, the site-energy correction will be positive or
negative if the relative electronegativity of the edge atoms is
positive or negative.

We present an overview of the band gap structure of vari-
ous �p ,q� nanoribbons with the edge corrections by making a
choice of �edge=�bulk+0.05t and tedge=0.99tbulk in Fig. 12;
and by making a choice of �edge=�bulk+0.10t and tedge
=0.95tbulk in Fig. 13. Comparing them with Fig. 4, some
features of edge effects are manifest: �a� The valley structure
with streamlike sequences remains as they are. �b� All zigzag
nanoribbons remains gapless. �c� Armchair nanoribbons are
most strongly affected. �d� Edge effects are negligible for
wide nanoribbons.

VIII. DISCUSSION

We have systematically studied and presented a gross
view of the electronic properties for a wide class of carbon
nanoribbons. They exhibit a rich variety of band gaps, from
metals to typical semiconductors. Zigzag and armchair nan-
oribbons have electronic properties similar to nanotubes, but
other nanoribbons are quite different. It is remarkable that
there exist sequences of metallic or almost metallic nanorib-
bons which look like streams in valleys made of semicon-
ductors. They approach equiwidth curves for wide nanorib-
bons. We have revealed a peculiar dependence of the
electronic properties of nanoribbons on the width w. These
characteristic features are not affected strongly by edge cor-
rections even for narrow nanoribbons.

In our analysis we have employed the nearest-neighbor
tight-binding model. It is worthwhile to calculate band gaps
by more rigorous methods such as a density-functional

FIG. 9. Illustration of edge carbons and bulk carbons. A gray
circle denotes an edge carbon connected by two carbons and a
hydrogen. A black circle denotes a bulk carbon connected by three
carbons. The energy and the transfer energy associated with edge
carbons are set to be �edge and tedge, respectively. Hydrogen atoms
are omitted in this figure.

FIG. 10. �a� The original band structure of the �5,0� nanoribbon.
�a�� The band structure of the nanoribbon with the choice of tedge

=0.7tbulk. The difference is hardly recognizable.

FIG. 11. �a� and �b� The original band structures of the �5,0� and
�2,1� nanoribbons. �a�� and �b�� The band structures of the nanor-
ibbon with the choice of �edge=�bulk+0.3t. The inversion symmetry
is broken and the Fermi energy is slightly moved from �bulk=0.
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theory.33–36 It is interesting to examine whether metallic
points on the sequences we have discovered remain gapless
in these calculations. We also note that edge corrections have
been calculated by a tight-binding density-functional method
in several cases for other materials.37–41 Needless to say it is
an extremely hard task to carry out these calculations and
practically impossible to make a systematic analysis based
on them. Our results on the electronic property of carbon
nanoribbons will be useful as a guidepost for those advanced
studies.

In passing, we remark that experimental studies of nano-
ribbons are just in the beginning stage24–26 in comparison

with the study of nanotubes. This may be due to a difficulty
of manufacturing and selecting good samples, but the recent
technical developing will soon solve this problem. The band
gap study of various nanoribbons presented in this paper may
be a basic step for various application of carbon nanorib-
bons.
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